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Abstract: We report on an open-source, publicly available C++ software module called Chrono::GPU,
which uses the Discrete Element Method (DEM) to simulate large granular systems on Graphics
Processing Unit (GPU) cards. The solver supports the integration of granular material with geometries
defined by triangle meshes, as well as co-simulation with the multi-physics simulation engine Chrono.
Chrono::GPU adopts a smooth contact formulation and implements various common contact force
models, such as the Hertzian model for normal force and the Mindlin friction force model, which
takes into account the history of tangential displacement, rolling frictional torques, and cohesion.
We report on the code structure and highlight its use of mixed data types for reducing the memory
footprint and increasing simulation speed. We discuss several validation tests (wave propagation,
rotating drum, direct shear test, crater test) that compare the simulation results against experimental
data or results reported in the literature. In another benchmark test, we demonstrate linear scaling
with a problem size up to the GPU memory capacity; specifically, for systems with 130 million DEM
elements. The simulation infrastructure is demonstrated in conjunction with simulations of the
NASA Curiosity rover, which is currently active on Mars.

Keywords: granular material; Discrete Element Method; physics-based simulation; GPU computing

1. Introduction: State of the Art

The Discrete Element Method (DEM) [1] is a widely-adopted scheme for predicting
the dynamics of large granular systems [2], from mixing [3] and particulate flows [4]
to landslides [5,6] and astrophysical processes [7]. Due to the small step size necessary for
numerical stability and the large number of particles that might be required to capture the
physics of interest, DEM can be computationally expensive. Until very recently, Central
Processing Unit (CPU)-only parallel computing techniques have been implemented to
accelerate large-scale DEM simulations. These approaches drew on (1) OpenMP for single
multiprocessors with shared memory architectures [8]; (2) the Message Passing Interface
(MPI) standard for clusters with distributed memory [9]; and (3) hybrid MPI–OpenMP
parallelism [8,10].

An alternative architecture for parallel computing is provided by the Graphics Process-
ing Unit (GPU). Over the last decade, owing to its high bandwidth and fast global memory,
the GPU has anchored the intense arithmetic computations demanded, for instance, by arti-
ficial intelligence applications, linear algebra, and molecular dynamics simulation. Several
researchers have since established DEM codes leveraging the GPU architectures [11,12].
Nonetheless, whether using CPU or GPU computing, the number of DEM elements used
in experiments reported in the literature has been rather small—in the vicinity of 103 to 105

elements [13–27]; for comparison, in one cubic meter of sand, there are on the order of two
billion elements. However, one should look beyond the maximum number of elements
handled to assess a DEM simulator; the element size, normal contact stiffness, and element
density also come into play. In this context, the traits of a difficult DEM problem include a
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large number of elements, a small element size, high stiffness, and low density. For instance,
a DEM code will have a significantly easier task simulating the dynamics of 1 million DEM
elements, each of radius 100 mm, than when the radius is 100 µm. This is because, despite a
change of units, a large value of the contact stiffness leads to deformations that are difficult
to track accurately in double precision when the particle size is very small; also, for han-
dling small particles and their deformations, the time steps will have to drop substantially.
Thus, the review of the literature below, which is organized chronologically, pays attention
to more than simply the number of elements and run times; it also reports the hardware
configurations used and, whenever possible, other metrics that speak to the prowess of the
DEM simulator used.

Our own DEM simulations consider up to 123 million elements on one GPU card;
the Young’s modulus was 213× 106 Pa, the density was 2800 kg/m3, and the size of the
spherical particles was 0.64 mm. Our simulator, called Chrono::GPU, currently handles
only monodisperse systems. The review of the literature below places the performance of
Chrono::GPU in a broader context.

