
processes

Article

Distribution of Nanoparticles in a Turbulent Taylor–Couette
Flow Considering Particle Coagulation and Breakage

Ruifang Shi, Jianzhong Lin * and Hailin Yang

����������
�������

Citation: Shi, R.; Lin, J.; Yang, H.

Distribution of Nanoparticles in a

Turbulent Taylor–Couette Flow

Considering Particle Coagulation and

Breakage. Processes 2021, 9, 1789.

https://doi.org/10.3390/pr9101789

Academic Editors: Haiping Zhu and

Chandana Jayasundara

Received: 19 September 2021

Accepted: 6 October 2021

Published: 8 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China;
shiruifang@zju.edu.cn (R.S.); yanghailin@zju.edu.cn (H.Y.)
* Correspondence: mecjzlin@public.zju.edu.cn

Abstract: In this paper, the dynamic evolution of nanoparticles in a turbulent Taylor–Couette flow
was studied by means of a numerical simulation. The initial particle size was 200 nm, and the volume
concentration was 1 × 10−5. The Reynolds-averaged N–S equation for Taylor–Couette flow was
solved numerically using the realizable k-ε model combined with the standard wall function. The
numerical result of the velocity distribution is in good agreement with the experimental results.
Additionally, the dynamic equation for the particle number distribution function was solved numeri-
cally using the Taylor series expansion moment method (TEMOM). The variation characteristics of
particle number density, diameter and polydispersity in the flow were analyzed. The results show
that particle breakage is obvious in the region with strong vorticity due to the large shear strength,
which leads to a significant change in the particle number density, diameter and polydispersity.
Furthermore, the effects of the gap width between two cylinders and the Reynolds number on the
distribution of the particle number density, size and polydispersity are discussed.

Keywords: nanoparticle-laden flow; coagulation; breakage; Taylor–Couette flow; particle distribution

1. Introduction

Nanoparticle-laden flow exists in industrial applications and natural phenomena. In
the process of transport, particles collide with each other under the influence of the convec-
tion and diffusion of the flow, resulting in particle coagulation, breakage and deposition.
Research on the variation characteristics of the particle number density, diameter and
polydispersity, considering particle coagulation and breakage, under turbulent conditions
is significant in applications.

A large number of research papers on particle coagulation have been published. For
example, the results in turbulent circular tube flows [1] and shear flows [2] showed that
nanoparticle coagulation in turbulent flows was mainly related to the collision caused by
the Brownian motion of particles. In fact, the mechanism of particle coagulation includes
the Brownian motion of particles and the shear effect of turbulent flow, and which of the
two factors is dominant dends on the particle size and turbulence intensity [3,4]. The
experimental and numerical results presented by Yu et al. [5] showed that patterns of
coagulation for micron and submicron particles were slightly different due to different
particle dynamics. In the case of a sufficiently high turbulence intensity, particles with a
diameter of 100 nm will be turbulently coagulated [4].

Relatively speaking, there have been fewer research papers on particle breakage in
turbulent flow. Gan et al. [6] showed that particle breakage was caused by the turbulent
shear effect. Yuan et al. [7] studied nanoparticles ejected by high-pressure vessels and
found that, under the effect of strong turbulent shear at the nozzle, the particle group
would be broken into several hundred nanometers, and even into a smaller scale under the
action of secondary pressure dispersion. Ammar et al. [8] analyzed the mechanism related
to particle breakage in turbulent pipe flow and found that the breakup was slower in the
pipe flow where the turbulent shear rate was lower than in the free jet zone. However, the
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particles would break instantly under the action of high local shear stress. Soos et al. [9]
studied particle breakage in turbulent flows by population balance modeling and static
light scattering. Baldyga et al. [10] applied population balance modeling with kinetics
including the effects of breakage on turbulent flow. Far et al. [11] studied the effect of the
fractal dimension and the number of primary particles on particle breakage and found
that particles with a fractal number of 1.85 had Stokes numbers smaller than one such that
the load on these particles was dominated by the strain rate. Lin et al. [12] studied the
penetration efficiency of nanoparticles flowing through a pipe bend considering particle
breakage. Amani et al. [13] indicated that the addition of nanoparticles had an obvious
effect on drop breakage and consequently their size distribution. Conchuir et al. [14]
presented new aggregate stability maps which could be used to discriminate regions in the
parameter space where aggregates are fully stable upon both restructuring and breakup,
and the parameter space includes the fractal dimension, size and shear rate.

