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Abstract: The friction rotary welding (FRW) of magnesium alloy to aluminum alloy was presented in
a paper due to significant interest in the manufacturing industry. A genetic algorithm (GA) method
for optimizing FRW process parameters of dissimilar light alloys was presented. After obtaining
the welding parameters by GA method, it was possible to determine the best tensile strength of the
friction joint. The obtained joints were subjected to tensile strength. The highest tensile strength
TS = 178 MPa was found using a genetic algorithm for the following friction welding parameters:
friction force FF = 16 kN, friction time FT = 4 s, and upsetting force UF = 44 kN. The optimized values
were compared with the experimental results. The application of the genetic algorithm method
allowed increasing the tensile strength joint from 88 to 180 MPa. The maximum tensile strength of
the friction welded magnesium alloy-aluminum alloy joints was 73% of the base AZ31B metal. The
relationship between welding parameters and strenght of welds was also demonstrated in this study.

Keywords: friction rotary welding; AZ 31B; AA 7075; genetic algorithm; optimization

1. Introduction

Magnesium alloys are ideal for reducing vehicle weight, as they have a lower mass
density than aluminum [1]. Hong and Shin [2] draw attention to the need to develop
welding technology to apply magnesium alloys in mass production. Due to the wide use
of magnesium alloys in various industries, such as aviation or automotive, there is a need
for welding them with other metals like aluminum, copper, or steel [3].

Friction welding is a solid-state welding process used to weld heat-resisting materials
for similar structural and dissimilar components [4,5]. Friction welding of Mg alloy to Al
alloy has important application in the manufacturing industry, so the welding of these
alloys was studied in the last papers. It is important to realize the joining of solid magne-
sium and aluminum bars by friction method [6]. In this welding method, the formation
of IMCs can be controlled effectively with lower heat input and less welding time, as
suggested authors [7]. Additionally, the welding parameters such as friction and upsetting
pressure, rotational speed, and welding time play a significant role in determining the
joint strength [6]. Kato and Toksiue [7] have received tensile strength of 90 MPa during
welding magnesium alloy. According to the authors [8], with increasing axial pressure,
the thickness of the intermetallic layer and microcracks decreased. The tensile strength
was comparable to the parent material received in friction welding pure magnesium to
pure aluminum with post-heat-treatment [9]. The maximum tensile strength of 138 MPa
received during continuous drive friction welding of 5A33 alloy to AZ31B magnesium
alloy in a paper [10]. Moreover, the mechanical study of inertia friction welding of AA7A04
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to AZ31B Mg alloy was conducted [11]. The maximum tensile strength of 96 MPa was
achieved under the friction pressure of 124 MPa.

From the literature review [1–11], it is noticed that to estimate a good strength weld, it
is vital to predic the best process parameters combination using an appropriate optimization
method. In the previous works, selecting parameters for welding usually was carried out
by trial and error. The traditional optimization techniques do not work effectively when
the search space is large. In such cases, non-traditional optimizing techniques are preferred.
Such optimization methods include genetic algorithms.

In many works, genetic algorithms (GAs) were used for the precise selection of weld-
ing parameters. A design of experiments (DOE) model in friction welding of austenitic
stainless steel to low alloy steel was established by Murti et al. [12]. Paventhan et al. [13]
successfully predicted the tensile strength of aluminum alloy and stainless steel joints.
Sathiya [14] has conducted the optimization of welding parameters using neural net-
works and GAs. Kumaran et al. [15] optimized a pure aluminum tube plate using an
external tool by GA and Taguchi method. Canyurt estimated welded joint strength and
fatigue strength using the GA approach in the papers [16,17]. Meran [18] developed
the GA model to improve the tensile strength of the welded joint for brass material.
Padmanaban et al. [19] predicted the mechanical properties of the magnesium AZ31B
welds. Additionally, the above authors determined the optimal parameters of the FSW
process. Winiczenko et al. [20] optimized welding parameters of ductile cast iron joints
using a support vector machine (SVM), imperialist competitive algorithm (ICA), and GA.
The same author successfully developed a hybrid response surface methodology and GA
techniques to modeling, simulate, and optimize welding parameters for ductile iron/low
carbon steel joints [21]. Combined RSM and Modified Differential Evolution for parameter
optimization of FSW of aluminum alloy were proposed in paper [22].