In [28], benchmark DEM simulations were run for 2D systems with 0.2 million particles
using a 64-node supercomputer. The integration step size was of the order 1× 10−4 s,
and one second of simulation required approximately 200 s of run time using 64 nodes.
In [29], a mixing via tumbling mill of one million particles required one week to simulate
a 1.5 s rotation of the mixer on a cluster with 32 processors. The particles were spheres
of radius 8 mm, Young’s modulus 2.16× 106 Pa, and density 2500 kg/m3. In [30], 150,000
glass beads were considered in the “high fill” scenario for a spheronizer simulation. The
Young’s modulus was reduced to 4.87× 106 Pa, the Poisson ration was 0.2, the density was
1500 kg/m3, and the bidisperse mixture had particles of 2 mm and 4 mm radii. Ten seconds
of simulation required 375 hours of run time on a Dell SC1425 cluster with 16 Intel Xeon
(3.6 GHz) processors. In [31], the problem size for a hopper simulated via DEM went up
to 400,000 bodies. The simulation drew on MPI [32] and a cluster with 36 processors. The
monodisperse material had spheres of 1 mm radius; no material information was provided
regarding the stiffness of the spheres or the integration step size. In [33], an 81,000 DEM
element simulation took 35 days on an MPI-managed 32-core architecture to simulate 120 s
of system dynamics. The granular material was polydisperse with radii of 1.5 mm for 15%
of material, 2 mm for 35% of material, 2.5 mm for 35% of material, and 3 mm for 15% of
material. The Young’s modulus was relaxed from 68.9× 109 Pa to 200× 106 Pa for the sake
of increasing the simulation time step, which was ∆t =1.2× 10−6 s. In [34], the authors
switched to a multi-GPU solution for systems with more than one million particles owing
to GPU memory exhaustion; a settling simulation with 10 million bodies was run with up
to 32 MPI-managed GPUs. The one million body simulation in [34] was carried out on
one GPU using a monodisperse system with spheres of radius 2.5 mm, Young’s modulus
107 Pa, and density 733 kg/m3. No information was provided regarding the amount of time
required to complete a simulation. However, a speed-up of 40 was reported relative to a
CPU implementation discussed in [35]. In the latter, the number of bodies was 130,000, with
a particle radius of 2.5 mm, Young’s modulus of 108 Pa, and density of 2500 kg/m3. Results
pertaining to a powder compaction simulation are reported in [36]. Therein, the authors
used mixtures of spheres with up to three different radii, with the smallest being 0.1 mm.
The Young’s modulus and particle density were 9× 109 Pa and 5170 kg/m3, respectively;
the simulation time steps used were in the range of 10−8 s to 10−7 s. Strong scaling analysis
results were presented for the dynamics of one million bodies using from 4 to 20 GPUs.
A compaction analysis was carried out using particles of radius 0.1 mm stored in a 3D
cell of size 1 cm. This led to simulations of systems with up to 0.563 million elements.
In [37], the authors ran powder simulations. To reduce the number of particles and the
computational time, the particle diameter was scaled from 0.01–0.25 mm to 0.4–0.7 mm.
The simulation time step was 2× 10−6 s, and the number of particles in the simulation
was 4.03 million. For a 2.8 million particle system run on an Nvidia GTX 1080Ti GPU,
the simulation took roughly 0.03 s per time step; model simplifications were made to
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shorten the computation, which would have otherwise required 32 days to complete.
In [12], a DEM solver running on the GPU was stated to handle systems with 60 million
elements. Significant simplifications were made to reach this particle count; e.g., the
arithmetic was carried out in single precision, which is known to be inadequate in almost all
DEM simulations. The normal force model could only be Hookean; moreover, the friction
force model did not keep track of history, which is known to lead to inaccurate results, see,
for instance [38]. A simplified, no-history friction force model was also used in [39], where
the implementation was reported to handle approximately one million spheres clumped in
sets of four to form 0.256 million aggregate bodies of a more complex shape.

Switching to terradynamics applications, the number of elements in DEM simulations
is typically smaller. In [40], a commercial tool was used to simulate a low number of
particles. Two cases reported therein used particles that had 5 mm and 10 mm nominal
radii (actual radii were 0.95 to 1.05 times the nominal size). The density of the sand particles
was 2600 kg/m3, and the shear modulus was 43× 109 Pa. Spherical particles were used
in [41] to compare DEM and FEM in relation to the soil–tool interaction. The commercial
tool used in [40] was also used in [41]. Owing to licensing constraints, the number of
particles used in DEM increased to 250,000 in a polydisperse setup with particles of 1.5 mm,
3 mm, 6 mm, and 12 mm. The density of the sand particles was 2600 kg/m3, and the shear
modulus was 5× 107 Pa. The hardware used was a commodity, relatively high-clocked
CPU processor with four cores. In [42], a set of four deformable wheels interacted with a
granular terrain made up of 0.9 million elements. The granular material was made up of
spheres with radius 12 mm, density 2500 kg/m3, and contact force stiffness kn = 106 N/m.
The simulation proceeded at a time step of ∆t = 3.5× 10−5 s, and the completion of the
7.64 s long simulation of the vehicle operating on granular terrain required 5.5 days of
computation time. A similar problem was analyzed in [43], where the terrain was made up
of 90,304 spheres of radii between 6 mm and 7 mm. The Young’s modulus was 75× 109 Pa,
the density was 2600 kg/m3, and the integration time-step used was ∆t = 3.5× 10−5 s.
The settling of the particles reportedly took 46 hours to simulate, while the rolling of one
tire for approximately 5 s took 52 h. In [44], the DEM particle was the union of three
spheres of identical radii. The monodispersed tri-sphere particles could be circumscribed
with a sphere with a radius of about 4 mm. A wheel–terrain interaction problem was
simulated using 392,049 such particles; the bulk shear stress was 50× 106 Pa and density
was 2875 kg/m3. No simulation times were reported.

To the best of our knowledge, the largest granular dynamics simulation of practical
relevance to date contained 2.4 billion elements. It was run on 16,384 CPUs (131,072 cores)
of Japan’s K-supercomputer [45–47]—the fastest supercomputer in the world in 2012 [48].
For reference, in [46], the problem size increased to 1.9 billion particles of radius 0.114 mm,
density 2600 kg/m3 and Young’s modulus 107 Pa. The simulation was run on 4096 CPUs
(32,768 cores); no simulation times were provided.

The rest of the manuscript is organized as follows. Section 2 summarizes the DEM
model (equations of motion and contact force model). Section 3 highlights software
implementation aspects; e.g., mixed-data types, domain decomposition, support for co-
simulation, and checkpointing. Section 4 focuses on validation. Section 5 reports on
a scaling analysis. Section 6 demonstrates the DEM solver via a simulation of a rover
operating on granular terrain. We close with conclusions and directions of future work.

