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Abstract: The fluid flow in the runner of a hydraulic turbine has serious uncertainties. The sealing
failure of the magnetorheological (MR) fluid sealing device of the main shaft of the hydroturbine,
caused by a sudden change in speed, has always been a difficult topic to research. This study first
derives the MR fluid seal pressure and unbalanced curl equations of the hydroturbine main shaft, and
then analyzes the seal pressure and friction heat under different rotational speed mutation conditions
through experiments. After verification, the temperature field and magnetic field distribution of
the MR fluid sealing device of the main shaft of the hydraulic turbine are obtained via numerical
calculation. The results show that the external magnetic field affects the magnetic moment of the
magnetic particles in the MR fluid, resulting in a significant change in frictional heat, thereby reducing
the saturation of magnetic induction intensity of the MR fluid. This results in a decrease in the sealing
ability of the device. The size and abrupt amplitude of the main shaft of the hydraulic turbine, and
friction heat is positively correlated reducing the sealing ability of the device and causing sealing
failure. Based on our results, we recommend adding the necessary cooling to the device to reduce
the frictional heat, thereby increasing the seal life of the device.

Keywords: frictional heat; hydraulic turbine main shaft; MR fluid seal; different speed abrupt
conditions; seal failure; unbalanced curl

1. Introduction

With the rapid development of the world economy, energy demand has rapidly in-
creased. To realize the sustainable development of society and protection of the Earth,
green and environmentally friendly renewable energy has become an important research
topic. According to the World Energy Development Report (2020) report released by the
China International Energy Security Research Center, the global installed hydropower ca-
pacity has reached 1.308 billion kW, ranking first in the world’s list of renewable energy [1].
Regarding hydropower, the sealing performance of the main shaft of the core equipment
turbine is directly related to the safety and reliability of the entire power generation process.
Presently, the main shafts of hydraulic turbines mostly use rubber, packing, floating-ring,
and labyrinth seals [2]. However, these sealing methods have several problems, including
having complex structures and low reliability and being easily worn down. As a new type
of sealing method, magnetorheological (MR) fluid sealing has become a research hotspot in
the sealing industry, owing to its high reliability, low viscous friction, and good self-healing
properties [3,4]. MR fluids are mainly comprised of micron-sized magnetic solid particles,
surfactants, and base fluids. Compared with magnetic fluid seals, magnetic solid particles
sealed by MR fluids are much larger. Rheological fluid sealing is mainly aimed at large-gap
sealing [5,6], mainly employing the magnetic force of an external magnetic field to gather
and align magnetic solid particles in the fluid into chains, to form a semi-solid having an
anti-shearing effect [7,8].
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Research on the sealing of MR fluids can be traced back to the 1960s. Rosensweig [9]
conducted research on sealing the movable parts of a spacesuit in a vacuum environment,
and applied it in practice. Thereafter, scholars worldwide have conducted extensive
research on MR fluid sealing. For example, in 1979, Rosensweig [10] studied the dynamic
characteristics of MR fluids, and found that its liquid phase has one more source stress
than ordinary fluid mechanics. In 1987, Shul’man [11] studied the rheological properties
and shape parameters of MR fluids in relation to energy dissipation and heat transfer of
rotating magnetic fields. In 1996, Kordonski [12] compared magnetic and MR fluid seals,
determining that the sealing ability of MR fluid seals is much higher than that of magnetic
fluid seals, owing to shearing. In 2004, Iyengar [13] designed a method to test the wear
of MR fluids. The process provided a theoretical reference for the future study of MR
fluid seals. In 2012, Potoczny [14] studied the relationship between the volume of MR
fluid and sealing pressure, obtaining expressions of MR fluid volume and sealing pressure.
In 2013, Zhou [15] applied MR fluid seals to the steel industry, solving the air-leakage
problem of circular coolers, and expanded the application of MR fluid seals. In 2017,
Susan–Resiga [16] experimentally studied the apparent viscosity and magnetization of
different magnetic induction intensities, shear rates, magnetic solid particle sizes, and
volume fractions to obtain an infinite measure of the sealing performance of MR fluids.
The characteristic parameters of the Mersenne (Mn) and Carson (Ca) numbers provide
theoretical references for the practical application of MR fluid seals. In 2018, Zhang [17]
again compared magnetic and MR fluid seals, finding that the MR fluid seal has higher
pressure resistance. Additionally, the sealing pressure and sealing time of the MR fluid
were given relevant expressions. In 2019, Kubík [18] designed a new type of shrinkable
MR fluid sealing structure that has a low friction torque and high sealing pressure. In
2020, Yang [19] optimized the design of a four-magnetic-source MR fluid seal, and studied
the sealing gap, ratio of the height and length of the permanent magnet, and height and
width of the pole teeth. The influences of the structural parameters (e.g., groove width,
and pole tooth width ratio) on sealing performance led to new research ideas for magnetic
fluid sealing. In 2021, Wang [20] studied the O-rings of MR fluid dampers; the friction
and wear mechanism was studied, and a series of friction force series were established.
The relationship between piston-rod speed, particle size, particle mass fraction, friction
coefficient, and film thickness was obtained through calculations and analysis. In 2021,
Yuqing Li [21] selected MR fluid materials and used the proportioning method and stability
principle to study MR fluid seals. By summarizing the performance methods, a formula for
MR fluids with excellent performance was obtained, ultimately improving the performance
of MR fluid seals.

