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Abstract: Refinery planning optimization is a challenging problem as regards handling the nonconvex
bilinearity, mainly due to pooling operations in processes such as crude oil distillation and product
blending. This work investigated the performance of several representative piecewise linear (or
piecewise affine) relaxation schemes (referred to as McCormick, bm, nf5, and nf6t) and de (which is a
new approach proposed based on eigenvector decomposition) that mainly give rise to mixed-integer
optimization programs to convexify a bilinear term using predetermined univariate partitioning
for instances of uniform and non-uniform partition sizes. The computational results showed that
applying these schemes improves the relaxation tightness compared to only applying convex and
concave envelopes as estimators. Uniform partition sizes typically perform better in terms of
relaxation solution quality and convergence behavior. It was also seen that there is a limit on the
number of partitions that contribute to relaxation tightness, which does not necessarily correspond
to a larger number of partitions, while a direct relationship between relaxation size and tightness
does not always hold for non-uniform partition sizes.

Keywords: piecewise linear relaxation; refinery planning; nonconvex; bilinear; nonlinear program-
ming (NLP); mixed-integer linear programming (MILP)

1. Introduction

Optimization or mathematical programming models and tools are widely used in the
strategic and tactical planning of petroleum refinery operations. Major commercial refin-
ery planning software include PIMS-AO (Aspen Technology) [1], RPMS (Honeywell) [2],
GRTMPS (Haverly) [3], and Spiral Plan (AVEVA). The existing use of such platforms largely
involves linear programming (LP)-based techniques combined with heuristics and expert
insights, as well as rules-of-thumb, to handle (including to simplify) the inherently non-
linear refinery processing behavior. On the contrary, it is deemed inappropriate to use
rigorous planning models [4] if they are not able to adequately represent the intended
process details that possibly involve nonconvex nonlinearity toward obtaining globally
optimal solutions [5], whose features likely vary from one plant to another [6,7]. In this re-
gard, there is an interest in refineries developing their own planning models [8], but which
necessitate customizing solution strategies rather than relying on off-the-shelf solvers,
particularly to handle the presence of nonconvexity.

There is an ongoing effort to capture the complexity of refinery operations in formu-
lating suitable planning optimization models [9,10]. A chief interest is to improve the
operational representation of crude distillation units (CDUs), which is the main refining
process to separate crude oil mixtures into different fractions (e.g., naphtha, light and heavy
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distillates, and bottom residue) based on boiling point differences. The complex nature
of crude oil as a feed and distillation operation with multiple inflows (e.g., reflux) and
outflows (e.g., side streams) of material and energy make both modeling and optimizing
CDUs a challenging undertaking [11–14].

There are several modeling approaches to estimate CDU outlet fractions or distillates,
also called crude oil cuts or simply “cuts.” The methods include fixed yield, swing cut, and
fractionation index, as summarized in Figure 1, in terms of their input data and representa-
tive (seminal) work. Fixed yield is a basic method to represent CDU distillates as constant
values specified based on historical data (e.g., crude assay reports), experience (i.e., expert
advice), or process simulation models. Swing cut is more detailed; it works by estimating a
small portion of the yields (i.e., the “swing cut”) that overlaps between adjacent cuts, either
represented as a parameter or determined as a decision variable. A potentially more accurate
and physically based technique uses the fractionation index (FI) [15] that incorporates phase
equilibrium and relative volatility to represent component distributions of the CDU cuts.
Table 1 compares the key attributes of these techniques, including application examples. It
is noteworthy that an emerging approach is to adopt suitable surrogate models to represent
the yields (e.g., by improving the swing cut predictions) [16,17].
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Figure 1. Modeling methods for petroleum refinery distillation cutpoints (mainly for CDUs).

Table 1. Methods to model the refinery distillation yields of crude oils.