The literature survey reveals that there are few studies on the distribution of nanopar-
ticles in turbulent Taylor–Couette flows considering particle coagulation and breakage.
The Taylor–Couette flow is a typical flow, and it has some practical applications [15]. The
flow is used in research because it can be controlled at given known local conditions.
Wang et al. [16] studied the effects of the shear rate on the breakage of flocs or aggregates
consisting of 10 µm particles in a turbulent Taylor–Couette flow and demonstrated that
computational fluid dynamics could be used to simulate the particle breakage over a wide
range of Reynolds numbers considering the heterogeneity of the flow. The research of
Wang et al. [16] mainly focused on the change in the fractal dimension and particle size
with time at Reynolds numbers changing from 34 to 220. In this work, therefore, a numer-
ical simulation was performed to explore the spatial distribution of the particle number
density, size and polydispersity at higher Reynolds numbers up to 16,923. Meanwhile, the
characteristics of particle breakage and the effects of the gap width between two cylinders
and the Reynolds number on the distribution of the particle number density, size and
polydispersity in a turbulent Taylor–Couette flow are discussed. This paper focused on the
fragmentation of nanoparticles, which has been ignored in previous studies, and it is of
great significance to the study of the particle equilibrium mechanism.

2. Governing Equations
2.1. Equations of Turbulent Taylor–Couette Flow

A turbulent Taylor–Couette flow is shown in Figure 1, where a cylindrical coordinate
system is used. The origin of the coordinate system is set at the center of the bottom surface
of the cylinder.
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= 0 (1)
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where ui is the mean fluid velocity, ρ is the fluid density, u’ is the fluctuating velocity, p is
the pressure and µ is the fluid viscosity, and the Reynolds stress Rij is

Rij = −ρui
′uj
′ = ρνt

(
∂ui
∂xj

+
∂uj

∂xi

)
− 2

3
ρkδij (3)

where νt = Cµk2/ε (Cµ is a function of the average strain rate, and k and ε are the turbulent
kinetic energy and dissipation rate), and δij is the Kronecker delta function.

The realizable k-ε turbulence model with swirling correction is selected for a flow with
an obvious cyclone. The transport equations of the turbulent kinetic energy and dissipation
rate are, respectively,

∂
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[
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η
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ε
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1
2

(
∂uj

∂xi
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)
, Gk = −ρu′iu

′
j
∂uj

∂xi

where Gk represents the turbulent kinetic energy generated by the average velocity gradient,
C2 = 1.9, C1ε = 1.44, σk = 1.0 and σε = 1.2.

2.2. Population Balance Equation (PBE) for Nanoparticles

Nanoparticles follow the flow field, collide with others, coagulate under Brownian
motion and shear force and break up at a large shear force. The nanoparticles are treated as
a continuum, and the instantaneous PBE [17] for nanoparticles under the combined effects
of fluid convection, particle diffusion, coagulation and breakage is

∂n(v,t)
∂t +∇ · n(v, t)u−∇ · D∇n(v, t) = 1

2

v∫
0

β(v1, v− v1)n(v1, t)n(v− v1, t)dv1

−
∞∫
0

β(v1, v)n(v, t)n(v1, t)dv1 +
∞∫
v

a(v1)b(v|v1)n(v1)dv1 − a(v)n(v)
(6)

where n(v, t) is the particle volume distribution function at time t, u is the fluid veloc-
ity vector, D is the turbulent diffusion coefficient, which is usually approximated by the
turbulent viscosity of the fluid [18], β(v1, v) is the volume-based coagulation kernel for
two particles with volumes v and v1, a(v) is the volume-based breakage kernel that pro-
vides the frequency of breakage of a particle of volume v and b(v|v1) is the breakage
distribution function.

Assuming that particle coagulation is the result of Brownian motion and turbulent
shear, then β is

β = βB + βT (7)

The coagulation kernel caused by Brownian motion is [19]

βB =
2kBT

3µ

(
1

v1/3 +
1

v1/3
1

)(
v1/3 + v1/3

1

)
+

2kBT
3µ

1.591λ

(3/4π)1/3

(
1

v2/3 +
1

v2/3
1

)(
v1/3 + v1/3

1

)
(8)

where kB is the Boltzmann constant, T is the temperature, µ is the fluid viscosity and λ is
the gas molecular mean free path.
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Based on isotropic turbulence theory, Saffman [20] deduced the particle collision rate
under turbulent shear; correspondingly, the coagulation kernel caused by turbulent shear is

βT =

√
3

10π

(
v1/3 + v1/3

1

)3( ε

ν

)1/2
(9)

The volume-based breakage kernel is [21]

a(v) = 0.0047(
ε

ν
)

0.8
v1/3 (10)

where ε is the turbulent dissipation rate, and ν is the fluid viscosity.