Currently, the literature that has been consulted shows that there is no study on the
seal failure caused by the unbalanced curl of the MR fluid seal device of the hydroturbine
main shaft, owing to sudden changes in rotational speed. Therefore, this study first derives
the MR fluid seal pressure and unbalanced curl equations of the turbine main shaft, then
obtains the pressure values and frictional heat under different speed mutation conditions
through experiments. Subsequently, we verify the experimental results and numerical
calculation results. Finally, the magnetic field and temperature field distribution of the
MR fluid sealing device are obtained using numerical calculation, which provides a new
theoretical reference for the research on MR fluid sealing.

2. Theory
2.1. MR Fluid Seal Pressure Equation

This study does not consider the change in the viscosity of the MR fluid. The MR fluid
sealing device for the main shaft of a hydraulic turbine is shown in Figure 1. It is mainly
composed of magnetic poles, a main shaft, permanent magnets, insulating materials, and
MR fluid. The magnetic energy of the permanent magnet emerges from the N level, and
passes through the magnetic pole, MR fluid, and main shaft, and finally, through the other
side of the magnetic pole to return to the permanent magnet S level. The MR fluid located
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between the main shaft and magnetic poles (sealing gap) is subjected to magnetic force,
and the magnetic particles in the MR fluid gather into chains to prevent leakage of the
sealed medium and achieve the purpose of sealing.
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Figure 1. MR fluid sealing device.

The N-S equation of the MR fluid [22] is

ρm
∂V
∂t

+ ρm(V · ∇)V = −∇p + ηH∇2V + µ0M∇H, (1)

where ρm is the density of the MR fluid, V is the linear velocity of the MR fluid, p is the
magnetic fluid pressure, µ0 is the vacuum permeability, ηH is the viscosity of the MR fluid
in an external magnetic field, M is the magnetization, and H is the strength of the external
magnetic field.

When calculating the sealing pressure of the MR fluid, this study does not consider
the internal degrees of freedom of the MR fluid, as the external magnetic field does not
cause the solid particles to rotate. The MR fluid moves circularly around the central axis of
the spindle in the gap. Therefore, this study uses a cylindrical coordinate system with the
central axis of the spindle as the z-axis. We thus expand (1) to obtain

∂p
∂r = ρm

v2
θ
r + ∂

∂r µ0
∫ H

0 MdH

0 =
∂v2

θ
∂r2 + 1

r
∂vθ
∂r + ∂2vθ

∂z2 − vθ
r2

0 = − ∂p
∂z + ∂

∂z µ0
∫ H

0 MdH

. (2)

As shown in Figure 1, assuming that the spindle speed is ω, the spindle radius is R,
and the sealing gap is Lg. When the rotation radius r = R, then V = Rω; when the rotation
radius r = R + Lg, then V = 0. Substituting the boundary conditions into (2) obtains

vθ = ω0

(
C1r +

C2

r

)
, (3)

where r is the radius of a point in the MR fluid, C1 = − R2

Lg(2R+Lg)
, and C2 =

R2(R+Lg)
2

Lg(2R+Lg)
.

By substituting (3) into (2) to fully integrate the pressure term, we obtain

p = µ0

∫ H

0
MdH + φ(r) + C, (4)

where φ(r) = 1
2 ρmω2

(
C2

1r2 − C2
2

r2 + 4C1C2 ln r
)

.

