
processes

Article

Multi-Variable Multi-Objective Optimization Algorithm for
Optimal Design of PMa-SynRM for Electric Bicycle
Traction Motor

Ji-Chang Son 1 , Kyung-Pyo Yi 2 and Dong-Kuk Lim 1,*

����������
�������

Citation: Son, J.-C.; Yi, K.-P.; Lim,

D.-K. Multi-Variable Multi-Objective

Optimization Algorithm for Optimal

Design of PMa-SynRM for Electric

Bicycle Traction Motor. Processes 2021,

9, 1901. https://doi.org/10.3390/

pr9111901

Academic Editor: Ján Pitel’

Received: 29 September 2021

Accepted: 23 October 2021

Published: 25 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Korea;
wlckd1116@naver.com

2 Korea Railroad Research Institute, Uiwang 16105, Korea; kpyi82@krri.re.kr
* Correspondence: ldk8745@ulsan.ac.kr; Tel.: +82-52-259-1072

Abstract: In this paper, internal division point genetic algorithm (IDP-GA) was proposed to lessen the
computational burden of multi-variable multi-objective optimization problem using finite element
analysis such as optimal design of electric bicycles. The IDP-GA could consider various objectives
with normalized weighted sum method and could reduce the number of function calls with novel
crossover strategy and vector-based pattern search method. The superiority of the proposed al-
gorithm was verified by comparing performances with conventional optimization method at two
mathematical test functions. Finally, the applicability of the IDP-GA in practical electric machine
design was verified by successfully deriving an improved design of electric bicycle propulsion motor.

Keywords: design optimization; finite element analysis; heuristic algorithms; permanent magnet motors

1. Introduction

Electric bicycles (EBs) are getting more attention in many countries for their conve-
nience, long travelling distance, and environment friendly features [1–3]. In addition,
businesses using EBs such as public EB sharing are emerging and EB propulsion motor
with low cost and high performance is needed [4].

When designing a motor for EBs, high torque density and improving the riding
impression through the reduction of noise and vibration are required [3,5]. Permanent
magnet assisted synchronous reluctance motors (PMa-SynRM) have the advantage of
high torque density as it utilizes both magnet torque and reluctance torque [6–8]. Also,
with the usage of an inexpensive ferrite magnet instead of expensive rare earth magnet,
PMa-SynRM is competitive for the manufacturing cost [9,10]. Hence, PMa-SynRM seems
to be suitable for the EB propulsion motor.

To relieve the noise and vibration of the motor, various performances such as total
harmonic distortion (THD) of back electromotive force (B-EMF), cogging torque, and torque
ripple should be considered, and those characteristics can be improved by adjusting the
variables related to the structure of the motor [11,12]. Therefore, optimal design of the PMa-
SynRM can be defined as a multi-objective, multi-variable (MVMO) problem. Moreover,
finite element analysis (FEA) is required for accurate analysis of electric machines [13].
However, the FEA has the disadvantage of huge computational cost, and such a burden
becomes worse when the FEA is applied to optimization of the MVMO problems. Therefore,
this paper proposes the novel optimization algorithm that can consider many variables
and many objective functions simultaneously with a reduced number of function calls.

Many heuristic algorithms were proposed to find the global optima. Specifically,
genetic algorithm (GA), which refers to a computational model that simulates the natural
selection of Darwin’s biological evolution has been widely used [14]. Even though conven-
tional GA guarantees the possibility of finding the global solution, the problem that the
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GA requires many populations and iterations which leads to huge computational burden
still exists [15].

For the motor design optimization problem, multi-modal optimization algorithm, such
as niching GA (NGA), was proposed to find both global and local solutions [12]. However,
the NGA can consider only one objective, and has a problem with limited variables as the
niche concept is used. Therefore, a novel optimization algorithm that can consider multiple
variables and multiple objectives is required.

The internal division point genetic algorithm (IDP-GA) is a novel memetic algorithm
modified GA. The IDP-GA has an unusual crossover strategy that is based on the size
of objective function values of the parent entities. Novel crossover strategy accelerates
convergence speed at the early stage of the algorithm. At the end of the algorithm, a new
deterministic method, vector-based pattern search method (VPSM) is used to reduce the
duplicated search near the accurate global solution. Moreover, the VPSM enhances the
convergence rate of the solution. Furthermore, weighted sum method (WSM) is used to
consider various objectives, and likewise for one objective [16]. The proposed algorithm is
validated by applying to mathematical test functions and comparing performance with
conventional algorithm. Finally, to verify the applicability of actual electric machines,
proposed algorithm is applied to optimal design of PMa-SynRM for EBs and successfully
derives design with superior performances.

2. Proposed Algorithm

The GA is one of the heuristic algorithms that can successfully converge to a global
solution [15,17]. However, the GA has a problem with requiring many function calls to
converge to a global solution and cannot consider various objective functions at once.
To consider multi-objective, the IDP-GA utilize WSM, which is a method of multiplying
weights to each objective and adding together. Also, the number of function calls can be
reduced with internal division point concept and VPSM.