Method Relation Type Feature Application

Fixed yield Linear

Simple; amenable to
large-scale models (especially

LP); can cater for different
operating modes

Simulation [18], planning
optimization (LP [18], NLP [7,19],

MINLP [20]), and scheduling
optimization (MILP [8])

Swing cut Linear or nonlinear
More accurate than fixed

yield; can represent multiple
operating modes [21]

Planning optimization (LP [22], MILP,
NLP [16,23–29], and MINLP [30])

Fractionation index Nonlinear
High accuracy (considers

relative volatility and phase
equilibrium)

Planning optimization (NLP [21] and
MINLP) [31,32]

This work considers a swing cut-based refinery planning NLP model such as that
based on [26]. Existing work involves modeling swing cuts largely by using empirical
correlations [26] or determining a temperature range to define the associated swing cuts [16].
Solution techniques include applying LP relaxations based on McCormick’s convex and
concave envelopes [33,34] to improve bound tightening within a gradient-based local NLP
solver [5], as well as using a branch and bound-based global solver such as ANTIGONE [35]
to perform integrated refinery and petrochemical planning [30].



Processes 2021, 9, 1624 3 of 16

Reduced computational times are reported for solving large-scale pooling prob-
lems using piecewise linear relaxations within a global optimization framework [36,37].
Refs [38,39] proposed several piecewise linear relaxation schemes using ab initio univariate
and bivariate partitioning [40] to handle nonconvex bilinear terms. A survey of develop-
ments on such relaxation methods can be found in [41], while a related recent theoretical
development is reported in [42].

Several global optimization methods for handling bilinear functions are reported in
the literature [38,43–49]. A common technique uses a spatial branch-and-bound frame-
work [50], which is similar to the class of branch-and-bound methods developed for integer
optimization problems (e.g., pure integer linear program (ILP) or MILP [51]) with the main
difference in that spatial branch-and-bound methods perform branching on continuous
rather than discrete variables. The main challenges in spatial branch-and-bound meth-
ods involve devising and applying effective branching strategies in addition to efficient
procedures for obtaining tight lower and/or upper bounds. An implementation of this
framework is available in the BARON solver, which incorporates a branch-and-reduce
technique to perform variable-range reduction based on Lagrangean multipliers [52–54].

Another global optimization approach that has been proposed includes a branch-
and-contract algorithm for univariate concave, bilinear, and linear fractional functions
that emphasizes reducing the number of branch-and-bound search tree nodes through a
contraction operator [55]. The relatively recent global optimization solver of ANTIGONE
(commercial version of GloMIQO) offers capabilities based on advances in piecewise linear
(or affine) relaxation algorithms [56]. Computational comparisons are available for several
global optimization codes on benchmark problems [40,57].

Much effort has been focused on constructing convex relaxations for factorable noncon-
vex NLP problems. This class of problems exclusively involves factorable functions, which
can be expressed as recursive sums and products of univariate functions [33]. Symbolic re-
formulation techniques have been proposed to transform an arbitrary factorable nonconvex
program into an equivalent standard form in which all nonconvex terms are expressed as
special nonlinear terms, such as bilinear and concave univariate terms [58]. These special
nonlinear terms form the building blocks for factorable problems that abound in a wide
range of disciplines, including chemical engineering. In addition to those mentioned earlier,
many problems in (chemical) process system engineering such as design, operation, and
control fall within this scope [59–62]. Thus, by addressing bilinear functions in this work,
we are essentially addressing the much wider class of nonconvex factorable programs.

Our work contributes by conducting computational comparisons on several piece-
wise linear relaxation schemes with potentially advantageous performance. Our study
implemented the schemes on a representative refinery planning nonconvex (bilinear) NLP
model that involves distillation, conversion (reaction), and blending operations. We also
compared the results to commercial global solvers (BARON and ANTIGONE). The rest of
the paper comprises a brief description of the planning model, followed by its reformulated
relaxation versions that include a new proposed scheme based on separable programming.