2.3. Taylor Series Expansion Moment Method (TEMOM)

Using the moment method to solve PBEs numerically has the characteristics of a high
computational efficiency and easy implementation while ensuring accuracy [22]. Moreover,
the particle number, volume, mass and polydispersity can be obtained simultaneously
by using the moment method. Equation (6) can be transformed into a moment equation
by multiplying the terms of Equation (6) by νk and then integrating them over the entire
volume distribution:

∂mk
∂t +∇ ·mku−∇ · D∇mk =

1
2

∞∫
0

∞∫
0

[
(v + v1)

k − vk − vk
1

]
β(v1, v)n(v, t)n(v1, t)dvdv1

+
∞∫
0

vk
∞∫
v

a(v1)b(v|v1)n(v1)dv1dv−
∞∫
0

vka(v)n(v)dv
(11)

The kth moment of the particle distribution function is defined by

mk =
∫ ∞

0
vkn(v, t)dv (12)

where M0 is the total particle number, M1 represents the particle volume and is proportional
to the particle mass and M2 is directly relevant to the particle polydispersity.

In this paper, the TEMOM [22,23] was used to close Equation (11). The basic idea of
the TEMOM is to transform any moment into the form of the first three moments using the
Taylor series expansion technique so that the moment equations can be solved in a closed
way. The corresponding moment equations are

∂m0
∂t +∇ ·m0u−∇ · D∇m0

= −
√

3
10π
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1
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3. Numerical Simulation
3.1. Numerical Model

In the numerical simulation, initially, the particles were spherical particles with a
diameter of 200 nm and a volume fraction of 1 × 10−5. The one-way coupling method
was adopted, i.e., the influence of particles on the flow is ignored. The Reynolds number
was defined as Re = ω1 × R1× (R2−R1)/ν. Table 1 summarizes the parameters used in the
computation under different conditions. The governing Equations (13)–(15) of particles
and the corresponding Equations (1)–(5) of turbulent flow were solved using the finite
volume method in OpenFOAM-5, and the term of velocity–pressure coupling and the
convection term were dealt with using the Open FOAM SIMPLE algorithm. The equations
for particles were solved numerically with a self-made program. The no-slip boundary
condition was applied to the top and bottom walls as well as the wall of the outer cylinder.

Table 1. Parameters used in the computation under different conditions.

Case Radius of Outer Cylinder R2 (m) R = R1/R2 Angular Velocity ω1 (rad/s) Reynolds Number Particle Breakage

0 4.760 0.733 31.718 13,520 no
1 4.760 0.733 31.718 13,520 yes
2 5.584 0.625 31.718 13,520 yes
3 4.363 0.800 31.718 13,520 yes
4 4.760 0.733 10.000 4263 yes
5 4.760 0.733 19.830 8453 yes
6 4.760 0.733 39.700 16,923 yes

3.2. Mesh Independence Test and Validation

The grid system consisted of 20(r) × 70(θ) × 500(z) = 700,000 grid points. A uniform
grid was used in three directions. A grid independence test was performed by changing
grid points to 1.2 times in all directions. The results show that the same 16 pairs of vortices
can be observed on any axial plane before and after mesh refinement, as shown in Figure 2.
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In order to compare the numerical results with the experimental results, as shown in
Figure 1, the outer cylinder with a radius of 4.76 cm was fixed, and the inner cylinder with
a radius of 3.49 cm rotated at 31.718 rad/s. The fluid viscosity µ was 1.097 × 10−3 kg/m·s,
the particle density was the same as the fluid density, namely, 1055 kg/m3, and the
Reynolds number was 13,520.

To validate the numerical method used in the simulation, we compared the present
numerical results of the axial and radial velocities at the position of 0.0394 m on the central
axial plane with the experimental results [16], as shown in Figure 3. It can be seen that both
results are basically consistent.