For MR fluid seals, the yield stress of the MR fluid also has a certain resistance to
pressure. Therefore, we first obtain the MR fluid pressure difference according to (4), and
then superimpose the MR fluid yield stress [23]. Finally, the total pressure of the MR fluid
seal can be obtained as

∆p = MS(BA − BB) + φ(rA)− φ(rB) + 3.89nDR2
0(1− ε)0.75M2 sin α

3L
b

, (5)
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where MS is the saturation magnetic induction intensity of the magnetic fluid, BA is the
magnetic induction intensity on the high-voltage side, BB is the magnetic induction intensity
on the low-voltage side, rA is the radius of the high-pressure side, rB is the radius of the
low-pressure side, D is the demagnetization coefficient of magnetic particles, R0 is the
radius of the magnetic particle, ε is the porosity, α is the maximum deflection angle of the
flux linkage under the action of an external magnetic field, L is the axial length of the gap
filled with MR fluid, and b is the radial length of the gap filled with MR fluid.

2.2. MR Fluid Friction Power Loss Equation

Figure 2 shows a schematic of the shear flow of the MR fluid. Figure 2a shows the shear
flow of the MR fluid under the condition of an external magnetic force H = 0. Figure 2b
shows the MR fluid under the condition of an external magnetic force H 6= 0. When the
external magnetic force H = 0, the MR fluid moves circularly around the z-axis under the
action of the centrifugal force of the main shaft of the hydraulic turbine. When the external
magnetic force H 6= 0, the MR fluid moves under the action of the centrifugal force of
the main shaft of the hydraulic turbine and the external magnetic force. An unbalanced
curl, Ω 6= 1

2 (rot v), is produced, which increases the friction between the MR fluid and
main shaft of the hydraulic turbine, forming higher frictional heat, thereby reducing the
saturation magnetic induction intensity of the MR fluid as well as the sealing pressure,
eventually leading to reduced sealing.
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From Figure 2a, given the shear motion of the MR fluid under the condition of external
magnetic field H = 0, the motion equation of the MR fluid under this condition is

ν(r) = ν
z

R + Lg
(er + eθ), (6)

where v is the rotational linear velocity of the main shaft of the turbine, z is the z-axis
coordinate, er is the basis vector in the r direction, and eθ is the basis vector in the θ
direction. Based on Figure 2b, for the shear motion of the MR fluid under the condition of
an external magnetic force H 6= 0, the curl, Ω, under the action of the external magnetic
force is

Ω(r) =
1
2

rot v =
ν

2
(

R + Lg
)ez, (7)

where ez is the basis vector in the z-direction. By using (7), the rotational angular velocity,
ω0, of the MR fluid under the action of an external magnetic field can be obtained as

ω0 =
f M(H)µ0H

µr + f M(H)µ0H
Ω(r)eθ , (8)
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where f is the relaxation time of magnetization, µr is the relative permeability of the mag-
netic fluid, H is the intensity of the external magnetic field, and M(H) is the magnetization
intensity of the MR fluid.

For the MR fluid subjected to an external magnetic force, there will be an offset, M, in
the z- and r-axis directions. The offset, M, can be expressed using the Shlionmis formula.

M = ω0M(H)(−er + ez). (9)

Under the action of an external magnetic field, the friction balance equation of the MR
fluid seal is ∫

dVmµ0M×H =
∫

dVmZrω0, (10)

where Vm is the volume of the MR fluid, and Zr is the rotational viscosity of the magnetic fluid.
To facilitate the calculation, the function, K(H), is introduced to obtain

K(H) = Vmµ0H0M(H)K0∆T, (11)

where H0 is the magnetic-field strength in the MR fluid, K0 is Boltzmann’s constant, and ∆T
is the extra torque generated by the MR fluid under the action of an external magnetic field.

According to the magnetization formula of MR fluid, the magnetization intensity [24],
M(H), is

M(H) = MS

(
cot h

µ0HMpVp1

K0T
− K0T

µ0HMpVp1

)
, (12)

where Mp is the magnetization of the solid phase of the MR fluid, MS is the saturation
magnetic flux density of the MR fluid, Vp1 is the volume of each solid particle, and T is the
absolute temperature of the MR fluid.