From the literature, it is found that GA optimization technique was not used to opti-
mize the process parameter settings for dissimilar Al/Mg friction welded joints. Therefore,
the aim of this study is to find the optimal process parameters that maximize the ultimate
tensile strength of dissimilar AZ31B/AA7075 friction welded joints. It may be possible to
improve joint efficiency by using a genetic algorithm. Moreover, the empirical relationships
concerning welding parameters and tensile strength were determined.

2. Materials and Methods
2.1. Materials

The magnesium and aluminum rods prepared on the abrasive cut-off machine were
100 mm in length and 20 mm in diameter. The mechanical properties and alloying elements
of materials are shown in Table 1. Before welding, the surfaces were polished by grit silicon
carbide papers to remove the effect of oxide films and surface roughness and then cleaned
in acetone to remove dirt and grease, as suggested [10,11].

Table 1. The mechanical properties and alloying elements (wt.%) of materials.

Material Chemical Composition Mechanical Properties

Mg Al Zn Cu Si Mn Fe
Tensile strength Yield strength Elongation Hardness

(MPa) (MPa) (%) HB
AZ 31B Rest 2.5–3.5 0.6–1.4 0.01 0.08 0.2–1.0 0.003 248 152 8 49

AA 7075 2.25 Rest 5.67 1.62 0.17 0.14 0.29 540 480 7 150

2.2. Welding Parameters

Figure 1 shows a continuous drive friction machine (ZT4-13 type, ASPA, Wrocław,
Poland) with the samples. During the welding process, the magnesium alloy bar is rotated
with the spindle, and the aluminum bar is moved axially under the axial pressure. When
the appropriate rotational speed is reached, the specimens are brought together under axial
force. Abrasion at the weld interface heats specimens locally and upsetting starts. Finally,
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the rotation of the workpiece stops, and upset pressure is applied to consolidate the joint
(see Figure 1).

Processes 2021, 9, 1550 3 of 12 
 

 

2.2. Welding Parameters 
Figure 1 shows a continuous drive friction machine (ZT4-13 type, ASPA, Wrocław, 

Poland) with the samples. During the welding process, the magnesium alloy bar is ro-
tated with the spindle, and the aluminum bar is moved axially under the axial pressure. 
When the appropriate rotational speed is reached, the specimens are brought together 
under axial force. Abrasion at the weld interface heats specimens locally and upsetting 
starts. Finally, the rotation of the workpiece stops, and upset pressure is applied to con-
solidate the joint (see Figure 1). 

 
Figure 1. FRW of magnesium alloy to aluminum alloy. 

The choice of welding parameters was based on the previous reports [9–11]. The 
upsetting time (UT) was 6 s for all samples. The ranges of parameters were established by 
the capabilities of the welding machine. For this welder, the rotational speed (RS) of 1450 
rpm was constant. Also, the maximum axial force was limited to 50 kN. Table 2 shows the 
welding parameters used in the experiment. 

Table 2. The welding parameters used in the experiment and UTS results. 

No Friction Force 
(FF) 

Friction Time 
(FT) 

Upsetting Force 
(UF) 

Ultimate Tensile Strength 
(UTS) 

# kN s kN MPa 
S1 24 8 34 24 
S2 24 12 44 42 
S3 24 10 39 10 
S4 24 8 44 88 
S5 31 8 39 11 
S6 31 12 39 13 
S7 38 12 34 31 

2.3. Tensile Test 
A tensile test was carried out on a 100-kN servo-controlled universal testing ma-

chine (Instron 1115 type) at a constant displacement rate of 1 mm/min at room tempera-
ture (see Figure 2) according to the ASTM:E8/E8M-13a standard specimen configuration 
[5]. For each group of welding parameters, three samples were made. The mean results 
from the tensile tests are presented in Table 2. 

Figure 1. FRW of magnesium alloy to aluminum alloy.

The choice of welding parameters was based on the previous reports [9–11]. The
upsetting time (UT) was 6 s for all samples. The ranges of parameters were established
by the capabilities of the welding machine. For this welder, the rotational speed (RS) of
1450 rpm was constant. Also, the maximum axial force was limited to 50 kN. Table 2 shows
the welding parameters used in the experiment.