2. The DEM Model

In DEM, the fundamental assumption is that particles are allowed to have small
penetration, δn, at the point of contact, contrary to the non-smooth contact method [49],
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where no penetration is allowed. The dynamics of the particles are explicitly updated by
summing the applied forces, torques and gravity; see Equation (1),

mi
dvi
dt

= mig +
nc

∑
j=1

(Fn + Ft + Fc), (1)

Ii
dωi

dt
=

nc

∑
j=1

(ri × Ft + Mr). (2)

When two bodies, i and j, are in contact, as shown in Figure 1, by means of various
contact laws, such as Hertzian contact theory, the Mindlin friction law [50] and rolling
resistance models [51], the interaction between particles, namely the normal force Fn, cohe-
sive force Fc, tangential friction force Ft, and rolling friction torque Mr, can be evaluated
based on material properties and local deformations. Specifically, normal and tangential
forces can be described as spring-dashpot mechanisms, with the tangential force, Ft, being
capped to satisfy the Coulomb condition through the friction coefficient µs:

Fn = knun − γnvn, (3)

Ft = ktut + γtvt, ‖Ft‖ ≤ µs‖Fn‖. (4)

Here, the stiffness and damping coefficients kn, kt, γn, and γt can either be user-defined [52]
or dependent on material properties: Young’s modulus, Poisson ratio, and coefficient of
restitution [38]. Both flavors use the Hertzian contact force model [53]. Local deformation,
namely normal penetration un = δnn, tangential displacement history ut, and relative
velocity at the contact point vrel = vn + vt, are evaluated as

vrel = vj + ωj × r j − vi −ωi × ri, (5)

vn = (vrel · n)n, (6)

vt = vrel − vn, (7)

where vi, ωi and vj, ωj are the velocity at the center of mass and the angular velocity of
bodies i and j, respectively. Position vectors ri and r j point from the center of mass of bodies
i and j to the contact point. In [50], the authors state that the friction force Ft is dependent
on the loading history and should be updated incrementally to reproduce results from
physical tests [38]. Thus, the tangential displacement ut is accumulated throughout the
duration of contact. To enforce the Coulomb friction law, at any step where ‖Ft‖ > µs‖Fn‖,
the tangential displacement ut is updated using

ut =
µs‖Fn‖

kt

ut

‖ut‖
. (8)

The cohesion model adds a constant attractive force along the contact normal direction,

Fc = −Cn. (9)

When a particle rolls over ground or another particle, rolling resistance can arise from
an asymmetric normal stress profile at the contact patch [54]. Currently, Chrono::GPU
uses a constant torque model where the magnitude of Mr is proportional to the rolling
friction coefficient µr, the magnitude of normal force Fn, and the particle radius ri, while
its direction opposes the relative rotational velocity vrot:

Mr,i = µrri
Fn × vrot

‖vrot‖
, (10)

vrot = rj(ωj × n)− ri(ωi × n). (11)
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Figure 1. Contact forces that describe particle–particle interaction: from left to right, normal force Fn,
tangential friction force Ft, rolling friction torque Mr, and cohesion Fc.

3. Aspects Related to the Design of the Software
3.1. Mixed Data Types

On modern hardware architectures, the speed of 32-bit floating point operations
such as addition and multiplication is at least twice as fast as the performance of 64-bit
operations [55]. Moreover, the memory required to store a value in 32 bits will be half
of that required to store it in 64 bits. This is also relevant for cache performance—the
typical cache line on a CPU is 64 bytes wide, which means that more variables will be
found in cache if they store their values using 32 bits instead 64 bits. Finally, upon a cache
miss, moving data from memory to cache is also more effective if the variables that are
accessed store their values using 32 instead of 64 bits. Therefore, 32 bit data types such as
int and float are preferred over 64 bit types such as long int and double. However, this
raises the question of whether or not single precision (ε f loat ≈ 10−7 vs. εdouble = 10−16) is
enough for DEM problems. Indeed, DEM particles are modeled with large contact stiffness,
which can lead to small deformations in normal and tangential directions. Take one sphere
of radius R = 1 mm resting on the ground as an example, with normal stiffness kn =
1× 108 N/m, density ρ = 2.5× 103 kg/m3 and gravity g = 9.8 m/s2; using the Hertzian
contact model, the normal deformation due to gravity is about δn = 1.02× 10−8 m, which
is too small to be captured in single precision.

There is one more salient point in relation to using floating point numbers: they are
“designed” to capture all numbers on the real axis. If one uses 32 bits in floating point to
capture real numbers, there are only 232 machine numbers used as proxies for an infinite
number of numbers on the real axis. However, why should one care in DEM about values
such as 8.547? All the physics of interest takes place in a relatively well defined range of
values: in SI units, the speeds are between zero and several hundreds, and the particles are
located in space in a range from −100 to 100, for example, etc. Therefore, there are bits out
of the 32 bit budget for a floating point number that go unused since the DEM physics does
not consider them. In our implementation, we decided to use our 32 bit budget differently.
Indeed, we use variables of type int to specify the position of the particles in the 3D space,
with three int values for the x, y, and z coordinates of a DEM element. In other words,
we scale position quantities to be covered by the whole range of int, (−2,147,483,647,
214,7483,647), essentially slicing the domain in each direction into as many pieces as a
single int can represent. The minimum length unit (space resolution) is defined as

lunit =
max(Bx, By, Bz)

Nint − 1
, (12)

where {Bx, By, Bz} is the size of simulation domain in each direction, and Nint = 231. For a
soil bin of length 1 m, lunit is about 4.66× 10−10—less than the order of normal penetration,
and therefore sufficient to account for micro-deformation.