2. Problem Description on Refinery Planning Model

This computational study considered a petroleum refinery planning problem with
its configuration shown in Figure 2 and described as follows (with the symbols denoted
in the diagram stated in parentheses). A crude oil mixture enters the CDU that separates
this feed stream into five cuts, namely, gross overhead (GO), heavy naphtha (HN), light
distillate (LD), heavy distillate (HD), and bottom residue (BR). The lighter CDU cuts of GO
and HN are blended with FCC gasoline (FGas) and MTBE (methyl tert-butyl ether, which
functions as a gasoline additive) in a gasoline blending unit (GB) to produce two gasoline
grades represented by streams 90G and 93G (with octane numbers of at least 90 and 93,
respectively). The heavier CDU cuts of LD and HD are blended in a diesel blending unit
(DB) to produce two diesel grades represented by streams 10D and 0D (with pour points
of, at most, 10 ◦C and 0 ◦C, respectively). The BR cut from the CDU is fed to the FCC that
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produces four outlets, namely, a stream containing components with two to four carbon
atoms (C24), FCC gasoline (FGas), total gas oil (TGO), and coke (COKE). C24 is sold as a
valuable product, while FGas is fed to the GB. A portion of TGO is recycled to mix with
BR, with the remaining sold as FCC heavy oil (FHO). The coke produced is consumed
internally in the refinery as a fuel source.
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The mathematical formulation for the refinery planning NLP model comprising 49
decision variables with 42 nonlinear terms and 61 constraints, as summarized in Table 2, is
provided as Supporting Information.

Table 2. Model size and computational statistics for refinery planning NLP model.

Computing platform GAMS 30.3.0/CPLEX 12; 1.9 GHz (speed, Intel
Core i3); 8192 MB (RAM)

No. of continuous variables 49
No. of nonlinear variables 42

No. of constraints 61
No. of nonconvex terms 21 (bilinear)

3. Computational Experiments

This section presents our computational experimental results to investigate the perfor-
mance of several representative piecewise linear relaxation methods applied to nonconvex
bilinear terms in the foregoing refinery planning NLP model. Table 3 lists the bilinear terms
and their number of occurrences in the model. Unless otherwise stated, we reformulated
the model to obtain its relaxations by implementing univariate partitioning.

3.1. Reformulation as Relaxation Models

The bilinear terms in the refinery planning model were identified and replaced with
new single-term variables in reformulating their associated constraints to obtain a con-
vexified model (either as LP or MILP). Two incremental cost relaxations called nf5 and
nf6t schemes, which were chosen because they are reported to have less non-convergence
issue [38,39], and a proposed scheme involving decomposition in eigenvector directions
called de. Moreover, nf5 was selected because of its larger size than nf6t for comparison
in terms of relaxation sizes (or number of variables). We applied the nf5, nf6t, and de
schemes, along with the following relaxation methods, for the reformulation: Convex
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and concave envelopes relaxation called the mc scheme [33] and a big-M relaxation called
the bm scheme (these schemes are mostly referred to by the names used in their original
publications, except de which is proposed in this article) [38,39]. The resulting relaxed
models of LP (for the mc scheme) and MILP (for the bm, nf5, and nf6t schemes) were
solved using GAMS 30.3.0/CPLEX 12. Figure 3 shows a flowchart on the procedure used
in our computational comparison study.

Table 3. Bilinear terms in the refinery planning NLP model.

Bilinear Term Count

LuWp 5
LuYf 4

Conv× Conv = (Conv)2 4
MWp ×MWp = MW2

p 4

Prj,pFiprod
p,g 4

Total 21
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The first scheme is the McCormick relaxation approach that involves representing
(and replacing) a bilinear term by constructing its convex and concave envelopes over the
domain of variable to limit the feasible solution search space, as shown in the following
constraints for the term Wp in the bilinear variable LuWp:

ωu,p ≥ LLO
u Wp + LuWLO

p − LLO
u WLO

p , u = CDU, ∀p (1)

ωu,p ≥ LUP
u Wp + LuWUP

p − LUP
u WUP

p , u = CDU, ∀p (2)

ωu,p ≤ LUP
u Wp + LuWLO

p − LUP
u WLO

p , u = CDU, ∀p (3)
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ωu,p ≤ LLO
u Wp + LuWUP

p − LLO
u WUP

p , u = CDU, ∀p (4)

where ωu,p is the reformulated bilinear term LuWp and superscripts LO and UP are the
lower and upper bounds, respectively, of the variables of the bilinear term.