Table 2. The welding parameters used in the experiment and UTS results.

No Friction Force (FF) Friction Time (FT) Upsetting Force
(UF)

Ultimate Tensile Strength
(UTS)

# kN s kN MPa

S1 24 8 34 24
S2 24 12 44 42
S3 24 10 39 10
S4 24 8 44 88
S5 31 8 39 11
S6 31 12 39 13
S7 38 12 34 31

2.3. Tensile Test

A tensile test was carried out on a 100-kN servo-controlled universal testing machine
(Instron 1115 type) at a constant displacement rate of 1 mm/min at room temperature (see
Figure 2) according to the ASTM:E8/E8M-13a standard specimen configuration [5]. For
each group of welding parameters, three samples were made. The mean results from the
tensile tests are presented in Table 2.
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3. Modeling and Optimization
3.1. Mathematical Models

Two mathematical models were considered to represent the ultimate welding strength
(UTS) of the AZ31B/AA7075 joints. The quadratic and cubic models were written in terms
of design parameters of the friction force, friction time, and the upsetting force shown as

UTSqudratic = β1 + β2·X1 + β3·X2 + β4·X3 + β5·X1·X2 + β6·X1·X3 + β7·X2·X3 + β8·X2
1 + β9·X2

2 + β10·X2
3 + β11·X1·X2·X3 (1)

UTScubic = β1 + β2·X1 + β3·X2 + β4·X1·X2 + β5·X1X3 + β6X2X3 + β7X2
1 + β8X2

2 + β9X2
3 + β10·X3

1 + β11·X3
2 + β12·X3

3 (2)

where X1, X2, and X3 are the friction force (FF), friction time (FT), and upsetting force (UF),
respectively, and βi are the weights for decision variables.

The quadratic model describing the dependence of the welding parameters on the
joint strength, developed by genetic algorithm procedure, are given below

UTSqudratic = 0.462 + 0.787·FF + 10.737·FT + 1.45·UF + 0.1·FF·FT − 0.45·FF·UF+
−0.785·FT·UF + 0.149·FF2 + 0.108·FT2 + 0.225·UF2 + 0.012·FF·FT·UF

(3)

3.2. Fitness Function

The goal function is the minimum mean absolute percentage error (MAPE), and it is
shown below, where σj exp and σj pred represent the experimental and predicted strength of
the j-th joint, and m is the number of observations. After each algorithm generation, the
individuals with the best fitness function proceed to the next generation.

The objective function f(x) has the form:

f(x)min =
1
m

m

∑
j =1


∣∣∣σj exp − σj pred

∣∣∣
σj exp

 (4)

The welding parameters such as FF, FT, and UF were used as input in the model.
Table 3 presents the ranges of process parameters for which the best UTS can be predicted.
The model is a best-fitted structure with these measured in the tests.

Table 3. Ranges of process parameters.

# Parameter Notation Unit
Bounds

Lower Upper

1 Friction Force FF kN 12 38
2 Friction Time FT s 2 12

3 Upsetting
Force UF kN 34 44

3.3. Optimization

A genetic algorithm was chosen to found the best process parameters because it is
a powerful optimization tool. GA performs exceptionally well in nonlinear regions. In
the welding process, complex and highly nonlinear phenomena take place [23]. Therefore,
it was easy to estimate relationships between the input and the output of this complex
system using the GA method. The main characteristic of GA over the other optimization
techniques is that they operate simultaneously with a huge set of searching points to find
optimal architecture instead of a single point [24].

The main steps of the genetic algorithm are shown in Figure 3. The main GA operators,
such as type of selection, crossover, and mutation were used in the algorithm. The size of
the initial population identifies how many chromosomes there are in each generation. With
a large population size, the genetic algorithm searches the solution space more thoroughly,
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thereby reducing the chance of returning a local minimum that is not a global minimum.
Moreover, too large a population extends the duration of the simulation, as reported [25].
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Figure 3. The main steps of the genetic algorithm.

Selection is the choice of parents for the next generation. The selection is made using
the objective function. Four selection types such as uniform, roulette, remainder, and
tournament, were included in this study.