Another advantage of using int for position is that, for the same data size, integer
operations are faster than floating point arithmetic, thus reducing the computation cost of
position-related calculations, such as broadphase contact detection (Section 3.2).

The rule of thumb is that we only use the 8 byte double data type when necessary
and with variables stored in very fast memory (registers) and use 4 byte or less data types
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for variables stored in slow memory. Table 1 lists the different data types encountered in
Chrono::GPU and their memory location.

Table 1. Various data types in Chrono::GPU and their memory location.

Data Type Variable Memory Type

unsigned int Subdomain owner index Global
int Local coordinate within subdomain Global

float Kinematics quantity, friction history, mass, etc Global
double Penetration Register
float Contact force calculation Register

3.2. Domain Decomposition and Local Coordinates

Chrono::GPU uses a Linked-Cell method [56], which is commonly relied upon for the
contact detection of monodisperse elements. The entire domain is decomposed into small
subdomains, and each particle is assigned to a subdomain (SD) based on the location of
its center of mass. The size of an SD is defined relative to the size of the DEM element;
currently, the size of the SD is 3.5 times the diameter of the element (this value can be
adjusted by the user)—a decision dictated by the size of the CUDA thread block and
the amount of shared memory available on the targeted GPUs [57]. As a rule of thumb,
for packed granular material, we typically see between 60–100 DEM elements touching an
SD. When searching for potential contacts, only the SDs that touch the particle of interest
can contain potential contacts. Note that each particle can touch at most 8 SDs.

Apart from contact detection, the SDs are also used to represent the particle posi-
tion, Pglobal , indirectly as a combination of the local position with respect to the origin
of the owner SD, Ploc, and the location of SD origin, PSD; see Figure 2 for illustration.
The costs of storing particle positions are 4 bytes for the index of the owner SD (unsigned
int) and 4× 3 = 12 bytes for local coordinates (int), for a total of 16 bytes. This is less than
3× 8 = 24 bytes if 64 bit data types (long int or double) are used. Therefore, positions are
stored efficiently in the global memory, significantly reducing the time required to move
data. During contact detection, the SD owner index and local positions are brought from
the device global memory and the absolute positions are computed. For each contact pair,
the absolute global positions are cast as doubles to ensure accuracy when computing pene-
tration. These operations access fast local memory instead of global memory, improving
memory bandwidth and cache utilization.

Figure 2. Representing particle position indirectly through owner SD as Pglobal = Ploc + PSD.
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Additionally, we group DEM elements by their owner SDs, which maps well to the
GPU architecture. Thus, the CUDA execution configuration used is such that one SD is
associated with a CUDA block of threads, and depending on the phase of analysis, one
thread in a block is associated with either a DEM element or a contact event. We draw
heavily on the use of shared memory by bringing all elements from one SD into shared
memory and repeatedly using the variables therein to compute the quantities of interest;
e.g., penetration, normal force, friction force, etc.

3.3. Co-Simulation

Chrono::GPU is designed to interact with the Chrono simulation engine [58] through
a co-simulation approach. Apart from supporting basic shapes such as planes and cones
to enforce boundary conditions, the user can import meshes to represent the geometry of
an implement—e.g., complex wheel or track shoe—interacting with the granular material.
Chrono::GPU decomposes imported meshes into a collection of triangle facets to make
use of GPU parallelization. Each of those facets interacts with the granular material
individually, yet their combined effects on the mesh-represented objects are registered by
Chrono::GPU. See Figure 3 for an illustration of one such force pair between a triangle facet
and a particle. The tangential frictional force that the particle experiences is Fs, and the
torque applied on the particle is calculated as τs = Fs × r, where r is the vector from the
particle center to the point of contact. Likewise, the torque applied on the meshed object
is calculated as τm = Fm × R, where Fm is the tangential frictional force that the mesh
experiences, and R is the vector from the user-specified center of the meshed object to the
point of contact.

Figure 3. The tangential force Fs and Fm (normal forces are not shown in this figure) and torque τs

and τm in a particle–triangle contact pair.

The force and torque exerted from a granular particle to the object can then be trans-
ferred to the Chrono core module via an external force accumulator API. The Chrono core
then simulates the dynamics of the objects in question, updating their position and velocity
information. These updates, in turn, are picked up by Chrono::GPU through mesh manager
APIs and affect the granular physics in the next time step. The Chrono::GPU co-simulation
workflow is shown in Figure 4. This workflow enables the external objects to have their own
physics simulated rather than relying on prescribed motion. One co-simulation example
can be found in Section 6.
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Figure 4. The co-simulation workflow in one time step.

3.4. Checkpointing

Chrono::GPU has full checkpointing support as it can output the current simulation
state to a file and then restart the simulation at a later time by reading in this state file.
Checkpointing is helpful in long DEM simulations. For instance, the rover dynamics
simulation in Section 6 starts with a settling phase to create the material bed, which is
checkpointed and subsequently reused across multiple runs. Note that the friction history
is also stored in the checkpoint file, rendering this file relatively large. If losing the contact
history is not a concern for the user, Chrono::GPU also supports restarting based on particle
position and velocity only.