A grid independence test was performed by changing the grid points. Figure 4 shows
the comparison of the velocity profiles between the numerical results with a coarse mesh
(230,720 cells) and fine mesh (518,400 cells) and the experimental results [24] in a chamber.
Almost no difference is observed for the cases of the coarse and fine meshes. In addition,
the agreement between the numerical and experimental results indicates that the numerical
method is reasonable and reliable.
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4. Results and Discussion
4.1. Difference between Considering and Not Considering Particle Breakage

In Equation (11), if the last two terms on the right-hand side of the equation are
retained or ignored, the difference between considering and not considering the particle
breakage can be shown.

4.1.1. Particle Number Density

Define a dimensionless particle number density M0 = m0/m00, where m0 and m00 are
the particle number density and initial particle number density, respectively. As it can be
seen from the contour of M0 on the r-z plane in Figure 5, there is no obvious difference in
the distributions of the particle number density when considering and not considering the
particle breakage, i.e., the particle breakage is weak when taking the parameters of case 1 in
Table 1. As shown in Figure 5, influenced by the vortex structure, particles are concentrated
in the area with a large velocity in the form of vortex pairs, and the particle distribution is
not uniform or symmetrical. The regions with the smallest particle number density appear
on the two ends of the cylinder, where the shear rate is much smaller. This is attributed to
the influence of particle inertia force and particle coagulation. The change in the particle
number density is related to the particle coagulation and breakage. Figure 6 shows the
change in M0 with time. We can see that the particles coagulate violently in the initial
stage, resulting in a sharp decrease in the particle number density. The particle number
density reaches a stable value with the passage of time because the particle coagulation
and breakage reach an equilibrium.
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M2 is directly relevant to the particle polydispersity. As shown in Figure 6, the particle
polydispersity increases sharply at first because of the higher particle coagulation rate and
then reaches a stable value.

4.1.2. Particle Diameter

Single size particles are initially distributed in the flow field. Due to the influence of
particle coagulation and breakage, the average size of particles will change. Define the
geometric mean diameter of particles as [25]

dg =

 m2
1√

m3
0m2

1/3

(16)

Distributions of the particle diameter along the axial direction are shown in Figure 7,
where both cases considering and not considering the particle breakage are presented. We
can see that the distributions of the particle diameter change along the axial direction and
are closely related to the velocity distribution of the flow field. The peaks of the particle
diameter and velocity basically coincide, as shown in Figure 4b. In the area close to the
cylinder wall, the energy dissipation of the flow is larger, and the particle diameter is
smaller. The peak value of the particle diameter distribution is closer to the outer wall. The
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distribution of the particle diameter considering the particle breakage is different from that
without considering the particle breakage, and the values of the former are smaller.
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4.1.3. Particle Polydispersity

The coagulation and breakage of particles cause the initial single particle scale to
become multi-scale, resulting in an increase in the particle polydispersity. Define the
particle polydispersity with the following standard deviation σ of the particle distribution:

ln2 σ =
1
9

ln

(
m0m2

m2
1

)
(17)

Thus, the greater the σ, the stronger the particle polydispersity.
Figure 8 shows the distribution of the standard deviation of the particle distribution

along the axial direction. It can be seen that the values of σ are smaller for the case
considering the particle breakage than that without considering the particle breakage. The
reason is that if the particles only coagulate without breaking, the particle diameter after
coagulation will increase monotonically, resulting in a monotonic increase in the particle
polydispersity. However, if the particles are both coagulated and broken, the diameter
range of particles becomes smaller compared with the case without considering the particle
breakage, meaning that the particle polydispersity is reduced.
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4.2. Effect of the Gap Width between Two Cylinders

The gap width between two cylinders will affect the flow characteristics, thus affecting
the distribution of particles.

4.2.1. Particle Number Density

The distribution of M0 is affected by the vortex structure and presents quasi-periodicity
along the axial direction. The larger the gap width, the fewer vortex pairs there are. The
distribution of M0 changes along the radial direction, and the largest values of M0 appear
near the wall of the inner cylinder and present periodicity along the axial direction. The
difference in the gap width leads to the difference in the vortex structure and even the
difference in the distribution of M0. The values of M0 increase with an increasing gap
width because particle coagulation is less likely to occur at a wider gap. The difference in
the values of M0 becomes smaller along the axial direction with the increase in the gap
width due to the large axial velocity.