The second scheme, called bm, is of the big-M relaxation type that is reported to result
in tighter relaxation than the mc scheme [39]. Unlike constructing overestimators and
underestimators over the entire domain, it works by dividing the domain of a partitioned
bilinear variable term into N segments (i.e., partitions) and applying overestimators and
underestimators for each segment n, where n = 1, 2, . . . N, as shown in the following
equations for the bilinear variable term Wp:

∑
n

λn,p = 1, ∀p (5)

Wp ≥WLO
p +

(
kn−1,p −WLO

p

)
λn,p, ∀n, p (6)

Wp ≤WUP
p −

(
WUP

p − kn, p

)
λn,p, ∀n, p (7)

ωu,p ≥WpLLO
u + kn−1, p

(
Lu − LLO

u

)
−Mp

(
1− λn,p

)
, u = CDU, ∀n, p (8)

ωu,p ≥WpLUP
u + kn, p

(
Lu − LUP

u

)
−Mp

(
1− λn,p

)
, u = CDU, ∀n, p (9)

ωu,p ≤WpLUP
u + kn−1, p

(
Lu − LUP

u

)
+ Mp

(
1− λn,p

)
, u = CDU, ∀n, p (10)

ωu,p ≤WpLLO
u + kn, p

(
Lu − LLO

u

)
+ Mp

(
1− λn,p

)
, u = CDU, ∀n, p (11)

where λn,p is a binary variable that tightens the bounds of the partitioned variable. It is
equal to one if variable Wp is activated in subdomain n for CDU fraction p and expands the
other subdomains to the overall hard bounds, making them redundant. kn, p is the grid
point of segment n for fraction p, and Mp is the big-M parameter for p, which is a large

number, defined as Mp =
(

LUP
u − LLO

u
)(

WUP
p −WLO

p

)
for u = CDU. The Mp works based

on the values of λn,p as it makes the constraint redundant by relaxing it to a large amount,
and when λn,p equals one, the constraint is considered. The resulting relaxed model gives
rise to a MILP.

The third scheme, nf5, incrementally builds on the values of a partitioned bilinear
variable term through successive segmenting (hence being called an incremental cost
relaxation type), resulting in a tighter relaxation than the bm scheme and similarly leading
to an MILP relaxed model, as follows for the bilinear variable term Wp:

Wp = WLO
p + ∑

n
qn,pdUn,p, u = CDU, ∀p (12)

dUn,p ≥ θn,p, ∀n < N, p (13)

dUn,p ≤ θn−1,p, ∀n > 1 (14)

ωu,p = WpLLO
u + WLO

p Lu − Lu
LOWLO

p + ∑
n

qn,pdQn,u, u = CDU, ∀p (15)

dQn,u ≥
(

LUP
u − Lu

LO
)

dUn,p + Lu − LUP
u , n = 1, u = CDU, ∀p (16)

dQn,u ≥ dVn,u, u = CDU, ∀n < N (17)

dQn,u ≥
(

LUP
u − LLO

u

)(
dUn,p − θn−1,p

)
+ dVn−1,u, u = CDU, ∀n > 1, p (18)

dQn,u ≤ Lu − LLO
u , n = 1, u = CDU, (19)

dQn,u ≤
(

LUP
u − LLO

u

)(
dUn,p − θn,p

)
+ dVn,u, u = CDU, ∀n < N, ∀p (20)
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dQn,u ≤ dVn−1,u, u = CDU, ∀n > 1 (21)

dQn,u ≤
(

LUP
u − LLO

u

)
dUn,p, n = N, u = CDU, ∀p (22)

where θn,p is a binary variable that is equal to one if variable Wp is activated in sub-
domain n for CDU fraction p, qn,p is the partition length for variable Wp, defined as