4. Validation Tests

To ensure the soundness of Chrono::GPU, various types of validation tests were
carried out; for each type of test, parametric studies were also conducted to further check
the robustness of the solver. In Section 4.1, small-scale tests were first carried out to validate
the contact force models. Therein, we present the results of oblique impact (Section 4.1.1)
and a three-sphere stacking test (Section 4.1.2) and how they compare to analytical and
numerical solutions reported elsewhere. In Section 4.1.3, individual contact forces are
investigated. Additional small-scale validation tests are available in [59]. During the second
validation phase, typical benchmark tests were compared with numerical or experimental
results: direct shear (Section 4.2.1), two types of cratering test (Sections 4.2.2 and 4.2.3),
and rotating drum (Section 4.2.4). The numerical results for comparison were obtained
using a different module, Chrono::Multicore [60]—an OpenMP-based implementation for
granular dynamics handling both smooth and non-smooth contact [61]. Unless mentioned
otherwise, all validation tests use the same experimental setup, contact force model, and
simulation parameters as the corresponding reference, see Table 2 for details.
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Table 2. Simulation parameters for large-scale tests: ρ—density, R—radius, E—Young’s Modulus,
ν—Poisson ratio, COR—Coefficient of Restitution, µs2s

s —sphere-to-sphere sliding friction coefficient,
µs2m

s —sphere-to-mesh sliding friction coefficient, µs2w
s —sphere-to-wall sliding friction coefficient,

µr—rolling friction coefficient, ∆t—step size.

Parameters Direct Shear Cratering Low-Velocity Cratering Rotating Drum

ρ(kg/m3) 2.55× 103 2.5× 103 2.48× 103 2.5× 103

R(cm) 0.3 0.1 0.5 0.0265
E (Pa) 4× 107 7× 107 7× 108 7× 107

ν 0.22 0.24 0.24 0.24
COR 0.87 0.9 0.9 0.97
µs2s

s 0.18 0.3 0.16 0.16
µs2m

s 0.4 [-] [-] [-]
µs2w

s [-] 0.3 0.45 0.45
µr 0 0 0.09 0.09

∆t (s) 1× 10−5 5× 10−6 1× 10−6 1× 10−6

4.1. Small-Scale Tests
4.1.1. Oblique Impact

The contact force models are first validated by a set of oblique impact tests, where
a sphere of initial velocity vi = vi,n + vi,t collides with the ground at different impact
angles θ under zero gravity. The sphere bounces back with velocity v′ i = v′ i,n + v′ i,t and
angular velocity ω′i . If the friction force Ft is saturated during the collision—i.e., Ft = µsFn—
the kinematics after rebound can be derived analytically based on rigid body dynamics [62],

et = 1− µs(1 + e)
tan θ

, (13)

ω′i =
5
2

µs(1 + e)vi,n

R
. (14)

Here, et = v′ i,t/vi,t is the tangential coefficient of restitution (COR) and ω′i is the angular
velocity. The critical value of the impact angle for sliding regime to occur is derived in [63] as

θ? = arctan
(

7
2

µs(1 + e)
)

. (15)

In Figure 5, both analytical and numerical tangential COR et are plotted for various impact
angles θ.

Figure 5. Analytical and numerical tangential COR et for impact angle θ, where e = 1, µs = 0.3.

4.1.2. Sphere Stacking

To validate the rolling friction model and examine how a pyramid-like structure can
withstand this, a set of small pyramid tests were carried out. For each test, two identical
spheres of mass m = 1 kg and radius R = 0.15 m with a small gap in between were settled
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on a flat surface, where the velocity of each sphere was less than 1× 10−4 m/s. A third
sphere of the same radius R but a different mass mtop was placed between and above the
bottom spheres with zero initial velocity. To minimize the influence from impact, the third
sphere was initialized in contact with the bottom ones. Depending on mtop, the gap, and
rolling friction coefficient µr, two scenarios can occur: the top sphere drops to the ground,
or it moves down slightly but the structure eventually stabilizes with the bottom spheres
supporting the top sphere. This type of physics comes into play on a larger scale in angle of
repose experiments. For each combination of sphere gap and µr listed in Table 3, the mass
of the top sphere was increased by 0.01 kg to find the critical mass mc

top for the pile to
collapse, as demonstrated in Figure 6.

Table 3. Parameter space of sphere stacking test.

Parameter Values

Rolling friction coefficient µr [0.07, 0.08, . . . , 0.19, 0.2, 0.3, 0.4]
Gap between bottom spheres [0.2R, 0.25R, 0.3R, 0.35R, 0.4R]

A similar trend is observed for different gap values: mc
top increases with µr up to a

certain point, after which the critical mass decreases slightly until it reaches a plateau,
indicating that increasing µr no longer influences the stability of the stack.

Figure 6. Minimum mass of top sphere mc
top for the pile to collapse.

The same numerical experiment was first conducted in [64] using a spring-damper-
type rolling friction model and simulated with Chrono::Multicore. Both tests show similar
trends; however, the spring-damper-type rolling friction model can support a heavier
weight. Therein, rolling resistance can be nonzero when the relative motion between
objects is zero.