Uniform selection chooses parents using the expectations and number of parents. Un
is useful for debugging and testing but is not a very effective search strategy.

Roulette election chooses parents by simulating a roulette wheel, in which the area of
the section of the wheel corresponding to an individual is proportional to the individual’s
expectation. The algorithm uses a random number to select one of the sections with a
probability equal to its area.

Remainder selection assigns parents deterministically from the integer part of each
individual’s scaled value and then uses roulette selection on the remaining fractional part.

Tournament selection chooses each parent by choosing ‘Tournament size’ players at
random and then selecting the best individual out of that set to be a parent. ‘Tournament
size’ must be at least 2 [25,26].

Crossover is the genetic operator that creates new individuals from the parents. These
individuals pass to the next generation. Five types of crossover operators like scattered,
single point, two-point, intermediate, and heuristic, were defined.

Scattered crossover creates a random binary vector and selects the genes where the
vector is a 1 from the z1, and the genes where the vector is a 0 from the z2. Sc combines the
genes to form the child. For example, if z1 and z2 are the parents

z1 = [a b c d e f g h]
z2 = [1 2 3 4 5 6 7 8]
and the binary vector is [0 0 0 0 1 1 0 0],
the function returns the following child (ch1)
ch1 = [1 2 3 4 e f 7 8]
Single-point chooses a random integer n between 1 and the number of variables. It

then selects vector entries numbered less than or equal to n from the z3, selects vector
entries numbered greater than n from the z4. Concatenates these entries to form a child
vector (ch2). For example, if z3 and z4 are the parents

z3 = [a b c d e f g h]
z4 = [1 2 3 4 5 6 7 8]
and the crossover point is 5; the function returns the following child (ch2).
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ch2 = [a b c d e 6 7 8]
Two-point selects two random integers m and n between 1 and the number of variables.

The function selects vector entries numbered less than or equal to m from the z5, vector
entries numbered from m + 1 to n, inclusive, from the z6, vector entries numbered greater
than n from the z5. The algorithm then concatenates these genes to form a single gene. For
example, if z5 and z6 are the parents

z5 = [a b c d e f g h]
z6 = [1 2 3 4 5 6 7 8]
and the crossover points are 2 and 5; the function returns the following child (ch3).
ch3 = [a b 3 4 5 f g h]
Intermediate creates children by taking a weighted average of the parents (z7 and z8).

You can specify the weights by a single parameter, R, a scalar or a row vector of length
number of variables. The default is a vector of all 1’s. The function creates the child (ch4)
from z7 and z8 using the following formula.

ch4 = z7 + rand·R·(z8 − z7)
Heuristic returns a child that lies on the line containing the two parents, a small

distance away from the parent with the better fitness value in the direction away from the
parent with the worse fitness value. The default value of R is 1.2. If z9 and z10 are the
parents, and z9 has the better objective value, the function returns the child (ch5)

ch5 = z10 + R·(z9 − z10)
The mutation operator makes small random changes in the individuals in the popula-

tion, which provide genetic diversity and enable the GA to search a broader space. Specify
the function that performs the mutation function field. Three types of mutation, like a
uniform, Gaussian, and adaptive feasible, were described in GA.

Uniform mutation is a two-step process. First, the algorithm selects a fraction of the
vector entries of an individual for mutation, where each entry has a probability ‘rate’ of
being mutated. The default value of ‘rate’ is 0.01. In the second step, the algorithm replaces
each selected entry with a random number chosen uniformly from the range for that entry.

Gaussian mutation adds a random number taken from a Gaussian distribution with a
mean 0 to each entry of the parent vector.

Adaptive Feasible mutation randomly generates adaptive directions concerning the
last successful or unsuccessful iteration. The mutation chooses a path and step length that
satisfies bounds and linear constraints.

The model parameters in Equations (1) and (2) have been optimized using GA that
minimizes MAPE (Equation (4)). The genetic algorithm settings for process optimization
are shown in Table 4.

Table 4. The genetic algorithm settings.