4.2.2. Particle Size and Polydispersity

Figure 9 shows the distributions of the particle diameter along the axial direction for
different gap widths. It can be seen that the distributions of the particle diameter show a
quasi-periodic variation along the axial direction. The particle diameter decreases with the
decreasing gap width. The reason is that the walls of the two cylinders are closer when
the gap width is smaller, and there is a stronger shear in the flow field, which makes the
particles easier to break up.
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(b) mean diameter.

Distributions of the standard deviation of the particle distribution along the axial
direction are shown in Figure 10, where the values of σ show the same change trend as the
particle diameter shown in Figure 9. The standard deviation of the particle distribution, i.e.,
the particle polydispersity, increases with the increase in the gap width, which is attributed
to the idea that, on the one hand, particle breakage is less likely to occur in the flow with a
weaker shear when the gap is wider, and, on the other hand, the particles size increases
continuously due to coagulation, and finally the size range of the particles becomes wider.
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4.3. Effect of Reynolds Number

The Reynolds number is related to the angular velocity of the inner cylinder, gap
width between two cylinders and viscosity coefficient of the fluid. Different Reynolds
numbers will lead to different particle distributions.

4.3.1. Particle Number Density

Axial distributions of the particle number density M0 in the middle position of the
inner and outer cylinders are shown in Figure 11. We can see that the values of M0 basically
vary between 0.75 and 0.9 when Re = 13,520 and 16,923. This means that the change in the
Reynolds number has little effect on the distribution of the particle number density when
the Re is large. The reason may be attributed to the idea that the characteristics of the flow
field and vortex structure tend to be stable when the Reynolds number exceeds a certain
value, and the distribution of the particle number density is affected by the characteristics
of the flow. In Figure 11, the values of M0 increase when the Reynolds number changes
from 4264 to 13,520. A large Reynolds number means that the turbulence effect is stronger.
As it can be seen from expressions (9) and (10), the coagulation and kernel breakage
caused by turbulent shear are directly proportional to the turbulent dissipation rate ε.
The stronger turbulence effect will promote particle coagulation and breakage. Particle
coagulation reduces and particle breakage increases the particle number density. However,
the coagulation kernel is proportional to the 0.5th power of ε, while the breakage kernel
is proportional to the 0.8th power of ε, as shown in expressions (9) and (10). In general,
the effect of turbulence on particle breakage is greater than that on particle coagulation,
meaning that the values of M0 increase with an increasing Reynolds number.
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4.3.2. Particle Size and Polydispersity

Figures 12 and 13 show the distributions of the geometric mean diameter of particles
and the standard deviation of the particle distribution along the axial direction, respectively.
It can be seen that the values of dg and σ for Re = 4263 are far greater than the values of
dg and σ for other Re, which is consistent with the conclusion in Figure 11. The geometric
mean diameter of particles is generally larger when the Re is low because the slower the
cylinder rotates, the longer the time for particles to collide and coagulate with others.
Moreover, a low Re means that particles are less likely to break up due to the low shear
rate. In Figure 13, the standard deviation of the particle distribution, i.e., the particle
polydispersity, increases with the decrease in Re. On the one hand, particle breakage is less
likely to occur in the flow with a weaker shear when the Re is lower. On the other hand,
the particles have more time to collide and coagulate in the flow with a lower Re, resulting
in a continuous increase in the particle diameter, and finally the size range of the particles
becomes wider.
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5. Conclusions

In this paper, the Taylor series expansion moment method was used to numerically
simulate the dynamic evolution of nanoparticles in a turbulent Taylor–Couette flow. The
characteristics of particle breakage and the influences of the gap width between two cylin-
ders and the Reynolds number on the distribution of the particle number density, diameter
and polydispersity were analyzed. The main conclusions are summarized as follows:

(1) Particle breakage leads to an increase in the particle number density and a decrease in
the particle mean diameter, but it has no obvious effect on the particle polydispersity.
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(2) The coagulation and breakage of particles reach a balance when the system lasts for a
period of time. Accordingly, the particle number density, diameter and polydispersity
tend to a steady state.

(3) The gap width between two cylinders has an effect on the flow field, vortex structure
and even particle distribution. The values of the particle number density, particle
diameter and polydispersity increase with an increasing gap width. The difference in
the values of the particle number density becomes smaller along the axial direction
with an increase in the gap width.

(4) The change in the Reynolds number has little effect on the distribution of the particle
number density when the Re is large. The effect of turbulence on particle breakage is
greater than that on particle coagulation. With an increase in the Reynolds number, the
particle number density increases, but the particle diameter and polydispersity decrease.
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