4.1.3. Wave Propagation

To validate the contact force at a microscopic level, a system of particles arranged
on a triangular lattice was loaded with a downward external force, Fext, at the top center.
The system consisted of 15 horizontal layers of spheres, with each layer alternating between
60 and 61 spheres; see Figure 7.
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Figure 7. Wave propagation test setup.

This experiment originated from the work of Goldenberg et al. [65,66], in which the
authors used 2D disks; the simulations herein were conducted using 3D spheres. The work
investigated how friction influences the response of a granular assembly under a localized
force. The test consisted of three steps. First, particles were settled with gravity into a box
of width 122R, where R is the particle radius, and the vertical contact forces between the
container bottom and each sphere were recorded as F0. Next, an external force Fext was
gradually applied on the top center particle until it reached the desired value. Eventually,
with Fext being constant, the system was allowed to settle again, and the contact force
between each sphere and the bottom of the box was recorded as Fy.

An interesting force pattern can be observed by using various values of Fext and
the sphere–sphere friction coefficient µs. The normalized reaction force, ∆F/Fext, where
∆F = Fy − F0, is plotted as a function of the normalized particle position. Figure 8a–c
are results using sphere–sphere friction coefficients of µs = 0, 0.1 and 0.2, respectively.
The force distribution exhibits two profile types. One type has only one peak, and the
maximum force occurs directly below where the force is applied (pos = 0). In contrast,
the other type can have two peaks. The first type indicates an isotropic elastic response,
while the latter represents a hyperbolic response. Figure 8d plots the normalized contact
force increment at the bottom center, ∆Fy(0)/Fext, as a function of the normalized external
force Fext/mg. For each lattice-grid system, the elasticity disappeared with increasing
external force Fext, and the introduction of friction extended the elastic range (flat part of
the curve), consistent with the observation from [66].

(a) µs = 0 (b) µs = 0.1

(c) µs = 0.2 (d) Vertical force at bottom center for various
Fext

Figure 8. Force profile on the bottom in response to different values of applied force, Fext, applied at
the top of the grid at pos = 0; the effect of gravity is excluded.
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4.2. Benchmark Tests
4.2.1. Direct Shear Test

Several shear tests were carried out and compared with the numerical results re-
ported in [38]. As shown in Figure 9a, a 12 cm × 12 cm box was first filled with identical
particles. Next, a plate was placed on top for compression. Four direct shear tests were
performed at a shearing velocity of 1 mm/s and under a constant normal stress: 3.1, 6.4,
12.5, and 24.2 kPa. The relation between shear stress and shear displacement is illustrated
in Figure 9b. The results match closely to those reported in [38,67].

(a) Setup (b) Shear stress vs. shear displacement

Figure 9. Diagram and results of direct shear test.

4.2.2. Cratering Test

A set of cratering tests was recreated in Chrono::GPU using the experimental setup
documented in [68]. A sphere of diameter Db and density ρb was dropped onto a bed of
loose packing granular material at different heights, H, as shown in Figure 10a. The penetra-
tion depth of the projectile was measured and compared against the empirical relationship
inferred from the experiment:

d =
0.14
µs

(
ρb
ρg

)1/2
D2/3

b H1/3, (16)

where ρg is the bulk density of the granular material. A total of nine tests were performed,
with different combinations of the projectile density, ρb = 0.28, 0.7, 2.2 g/cm3 and drop
heights of H = 5, 10, 20 cm. All simulations used the same granular medium composed of
115,964 particles of radius 0.1 cm, density 2.5 g/cm3, and sliding friction coefficient µs = 0.3.
It is shown experimentally in [69] that the penetration of the projectile is independent of
the grain size. The relation between depth d and the scaled total drop height is illustrated
in Figure 10b. Here, each simulation result is denoted by a marker, with different colors
for different ball densities and different shapes for different drop heights. The green
line is a linear fit for the numerical results, with a slope of 0.122/µs, compared with the
empirical line of slope 0.14/µs, plotted in blue. A similar result was also achieved in [70],
where a non-smooth contact model was used to simulate the granular material using
Chrono::Multicore.
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(a) Initial and final
projectile positions

(b) Penetration depth vs. scaled total drop height

Figure 10. Diagram and results of cratering test.

4.2.3. Low-Velocity Cratering Test

To further validate the collision behavior of impact tests, quantities including the peak
acceleration of the projectile, penetration depth, and collision time were evaluated and
compared against experimental and numerical results [71,72]. Note that the simulation
herein used monodisperse particles, whereas polydisperse ones were employed in [72].
A projectile of mass 1 kg was dropped into a cylinder of settled granular material. A pre-
liminary test demonstrated that when the depth of the granular material exceeds 14 cm, it
has a negligible influence on the collision behavior; see Figure 11. This observation was
also confirmed in [73].

Figure 11. Effect of granular material depth on collision behavior.

In Figure 12, the rolling friction coefficient µr was varied to investigate the collision
behavior. Increasing the rolling friction decreases the penetration and collision time,
but it has an insignificant influence on peak acceleration. Overall, peak acceleration and
penetration depth increase with increasing impact velocity, and the collision time decreases.