qn,p =
[
(n/N)γ − ((n− 1)/N)γ](WUP

p −WLO
p

)
, and the following three sets of contin-

uous variables comprising dUn,p ∈ [0, 1], dQn,u ∈
[
0, LUP

u − LLO
u

]
, n = 1, 2, . . . , N, and

dVn,u ∈
[
0, LUP

u − LLO
u

]
, n = 1, 2, . . . , N − 1. γ is a parameter that specifies uniform or

non-uniform partition sizes, in which γ = 1 corresponds to the former (uniform partition
sizes) of equal segment lengths, while γ 6= 1 corresponds to the latter. When γ→ 0 , the
partitions (i.e., grid points) tend to accumulate toward the domain upper bound; conversely,
for γ→∞, the partitions accumulate toward the domain lower bound.

The fourth scheme, nf6t, also belongs to the incremental cost relaxation type as based
on the foregoing nf5 scheme, but the latter entails a smaller size at the expense of reduced
tightness [39]. Implementing the nf6t scheme to reformulate the same bilinear term, Wp
comprises Equations (12)–(15) and (23)–(26):

dQn,u ≥
(

LUP
u − LLO

u

)
dUn,p + Lu − LUP

u , u = CDU, ∀n, p (23)

dQn,u ≤ Lu − LLO
u , n = 1, u = CDU (24)

dQn,u ≤ dQn−1,u, u = CDU, ∀n > 1 (25)

dQn,u ≤
(

LUP
u − LLO

u

)
dUn,u, u = CDU, ∀n (26)

The formulation for a proposed fifth scheme, called de, is presented for the bilinear
variable LuWp, as follows:

LuWp = ω
ξ
p −ω

η
p (27)

ξp =
(

Lu + Wp
)
/2, u = CDU, ∀p (28)

ηp =
(
Wp − Lu

)
/2, u = CDU, ∀p (29)

where ω
ξ
p = ξ2

p and ω
η
p = η2

p.
As the univariate function is convex on the real-valued domain of <, the affine

overestimators and underestimators can be obtained for ξ-direction by applying, e.g., the
sandwich algorithm [63], which linearizes the function at a point ξ j,p, as performed in

Equation (30). Then, piecewise affine relaxations are constructed for ω
ξ
p by dividing the

domain of ξp into Nξ subintervals. Auxiliary continuous variables λ
ξ
n,p are introduced to

select the domains in which a feasible solution exists. These are special ordered set type
2 (SOS2) variables for which no more than two adjacent variables may be nonzero in the
final solution.

ω
ξ
p ≥ 2ξ j,pξp − ξ

2
j,pξ j,p, j = 1, . . . , Mξ , ∀p (30)

ω
ξ
p ≤∑

n
ξ2

n,pλ
ξ
n,p, ∀p (31)

ξp = ∑
n

ξn,pλ
ξ
n,p, ∀p (32)

∑
n

λ
ξ
n,p = 1, ∀p (33)

SOS2 : λ
ξ
n,p, n = 0, . . . , Nξ , ∀p (34)
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Bounding overestimators and underestimators in η-direction for ω
η
p are constructed

in the same way as that for ω
ξ
p.

ω
η
p ≥ 2η j,pηp − η2

j,p, j = 1, . . . , Mη , ∀p (35)

ω
η
p ≤∑

n
η2

n,pλ
η
n,p, ∀p (36)

ηp = ∑
n

ηn,pλ
η
n,p, ∀p (37)

∑
n

λ
η
n,p = 1, ∀p (38)

SOS2 : λ
η
n,p, n = 0, . . . , Nη , ∀p (39)

3.2. Computational Results

The original refinery planning model was solved using BARON and ANTIGONE,
in which both reported the same ε-global optimal value of US$75,494 for the objective
function (profit maximization). The relaxed models were reformulated as MILP and solved
to obtain an upper bound of US$98,547 for the maximization objective function.