2.1. Weighted Sum Method

The WSM is one of the multi-objective methods and can simply reduce several ob-
jectives to one objective. Since the units may be different, fitness of each objective can be
normalized as

fi−cal = ( fi − fbase−i)/ fbase−i (1)

where fbase−i is the reference value, fi is real value, and fi−cal is normalized value of
objective i. The reference values of each objective are determined by analysing the in-
tial model. The fitness calculated by WSM can be expressed as

fsum =
n f

∑
n=1

cn fn−cal ,
n f

∑
n=1

cn = 1 (2)

where nf is the number of objectives, cn is weight assigned to the objective n. For example,
when the target motor has high torque ripple and low cogging torque, reducing the torque
ripple is more critical, and higher weight is assigned for torque ripple than cogging torque.
Accordingly, the designer can perform optimization by giving the desired weight to each
objective with the WSM.

2.2. Novel Crossover Strategy- Internal Dividing Point Crossover

Conventional GA converges to global solution by selecting superior entities as parents
and generating crossover in the middle of selected two parents. To enhance the convergence
speed, the proposed algorithm applies novel crossover strategy named IDP. The IDP
literally generates crossover not on the middle point, but on the point divided by objective
values of two parents. Figure 1 shows the difference between a conventional approach and
IDP. Conventional crossover, which is a blue dot, is generated in the center of two parents.
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However, the location of the red dot is determined as the fp1 and fp2, which are objective
values of parents. The distance is calculated as

d1 = d×
fp2

fp1 + fp2
, d2 = d×

fp1

fp1 + fp2
(3)

and then, the position of IDP crossover can be expressed as

p(x) =
d2xp1 + d1xp2

d1 + d2
(4)

where xp1 and xp2 are the coordinates of the parents. With the usage of IDP concept,
superior crossover can be obtained.
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2.3. Vector Based Pattern Search Method

At the end of the algorithm, if the populations are regarded as gathered near the global
solution, VPSM is executed on the estimated solution to find the actual global solution,
preventing unnecessary function calls, and enhancing the convergence characteristic. The
criterion of the execution of the VPSM is whether the top 50% fitness group of the popu-
lation is gathered. The value of 50% was determined through several trials. The VPSM
has pattern move and exploration move. On the pattern move step, unit direction vector
is determined using objective value of infinitesimal displacement of starting point. Left
side of Figure 2 shows an example of calculating direction vector. The number of variables
is 2, the starting point is “O”, and d is the infinitesimal displacement. Assuming that the
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problem region is continuous, with two function calls on the point DX and DY, the values
of DX′ and DY′ can be calculated as follows.

Z′1 = 2Z− Z1, Z′2 = 2Z− Z2 (5)
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Then, increasing direction of each variable is determined and if DX and DY are points
of the increasing direction, the direction vector of each variable can be expressed as follows
and marked as red vector line.

→
F1 = (Z1 − Z)x̂,

→
F2 = (Z2 − Z)ŷ,

→
FM =

→
F1 +

→
F2 (6)

Finally, the unit direction vector is calculated as below.

→
Funit =

(
n f

∑
n=1

→
Fn

)
/

(∣∣∣∣∣ n f

∑
n=1

→
Fn

∣∣∣∣∣
)

(7)

Then, the exploration move is performed with preset initial moving distance to deter-
mined direction, until the objective value decreases. If the value of next point decreases,
pattern move is repeated on the previous point and exploration move with reduced moving
distance. As the proposed VPSM adjust the moving direction using the objective values of
each variable, the effective search toward the near solution is conducted. Moreover, the
number of function calls to converges to the solution can be reduced.

2.4. Flow Chart of the IDP-GA

The flow chart of the proposed algorithm is shown in Figure 3. First, the objective
function, parameters, and constraints are defined. Initial solutions are evenly scattered
throughout the entire problem region with Latin hypercube sampling method [12,18].
When new entities are added, the total fitness is calculated using Equation (2). In the single
objective maximization problem, fitness is proportional to the objective function value.
However, for the multi-objective problems, total fitness is calculated as the summation of
each objective function value multiplied by assigned weight.
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Parents are selected by roulette wheel selection method, and the probability of being
selected is proportional to the fitness of each entity. Then, crossover is generated at the
IDP of two parents, considering fitness of the parents. Mutants are randomly generated
throughout the problem region to prevent the premature convergence to the local solutions.
Newly generated crossovers and mutants replace the inferior entities of prior generation.
Such loop is repeated until the populations are regarded as gather near the global solution.
Finally, VPSM is applied to entity with highest fitness, and direct and rapid convergence to
global solution is executed.