Figure 12. Effect of rolling friction coefficient µr on collision behavior.
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4.2.4. Rotating Drum

The rotating drum has become an important benchmark test, and numerous numerical
and experimental studies have investigated the mixing, segregation and flow regimes of
the granular material [33,74–76]. Depending on the range of Froude numbers,

Fr = ω2Rdrum/g, (17)

where ω and Rdrum are the speed and radius of the drum, and g is the gravitational accelera-
tion, particles can transition through six flow regime: slipping, slumping, rolling, cascading,
cataracting, and centrifuging [77,78]. Our simulation mimics the setup performed in [76,79],
where a 60 mm diameter drum of depth 5 mm was half-filled with particles of diameter
0.54 mm and rotated at a constant velocity. Figure 13 depicts various steady-state flow
behaviors with increasing Froude numbers. In each snapshot, the color of the particles
represents the normalized absolute velocity, |v|/(ωRdrum). When Fr = 1 × 10−4 and
1× 10−3, a uniform flow of particles is created at the top thin layer, while the particles
in the large lower layer are transported upwards by the drum wall, indicating a rolling
regime. When Fr = 0.01, a cascading regime sets in, where the bed surface arches in an S
shape. At Fr = 0.5, the flow enters the cataracting regime, wherein particles stick to the
wall before being flung back to the bottom. As an extreme case of cataracting, at Fr = 1.5,
centrifuging takes place, wherein particles close to the wall form a uniform layer that spins
with the cylinder. The observed flow patterns match the predicted motion and transition
behaviors described in [77–79], reproducing a similar pattern to that reported in [76].

Figure 13. Steady-state flow patterns with increasing Froude number. Particles are colored by
normalized velocity magnitude, ‖v‖/ωRdrum.

5. Scaling Analysis

The purpose of this Chrono::GPU scaling analysis is to provide an idea of what
can be expected in terms of its simulation performance. The test scenario is based on
a bladed mixer interacting with granular material. The mixer model, represented with
triangular meshes, is shown in Figure 14a. During the simulation, the mixer blades rotate
at a constant angular velocity of 2π rad/s. Figure 14b shows the initial positions of the
granular material, which is confined within a cylindrical region of radius 0.5 m (boundary
invisible) and released when the simulation starts. This test is selected because it involves
intensive particle–particle and particle–mesh interactions, as illustrated in Figure 14c. Other
simulation-related parameters for this test are given in Table 4 (the “Mixer” column). Note
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that the stiffness k̂ and damping coefficient γ̂ reported in Table 4 are user-defined and can
be tied to k and γ in Equations (3) and (4) via

k =

√
δn

2R
k̂, (18)

γ =

√
δn

2R
me f f γ̂ , (19)

where R is the particle radius and me f f is the effective particle mass.

Table 4. Simulation parameters for mixer scaling analysis and rover dynamics.

Parameter Mixer Curiosity

Particle radius (m) Varies 4.5× 10−3

Total particle number Varies 12,704,030
Particle density ( kg/m3) 2.8× 103 2.8× 103

Step size (s) 1× 10−5 2.5× 10−5

Simulation duration (s) 3 ∼35
Normal force stiffness k̂n (N/m) 1× 105 1× 105

Normal force damping coefficient γ̂n (·/s) 1× 104 5× 104

Tangential force stiffness k̂t (N/m) 1× 105 1× 105

Tangential force damping coefficient γ̂t (·/s) 1× 104 5× 103

Friction coefficient 0.5 0.75

(a) Mixer model (b) Initial particle
locations

(c) A screenshot of the
mixing process

Figure 14. Visualized mixer scaling test, which involves intensive particle–particle and particle–
mesh interactions.

The radii of particles are adjusted in this test to control the total number of particles.
The mesh used to represent the mixer blades is not changed between simulations; the
triangle count for the mesh is 2892. The analysis is carried out on one NVIDIA Ampere
A100 GPU and then one Volta V100 GPU; the timing results are reported Figure 15.

Chrono::GPU with full contact history scales up linearly to 123 million particles on
Ampere A100. Past this point, the device memory runs out, leading to a notable slowdown
as the solver starts paging memory in and out of the GPU at run time. A100 also offers
more than a two-fold increase in speed compared with V100. The rule of thumb is that
on A100 with the current Chrono::GPU implementation, a fully resolved DEM simulation,
with mesh interaction and relatively fine step sizes, takes well below 1 h per 1 million
particles and 1 s of simulation time (more precisely, 1× 105 simulation steps).

Figure 16 illustrates how the more important functions in Chrono::GPU compare to
each other in terms of computational effort. These functions pertain to assigning particles
and triangles to their corresponding subdomains (SphereBroad and TriangleBroad; see
Section 3.2 for the purpose of these steps), particle–particle contact detection (Sphere-
ContactPairs), particle–particle force calculation (SphereForce), particle–triangle force
calculation (TriangleSphereForce), numerical integration (Integrate), and updating contact
history (UpdateFriction; see Section 2 for history-based friction model). For small problem
sizes, SphereBroad and TriangleBroad take a larger portion of the total runtime. This
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means arranging the data to use GPU architecture incurs noticeable overheads for smaller
problems. Although those overheads are far from nullifying Chrono::GPU’s advantage
over CPU-based DEM, as the problem size grows larger, those data arrangement over-
heads become less impactful, and the main time consumer shifts to SphereContactPairs
and SphereForce. Indeed, contact detection and normal/tangential force calculation are
typically time-consuming processes in DEM and are the focal points for the future per-
formance optimization of Chrono::GPU. Integrate and UpdateFriction, on the other hand,
take consistently small portions of the total runtime.