Each of the relaxed models was solved by varying the associated number of partitions
n (for n = 1, 2, 3, 4, 5, 7, 10, 15, 20, 25) and partition size γ (for γ = 0.25, 0.5, 1, 1.5, 2, 3, 4)
with the model performance shown in Figures 4–10. We observed that as γ decreased to
values less than unity (in which γ = 1 corresponds to uniform partitioning), the magnitude
of the difference between an upper bound (given by relaxed model solution) and a global
optimum generally increased in the order of nf5 < nf6t < de < bm (see Figures 4–6). On the
contrary, as γ increased to values greater than unity, the difference in magnitude between an
upper bound and a global optimum generally increased in the order of bm < de < nf5 < nf6t
(see Figures 7–10).
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Figure 4. Convergence-indicating curves of the bm, de, nf5, and nf6t relaxation schemes for γ = 0.25.
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Figure 5. Convergence-indicating curves of the bm, de, nf5, and nf6t relaxation schemes for γ = 0.5.
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Figure 6. Convergence-indicating curves of the bm, de, nf5, and nf6t relaxation schemes for γ = 1.
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Figure 8. Convergence-indicating curves of the bm, de, nf5, and nf6t relaxation schemes for γ = 2.
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Figure 9. Convergence-indicating curves of the bm, de, nf5, and nf6t relaxation schemes for γ = 3.
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Figure 10. Convergence-indicating curves of the bm, de, nf5, and nf6t relaxation schemes for γ = 4.

The difference in magnitude between an upper bound and a global optimum can
denote the tightness of a relaxation scheme: A smaller difference indicates greater tightness
and vice versa. A convexified model using nf5 employed more constraints and an extra
continuous variable that resulted in a tighter relaxation than nf6t, but at the expense of a
larger size, which is consistent with the results reported by Gounaris et al. [39], while that
of bm and de varied with respect to γ. In terms of the relaxed model sizes, which were
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in the order of bm < de < nf6t < nf5, a larger relaxation size (i.e., with more constraints)
typically resulted in a tighter relaxation. We also found that relaxation tightness is subject to
the partitioning levels (n) and their sizes (γ). All of the relaxed models were solved within
fractions of a second. The CPU times for the relaxation schemes are shown in Figure 11
as a function of the number of partitions in which a uniform partition size is considered
as a representative case. The average values of CPU times were 0.144, 0.170, 0.180, and
0.216 for the bm, de, nf6t, and nf5 schemes, respectively, that increased with the number of
partitions. The CPU time was highest for nf5 and lowest for bm (as consistent with their
relative sizes). Overall, our findings corroborate that of [39], which reported CPU times for
numerous benchmark problems and concluded that relaxation tightness reduces optimality
gap rapidly but increases solution time due to the resulting larger model sizes.
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We defined a convergence indicator (CI) in Equation (40) for a resulting relaxation
model that measures the distance traversed by a relaxed solution toward attaining a global
optimal solution:

CI =
Upper Bound|n=1 −Upper Bound|n>1,n<N

Upper Bound|n=1 −Upper Bound|n=N
× 100 (40)

At a certain partition level, a higher CI value means a lower separation between the
relaxed solution and the ε-global optimum. This indicator was evaluated at a certain
partition level n with respect to a corresponding upper bound (for n = 1) and a lower bound
(for n = N), as tabulated in Table 4 for each relaxation scheme. For 1 ≤ n ≤ 10, average CI
values (of 0.92, 0.87, 0.90, and 0.72) were found for each of the five schemes (respectively),
as also shown by the slope (steepness) of the curves in Figures 5–11. Low CI values indicate
the schemes that require more partitions to converge. For n ≥ 10, lower average values of
0.08, 0.13, 0.10, and 0.28 were found for each scheme (respectively). We observed a limit
on the number of partitions that exhibited a certain relaxation tightness, beyond which a
very small increase in tightness or performance improvement was obtained, despite the
increasing model size and computational load.
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Table 4. Convergence indicator of the bm, de, nf5, and nf6t relaxation schemes with partition
size variation.