According to the Maxwell equation of MR fluid [24], K(H) can be acquired as follows:

K(H) =
1
f
+

1
Zr

µ0H0M(H). (13)

By substituting (13) into (11), the additional friction torque generated by the MR fluid
can be obtained as

∆T =

1
f +

1
Zr

µ0H0M(H)

VH0M(H)K0
. (14)

Then, the frictional power consumption, P, of the MR fluid seal of the main shaft of
the hydraulic turbine is

P = ω0 × ∆T (15)

By substituting the specific-heat capacity and mass of the MR fluid in the MR fluid
sealing gap of the turbine main shaft into (15), the frictional heat temperature value can
be obtained.

3. Introduction to Models and Boundary Conditions
3.1. Model Introduction

The research object of this study is a tubular turbine generator set. The diameter of
the main shaft of the turbine is 500 mm, the total length of the main shaft is 4000 mm, and
the length of the sealing section is 1000 mm. Considering the design and processing of
the actual test device, the test device is 1/10 of the real machine model. The test device is
shown in Figure 3.
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3.2. Numerical Calculation Model Introduction

The numerical calculation model adopts a scale model such as an MR fluid sealing
test device. The calculation model is shown in Figure 4, and the device structure size is
shown in Table 1.
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Table 1. Dimensions of MR Fluid Sealing Device (unit: mm).

Axial Length
of Pole/L0

Axial Length
of Permanent

Magnet/Lm

Axial Length
of Gap/b

Spindle
Radius/R

Radial
Length of

Gap/Lg

Pole Wedge
Width/h

PIB Radial
Width/H1

Radial Width
of Permanent

Magnet/H2

20 20 10 50 0.5 2 22 10

3.3. Setting of Boundary Conditions

First, through experiments, the viscosity–temperature curve and magnetic tempera-
ture curve of the MR fluid at different temperatures and external magnetic field strengths
are measured; then, a function is written into the software through the UDF custom func-
tion in ANSYS; finally, an ANSYS co-simulation of the MR fluid is performed with the
Maxwell and Fluent software.

The magnetic field setting conditions of the MR fluid sealing device are as follows.
The permanent magnet adopts axial magnetization from left to right, the magnetic field
magnetization relationship is the residual magnetic flux density, and the residual mag-
netic flux density is 1.21 T. Furthermore, the magnetic pole and spindle magnetic field
magnetization relationship is the BH curve, which comes with the system. The rubber
is an insulating material, and the magnetic field magnetization relationship is relative
permeability, which is set to 1. The magnetic field magnetization relationship of the MR
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fluid is relative permeability, and the specific value is the magnetic temperature curve
determined through the experiment.

The setting conditions of the temperature field of the MR fluid sealing device are
shown in Table 2. The viscosity of the MR fluid is determined by the test, and the specific
value is the viscosity–temperature curve determined using the test.

Table 2. Thermodynamic Parameters of Various Materials in Temperature Field Simulation.

Density of
MRF/ρm(kg·m−3)

Thermal conductivity of
MRF/λm(W·(m·K)−1)

Density of
45#steel/ρs(kg·m−3)

Constant pressure heat
capacity of 45#steel

Cs(J·(kg·K)−1)

Density of
NdFeB/ρN(kg·m−3)

1200 0.2 7800 450 7550

Thermal conductivity of
45#steel/λs(W·(m·K)−1)

Thermal conductivity of
NdFeB/λN(W·(m·K)−1)

Constant pressure heat
capacity of NdFeB

CN(J·(kg·K)−1)

Thermal conductivity of
PIBλP(W·(m·K)−1)

Density of
PIB/ρP(kg·m−3)

50 9 440 0.15 815

4. Test Results and Discussion
4.1. Sealing-Pressure Test Results and Discussion

The pressure values of the measuring points were tested under the conditions of 300,
600, 900, and 1500 rpm. The test results are shown in Figure 5. The figure also shows
that, as the speed gradually increases from 300 to 1500 rpm, the pressure of the MR fluid
sealing device for the main shaft of the turbine gradually decreases from 0.12 MPa to zero.
By observing the sealing pressure of different variable amplitudes under the same speed
condition, the speed change under the low-speed condition has no effect on the sealing
pressure. For the high-speed condition, the speed change amplitude has a significant effect
on the sealing pressure. Simultaneously, under the same rotational-speed conditions, the
magnitude of the change in rotational speed is negatively correlated with the magnitude of
the sealing pressure. When the magnitude is larger, the sealing pressure is smaller.
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This phenomenon occurs for the following reason. Based on (5), it can be seen that, as
the speed increases, when the centrifugal force term is greater, the pressure of the MR fluid
sealing device will gradually decrease. For the same rotational speed operating condition,
the rotational speed changes suddenly. Under the influence of inertial force, the MR fluid
in the fluid seal device deflects, causing the magnetic moment of the solid particles in the
MR fluid to change, thereby affecting the saturation magnetic induction intensity of the
MR fluid, ultimately affecting the sealing pressure of the device.