Figure 15. The scaling result of the 3 second mixer simulation at time step size 1× 10−5 s, on NVIDIA
A100 and V100. The linear scaling holds for up to 123 million particles (NVIDIA A100).

Figure 16. The runtime for each of the main subroutines in terms of percentages. On average,
mixer simulations of these resolutions take 0.0031 s, 0.0096 s, and 0.065 s to finish a time step on
A100, respectively.

6. Demonstration of Technology: Rover Mobility Simulations

A rover vehicle operating on DEM granular terrain is used to demonstrate the potential
of Chrono::GPU. The rover model represents the Curiosity Mars Rover, which was launched
by NASA on 26 November 2011 [80]. The geometry of the rover is consistent with NASA’s
official website [81]. A 45° front view can be found in Figure 17. This Chrono model features
full support of a six-wheel Mars rover with a Rocker–Bogie suspension system. The Rocker–
Bogie mechanism implementation details can be found in Figure 18, where black arrows
indicate revolute joint constraints and constraint rotational directions. No shock absorber
mechanism is modeled at these joints. The suspension prevents the rover from uncontrolled
yaw and body motion. It also prevents both sides of the rover’s wheels being lifted up
when one side of the rover hits an obstacle, meaning that traction is maintained.
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Figure 17. Curiosity rover, 45° front view.

Figure 18. Details of Rocker–Bogie suspension mechanism design.

The model in this simulation uses a simplified wheel geometry, where most wheel
features are omitted and the grooves are exaggerated. This choice allowed for a wheel
geometry modeled with fewer triangles that burdens the simulation less while still show-
casing complex geometry handling. Inspecting the effect of other, potentially more refined
wheel geometries, while totally possible, will lead to longer simulation times. The wheel
has a diameter of 0.5 m and a thickness of 0.05 m. The grouser on the simplified wheel
geometry has a height of 0.02 m and a thickness of 0.02 m. The wheels are subject to a
constant angular velocity of π rad/s in this simulation. The mass of the rover was set to
463 kg; more simulation parameters are provided in Table 4 (the “Curiosity” column). Each
wheel’s geometry is specified using 703 triangles.

The frictional contact forces between particles and between particles and wheels are
computed with Chrono::GPU and then fed into the rover mechanical model managed by
the Chrono core module for vehicle-level simulation. The rest of the rover model does not
participate in the interaction with the terrain; it is managed only by the Chrono core module
as rigid bodies. In this example, we mimic a scenario where the rover climbs a granular
heap. We instantiate an extra block of granular material on top of the underlying granular
“bed” (see Figure 19a), so that after the terrain settles, a small heap forms. A “Grid” sampler
is used to generate the initial positions of the particles. In total, 12,704,030 DEM particles
participate in the simulation. An animation of this simulation is available online [82].
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One notable aspect is that the wheels are slipping while the rover is climbing, and the
material under the wheels is flowing down the slope. Figure 19 highlights key moments of
this simulation.

Further insights of this climbing maneuver can be gained from Figure 20, which
reports the reaction forces on the joints that connect the wheels and the vehicle body.
The magnitude of these reaction forces on the front-left, middle-left, and rear-left joints
are plotted together with their respective positions (Z coordinates). The plot shows that
with this Curiosity model, the rear wheel joint is subject to the largest reaction force as
the rear wheel provides the most traction. This is followed by the front wheel, and then
the middle wheel. Furthermore, from the correlation between the wheel Z coordinates
and joint forces, it becomes apparent that all wheels experience increased traction when
entering the climbing phase.

(a) Initial profile of simulation, before terrain
settling.

(b) After the settling phase, the start of
simulation.

(c) Rover climbing the granular heap, front
wheel reaching top.

(d) Rover climbing the granular heap, rear
wheel reaching top.

Figure 19. Simulation of Curiosity rover climbing a granular heap.

(a) The front wheel position and
corresponding joint force.

(b) The middle wheel position
and corresponding joint force.

(c) The rear wheel position and
corresponding joint force.

Figure 20. The evolution of wheel joint reaction forces during the course of rover climbing a heap of
granular material.

7. Conclusions

Chrono::GPU, an open-source module that forms part of the Project Chrono platform,
is capable of simulating large granular systems using the Discrete Element Method. Both



Processes 2021, 9, 1813 19 of 22

Chrono and Chrono::GPU are available on GitHub and released under a permissive BSD3
license for unrestricted use and distribution. By leveraging GPU computing, the simulation
time scales linearly with the problem size until it reaches GPU memory capacity. A wide
variety of validation tests, from static and quasi-static to dynamic problems, have been
carried out to gauge the physical soundness of the solver. To the best of our knowledge,
there is no other publicly available open source dynamics engine that outperforms Chrono
in its GPU support for the simulation of scenarios that involve the interplay between
granular material and complex mechanical systems such as rovers and wheeled and
tracked vehicles. The main limitation of the current implementation is its handling of only
monodisperse granular material. An updated version of the solver described herein is
currently being developed to address this shortcoming using the approach described in [83].
The updated simulator will also leverage multi-GPU computation to reduce run times.
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