γ

Convergence Indicator
for 1 ≤ n ≤ 10

Convergence Indicator (%)
for n ≥10

bm nf6t nf5 de bm nf6t nf5 de

0.25 0.89 0.95 0.90 0.71 0.11 0.50 0.10 0.29
0.5 0.84 0.97 0.97 0.69 0.16 0.03 0.03 0.31
1 0.92 0.90 0.89 0.68 0.08 0.10 0.11 0.32

1.5 0.93 0.96 0.85 0.59 0.07 0.04 0.15 0.41
2 0.97 0.77 0.92 0.56 0.03 0.23 0.08 0.44
3 0.95 0.85 0.99 0.89 0.05 0.15 0.01 0.11
4 0.91 0.70 0.80 0.91 0.09 0.30 0.20 0.09

To investigate the performance of uniform and non-uniform partition sizes, we deter-
mined the relative difference or deviation of a relaxed solution from an ε-global optimal
solution for each value of γ and n, as tabulated in Table 5. Uniform partitioning (γ = 1)
provided a relatively lower deviation compared to non-uniform partition sizes, thereby
indicating better relaxation quality for the former in employing a piecewise linear relax-
ation scheme. This observation is again consistent with Gounaris et al. [37], thus asserting
the advantage of uniform partitioning in reducing the optimality gap (i.e., between the
nonconvex original objective function and that of the relaxed convex objective function for
each partition).

Table 5. Relative differences of the bm, de, nf5, and nf6t relaxation schemes from an ε-global optimal
solution with partition size variation.

γ Relative Difference (%)

bm nf6t nf5 de

0.25 0.642 0.493 0.465 0.530
0.5 0.450 0.298 0.259 0.458
1 0.320 0.255 0.251 0.472

1.5 0.290 0.405 0.295 0.395
2 0.267 0.480 0.318 0.375
3 0.360 0.566 0.400 0.341
4 0.490 0.652 0.455 0.250

Piecewise linear relaxations provide an upper bound (lower bound) on the objective
function value for a maximization (minimization) problem. By applying several relaxation
schemes for a representative refinery planning problem, our computational results show
that the nf5 scheme performs well for uniform partition sizes and can be suitably incorpo-
rated as part of a global optimization procedure, whereas non-uniform partitioning works
better with the bm scheme, particularly for a larger number of partitions.

4. Concluding Remarks

In this work, we applied piecewise linear relaxation schemes to convexify bilinear
terms in a refinery planning NLP model and studied the resulting performance by varying
the number and size of the partitions. We introduced a new relaxation scheme based
on eigenvector decomposition that was shown to be able to provide good relaxation
results, especially for non-uniform partition sizes. As alternatives to conventional measures
(e.g., computational time or optimality gap, which are more applicable to large-scale
industrial-size problems), we considered certain indicators to compare the schemes in
terms of convergence and partitioning behavior. Our study encountered a limit on the
number of partitions that contributed to relaxation tightness, which does not necessarily
correspond to a large number of partitions. We also found that the relationship between
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a relaxed formulation size and its tightness significantly depends on the number and
size (uniform/non-uniform) of the partitions. Furthermore, the computational results
showed a better relaxation quality by using uniform partition sizes. These results are
largely consistent with the literature.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pr9091624/s1. The mathematical formulation of the refinery planning model is available as a
Supporting Material (Equations (A1)–(A400)).
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Nomenclature

Sets and indices
U Set of process unit u
P Set of CDU fraction p
N Set of gridpoints for segment n
Parameters
γ Segment size (i.e., length)
M Big-M parameter
kn, p Gridpoint for segment n
qn Length of segment n
Continuous variables
Lu Load of process unit u
Wp Weight transfer ratio of fraction p (for CDU)
dW Deviation of partitioned variables in bilinear term from lower bound
dU, dV Auxiliary variable for relaxation
ωu,p Variable for reformulation to replace bilinear terms
Binary variables
λ Disjunction in bm scheme
θ Disjunction in nf5 and nf6t formulations
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