4.2. Results and Discussion of the Frictional Heat Experiment

The temperature change in the MR fluid sealing device under different speed con-
ditions is shown in Figure 6. The figure also shows that, as the rotation speed increases,
the temperature in the sealing gap gradually increases from 46 to 76 ◦C. For low-speed
operating conditions, when the device speed changes suddenly, the temperature remains
unchanged. However, for high-speed operating conditions, after the device’s rotational
speed changes suddenly, its temperature suddenly changes, then stabilizes.
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This is due to the fact that, as the rotation speed increases, the friction between the
MR fluid in the sealing gap, rubber, and magnetic poles intensifies, resulting in an increase
in frictional heat. For abrupt conditions, the MR fluid in the sealing gap suddenly increases
(decelerates), and the magnetic moment of the magnetic particles in the MR fluid changes
under the action of inertial force, causing the MR fluid to malfunction, balancing the curl,
generating heat, and causing the overall temperature to rise. As the main shaft speed
of the turbine stabilizes, the magnetic moment of the magnetic particles in the MR fluid
becomes consistent; however, the thermal effect caused by the unbalanced curl accumulates
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in the sealed gap, causing the temperature to rise. Additionally, when the amplitude of
the variable working condition is larger, the recovery process of the MR fluid is slower, the
thermal effect caused by the change in the magnetic moment of the MR fluid is greater, and
the temperature rise of the device is more evident.

5. Numerical Calculation and Analysis
5.1. Model Validation

According to the test results in the previous section, this study selects the temperature
test value of the MR fluid and the numerical results under the 300-rpm speed mutation
condition for comparison and verification. The verification results are shown in Figure 7.
This figure shows that the time of the numerical calculation curve is delayed by 100 s
compared to the test curve; nevertheless, the overall trend of the numerical calculation is
consistent with the experimental trend, and the temperature value after stabilization is
the same. However, for the numerical analysis results in this section, only the steady-state
temperature and magnetic field of the MR fluid sealing device are discussed, and the
change process is not discussed. The temperature after the calculation curve and test
curve are stable and fundamentally the same; hence, the numerical calculation results are
consistent with the experiment results.
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5.2. Results and Analysis of Friction Heat

Figure 8 shows the temperature cloud diagram of the MR fluid sealing device under
the condition of an external magnetic field, H = 0, at different speeds. As shown in Figure 8,
as the rotation speed increases, the temperature of the MR fluid sealing device gradually
increases, and the high-temperature area gradually increases. Simultaneously, by observing
the same rotational speed, the maximum temperature of the MR fluid sealing device is
noted in the sealing gap, which is approximately 55 ◦C; it then diffuses to the outside to
realize heat exchange with the outside world.

Figure 9 shows the temperature cloud of the MR fluid sealing device under the condi-
tion of an external magnetic field, H 6= 0, at different speeds. As shown in Figure 9, as the
rotation speed increases, the temperature of the MR fluid sealing device gradually increases,
and the high-temperature area continues to increase. Simultaneously, by observing the
same rotational speed, the maximum temperature of the MR fluid sealing device is noted
in the sealing gap, which is approximately 75 ◦C; it then diffuses to the outside to achieve
heat exchange with the outside world.

Comparing and observing the cloud diagram of the MR fluid sealing device at different
speed under the conditions of H = 0 and H 6= 0 shows that the temperature rise of the MR
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fluid sealing device under the action of an external magnetic field is significantly higher
than that of the device without the action of an external magnetic field.

The main reason for this is that the main shaft of the hydraulic turbine moves in a
circle, the MR fluid in the gap moves with the main shaft under the action of friction, and
the magnetic poles and rubber are stationary parts. Hence, the MR fluid and magnetic
poles in the gap move together. Moreover, the rubber exhibits a strong friction effect.
According to (14), after the MR fluid is subjected to an external magnetic force, it produces
an unbalanced curl. Therefore, for an MR fluid with magnetic force under the dual action
of friction and unbalanced curl, the frictional power consumption increases exponentially,
resulting in a significant increase in the temperature of the MR fluid at the gap. Additionally,
an increase in the temperature of the sealing device causes the magnetic properties of the
magnetic poles, permanent magnets, spindle, and MR fluid to decrease, reducing the
pressure resistance of the seal. This observation corresponds to the results of the magnetic-
field analysis.