Parameters Value

Population size 80
Crossover friction 0.8
Mutation friction 0.2

Number generations 500

The numerical simulation was done on a computer Intel Core i5-10310U CPU processor
2.21 GHz speed, with the 16 GB memory. Coding with the use of a genetic algorithm was
performed in the Matlab environment, version 7.0 (R2008a) [26].

4. Results and Discussion
4.1. Results of Modeling

The results of the modeling are shown in Table 5. In this study, four types of Selection:
Uniform (Un), Roulette (Ro) and Tournament (To), five types of Crossover: Heuristic (He),
Scattered (Sc), Intermediate (In), Single-point (Sp), Two-point (Tp), and three types of
Mutation: Uniform (Um), Gaussian (Ga), and Adaptive feasible (Af), were processed. In
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total, it gave sixty simulations. The values 0.8 and 0.2 have been applied for crossover and
mutation fraction, respectively.

Table 5. The results of errors for the two models.

No. Simulations Selection Crossover Mutation MAPEQUAD MAPECUB
A B C D E

1 Un Sc Um 0.1679 0.1664
2 Ro Sc Um 0.1673 0.1686
3 Un Sp Um 0.1680 0.1662
4 Ro Sp Um 0.1687 0.1656
5 Un Tp Um 0.1653 0.1669
6 Ro Tp Um 0.1662 0.1663
7 Un In Um 0.5992 0.9569
8 Ro In Um 0.1660 0.1674
9 Un He Um 0.00093 0.00212

10 Ro He Um 0.1783 0.1608
11 Un He Ga 0.0987 0.0914
12 Ro He Ga 0.1362 0.1173
13 Un Sc Ga 0.1558 0.1393
14 Ro Sc Ga 0.1618 0.1281
15 Un Sp Ga 0.1342 0.1297
16 Ro Sp Ga 0.1487 0.1404
17 Un Tp Ga 0.1359 0.1618
18 Ro Tp Ga 0.1463 0.1494
19 Un In Ga 0.1482 0.1356
20 Ro In Ga 0.1489 0.1245
21 Un He Af 0.0925 0.0928
22 Ro He Af 0.1451 0.1516
23 Un Sc Af 0.1675 0.8659
24 Ro Sc Af 0.1662 0.1488
25 Un Sp Af 0.1708 0.8821
26 Ro Sp Af 0.1544 0.1451
27 Un Tp Af 0.2362 0.2025
28 Ro Tp Af 0.1490 0.1583
29 Un In Af 1.8928 2.599
30 Ro In Af 0.1563 0.155
31 Re He Um 0.1475 0.1653
32 Re Sc Um 0.1674 0.1662
33 Re Sp Um 0.1656 0.1659
34 Re Tp Um 0.1682 0.1650
35 Re In Um 0.1667 0.1654
36 Re He Ga 0.1583 0.1279
37 Re Sc Ga 0.1481 0.1256
38 Re Sp Ga 0.1337 0.1320
39 Re Tp Ga 0.1414 0.1461
40 Re In Ga 0.1415 0.1390
41 Re He Af 0.1377 0.1591
42 Re Sc Af 0.1536 0.1583
43 Re Sp Af 0.1607 0.1534
44 Re Tp Af 0.1543 0.1412
45 Re In Af 0.1693 0.1717
46 To He Um 0.1722 0.1966
47 To Sc Um 0.1686 0.1680
48 To Sp Um 0.1688 0.1656
49 To Tp Um 0.1720 0.1687
50 To In Um 0.1641 0.1666
51 To He Ga 0.1420 0.1426
52 To Sc Ga 0.1494 0.1343
53 To Sp Ga 0.1677 0.1479
54 To Tp Ga 0.1411 0.1325
55 To In Ga 0.1539 0.1424
56 To He Af 0.1692 0.1660
57 To Sc Af 0.1509 0.1498
58 To Sp Af 0.1610 0.1772
59 To Tp Af 0.1519 0.1658
60 To In Af 0.1624 0.1620
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The modeling results show that quadratic model No.9 in Table 5 was the best GA
model among all simulation models. The minimum MAPE value for the No.9 quadratic
model is 0.00093. It can be seen that for heuristic crossover, uniform mutation and uniform
selection types determined the best MAPE. Therefore, the 9th GA quadratic model was
selected to compute the UTS of the joints.