5.3. Magnetic Field Results and Analysis

Figure 10 shows the calculation results of the magnetic field of the MR fluid sealing
device under different speed conditions. As shown in this figure, with an increase in the
rotation speed of the main shaft of the turbine, the magnetic field of the MR fluid sealing
device is generally produced by the N level of the permanent magnet, followed by the
magnetic pole→MR fluid→main shaft→MR fluid→magnetic pole; then, it returns to
the S level. However, the high magnetic-field area of the MR fluid sealing device under
low-speed operating conditions is significantly larger than that under high-speed operating
conditions; with a further increase in the rotational speed, the magnetic field area remains
unchanged and tends to be stable.
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Figure 10 shows that the magnetic field results of high-speed operating conditions are
approximately the same. This is due to the fact that, with a continuous increase in speed,
the temperature of the MR fluid continues to rise, and the relative permeability of the MR
fluid gradually decreases from 1.05 to 1. However, for the magnetic poles, spindles, rubber,
and permanent magnets, a small range of temperature change has little effect on their
magnetic properties. Therefore, for the entire MR fluid sealing device, the magnetic field
area is unchanged under high-speed working conditions. Therefore, for further research on
the magnetic field, the field results of 300 and 600 rpm operating conditions were selected
for this study. According to the literature [25], it is known that the side closest to the main
shaft easily causes leaks. Therefore, in this study, a section line close to the main shaft
(0.05 mm) with an axial length of 10 mm is examined. The value of the magnetic field on
the section line is shown in Figure 11.
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Figure 11 shows that the magnetic field at the sealing gap at 300 and 600 rpm changes
in an upward parabola, the magnetic induction intensity in the middle of the gap is close
to zero, and both ends of the gap are the maximum value of the magnetic field, at 4.5 and
3.0 T. The magnetic field at both ends of the 300 rpm scenario is greater than that of the
600 rpm scenario.

Finally, according to the results of the magnetic-field analysis, combined with (5), the
sealing pressure at 300 rpm is noticeably greater than that at 600 rpm. The reason for this is
that, as the spindle speed increases, the friction power consumption of the MR fluid at the
gap increases. The temperatures of the magnetic poles, permanent magnets, and spindle
materials also increase, and the magnetic performance decreases, resulting in a decrease in
the sealing pressure. When the rotation speed increases to a larger value (600 rpm), the
magnetic properties of the magnetic poles, permanent magnets, and spindles drop to a
certain threshold, and appear unchanged, as shown in Figure 10.

6. Conclusions

This study first derives the MR fluid seal pressure and unbalanced curl equations
of the hydroturbine main shaft, then uses experiments to analyze the seal pressure and
friction heat under different rotational-speed mutation conditions. The friction heat test
results and numerical calculation results are analyzed. After verification, the temperature
field and magnetic field distribution of the MRl fluid sealing device of the main shaft of
the hydraulic turbine are obtained using numerical calculation. The results obtained are
as follows.

(1) For the MR fluid sealing device of the hydraulic turbine main shaft, when the
spindle speed changes randomly, it causes the magnetic moment of the magnetic particles
in the MR fluid to change, resulting in unbalanced curl friction power consumption and a
rise in device temperature, which leads to sealing failure;

(2) For turbines having random variable speed conditions, the spindle speed and
variation amplitude of the turbine are directly proportional to frictional heat, which reduces
the sealing ability of the device, leading to sealing failure;
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(3) For medium- and high-speed turbines, if an MR fluid sealing device is used,
the necessary cooling for the device can be improved, and the stability of the operating
conditions can be increased to reduce the frictional heat and increase the sealing life of
the device.

As for the research on the MR fluid sealing, most existing studies are conducted on
the stability of the interface between the sealing medium and magnetic fluid. However,
MR fluids, which have dual characteristics of fluids and magnetic materials, can be investi-
gated from the perspective of both characteristics. This study is conducted through the
influencing factors (temperature) of the magnetic properties of magnetic materials; hence,
in the future, it can be studied based on the influencing factors of MR fluids. In addition,
for the main body of the study, the main shaft of the turbine is the only application object.
In future studies, this research method can be applied to all sealing industries.
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