4.2. Results of Optimization

Figure 4 shows the results of the genetic algorithm optimization. The course of the
objective function for the 500 generations is shown in Figure 4a. It can be observed that
the function reached its mean value of 177 MPa in the 45-th generation. The graph also
shows the results of the best process parameters. Therefore, the highest tensile strength can
be obtained for the welding parameters: FF = 16 kN, UF = 44 kN, and FT = 4 s (Figure 4).
As shown in Figure 4b, the optimization was successful, and the maximum number of
generations has been reached. The “final points” are the optimum process parameters.
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welding parameters.

4.3. Validation of Experiment

For optimal process parameters, FF = 12 kN, UF = 44 kN, and FT = 4 s an additional
experiment was carried out. The highest tensile strength was 180 MPa. The tensile results
of the investigation were close to the optimization results and confirmed compliance
with the assumed model. The largest relative error was 1.69 % (see Table 6). Despite the
improvement in TS results, all samples were broken at the line boundary. Comparison of
the experimental with predicted values of tensile strength is shown in Figure 5.

Table 6. Validation tensile test results.

# FF (kN) FT (s) UF (kN)

UTS

Predicted
(MPa)

Observed
(MPa)

Errors
%

1 16 4 44 178 175 1.69
2 16 4 44 178 180 −1.12
3 16 4 44 178 176 1.12

Error = [( observed value − predicted value
predicted value ) ·100%].
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The model compliance tests were carried out for various process parameters. The new
results, which are presented in Figure 5, confirmed the fit of the model at the level of 95%.

4.4. Effect of the Welding Parameters on the TS

The key parameters of the conventional friction welding method are friction time,
friction force, upsetting force, and rotational speed [4,5]. The quality and tensile strength of
the welds depend on the correct choice of these parameters [6]. The authors in paper [22]
suggest that the reason for the formation of unbonded regions may be the use of short
welding times. On the other hand, too long welding times and slow cooling rates may lead
to deterioration of the joint strength. The influence of the welding parameters on TS of
friction welding is presented in Figure 6.
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Figure 6. Effects of the upsetting force and friction time on the tensile strength of friction welds.
(a) UF on TS, (b) FT on TS.

It can be seen that the upsetting force has a positive effect on the tensile strength of
welds. With increasing upsetting force from 34 kN to 44 kN, the tensile strength increased
rapidly (see Figure 6a). According to the authors [9], the higher upsetting force removes
a significant portion of the intermetallic layers beyond the weld interface. However, the
higher force during the upsetting stage would lead to a higher axial shortening of material
(material loss). A similar trend was observed during FRW of AZ31B magnesium metal
matrix composite by Srinivasan et al. [27].

As can be seen from Figure 6a, the use of a short welding time FT = 4 s and the
highest bonding force UF = 44 kN led to the best strength of the joint. According to the
author [9], short welding times prevent the formation of brittle phases on welded surfaces.
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Application of high upsetting forces leads to high plastic deformation, resulting in which
the oxide layers are removed beyond the bonding zone.

Figure 6b shows the effect of the friction time on the ultimatum tensile strength for
the various upsetting forces. As the welding time increases in the range from 5 s to 10 s,
the tensile strength of the joint decreases for all cases of the upsetting forces (see Figure 6b).
The longer friction times could see the excess creation of an intermetallic layer. The brittle
phases development in the reaction layer may be responsible for the deterioration of UTS,
as suggested by the authors [9,10].

5. Conclusions

The ultimate tensile strength of the friction welding process was studied both numeri-
cally and experimentally. The main conclusions are found from this work.

(1). Mathematical models were developed to determine the best strength for joining
AZ31B with AA7075 using genetic algorithms.

(2). The highest tensile strength of 180 MPa was obtained for the welding parameters
of 16 kN friction force and 4 s of friction time, and 44 kN of upsetting force. The application
of the genetic algorithm method allowed increasing the tensile strength joint from 88 to
180 MPa using the friction welder ZT–13 type.

(3). The upsetting force has a positive effect on the UTS of the friction joints. With
increasing upsetting force, the tensile strength increased rapidly. As the welding time
increases, the UTS decreases for all cases of the upsetting force.
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