3. Performance Validation

To verify the performance of the proposed algorithm, IDP-GA and conventional GA
were applied to optimization of two complex mathematical test functions with two and
three variables. Test functions are shown in Figure 4 and are defined as

f1(x, y) =
np1

∑
i=1

bi

1 +
[
(x− xi)

2 + (y− yi)
2
]
/ai

(8)

f2(x, y, z) =
np2

∑
k=1

10√
(x− xk)

2 + (y− yk)
2 + (z− zk)

2 + ck

(9)

where np1 and np2 are the number of solutions, (xi, yi) and (xk, yk, zk) are the position of the
actual solution. ai, bi, and ck determine the values of the solutions. The number of solutions
of test functions 1 and 2 are 11 and 4, respectively. The bi values are (20, 30, 25, 35, 40, 23,
50, 80, 60, 30, 25) where i = 1~11.
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The number of function calls to converge to the global solution and convergence
ratio, which is ratio of the found solution to actual solution, are the criteria for evaluating
performance. Test was repeated 100 times, and the average of each test result is listed
on Table 1. The number of function calls of IDP-GA decreased by 56.27% and 58.21%
compared with GA. Specifically, when the number of variable increases, such as in test
function 2, the GA has a problem with converging to a local solution rather than a global
solution. However, the IDP-GA could converge to an exact global solution within a fewer
number of function calls.

Table 1. Performance comparison of conventional GA and IDP-GA.

Test Function 1
[2 Variables]

Function Call
[Average Value]

Convergence Ratio
[%]

GA 427.92 98.64
IDP-GA 187.19 99.69

Test Function 2
[3 Variables]

Function Call
[Average Value]

Convergence Ratio
[%]

GA 2410.00 75.45
IDP-GA 727.00 92.05

4. Optimal Design of PMa-SynRM for Electric Bicycle Traction Motor

To verify the applicability of the practical electric machine design, the IDP-GA was
applied to optimal design of PMa-SynRM for EB propulsion motor. Commercial FEA
tool JMAG is used to analyze the load and no-load condition of the target motor [19].
The specifications and requirements of the target motor are tabulated on Table 2. For the
purpose of relieving the noise and vibration of the motor, and reducing the pulsation on
the torque, cogging torque, and B-EMF waveform, two-stepped skewed rotor structure
is applied [20–23].

When designing the motor, various performances should be considered, and the
performance varies depending on the shape of the motor [24]. In this paper, to derive the
optimal design of the target motor, five variables and three objectives are selected. For
design variables, the pole-arc-to-pole-pitch ratios (α1, α2), magnet angle (θ), length of the
magnet end part (length), and slot opening are selected. Design variables and 1/4 periodic
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analysis model are shown in Figure 5, and the ranges of each variable are listed on Table 3.
The objective function f is calculated as

f = fthd × 0.4 + ft_ripple × 0.4 + fcogging × 0.2 (10)

where fthd is THD of line-to-line B-EMF, ft_ripple is torque ripple, and fcogging is percentage of
cogging torque to average torque. As the torque ripples, cogging torque and B-EMF THD
all have the smaller, better characteristics, and the optimization problem is a minimizataion
of f. Optimal design of the target motor was carried out utilizing the proposed IDP-GA, and
each function call means execution of the FEA for one design, of which design variables
are applied.
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Table 2. Specifications and requirements of the target motor.

Pole/slot 8/12
Stator outer diameter 120 [mm]

Stacking length 20 [mm]
Air gap 0.5 [mm]

Stator and rotor core material POSCO 35PN230
Permanent magnet material Ferrite 12G (Brmin: 0.44 [T])

Rated output/torque 350 [W]/1.114 [Nm]
Rated/maximum speed 3000/10,000 [RPM]

Table 3. Range of design variables.

Design Variable Range

α1 0.92~0.98
α2 0.65~0.83

θ [◦] 40~52
length [mm] 6.0~7.5

slot open [mm] 1~10

The optimization result is tabulated in Table 4 and performances of initial model and
optimum model are compared. Torque, cogging torque, and line-to-line B-EMF waveform
of initial model and optimum model are shown in Figure 6. For the load analysis of
optimum model, the average torque was 8.14% increased, and the torque ripple was 73.43%
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reduced compared with initial model. For the no-load analysis, the cogging torque and
THD of line-to-line B-EMF was 36.86% and 52.57% improved than initial model. The
magnetic flux density contour plot of the optimum model is shown in Figure 7.

Table 4. Optimization result and performance comparison of the initial model and optimum model.

Model Initial Model Optimum Model

α1 0.93 0.96
α2 0.66 0.81

θ [◦] 51.0 45.0
length [mm] 7.4 6.9

slot open [mm] 9.7 3.7

Average torque [Nm] 1.057 1.143
Torque ripple [%] 50.73 13.48

Cogging torque [Nm] 0.0407 0.0257
B-EMF THD [%] 9.34 4.43
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To confirm that the optimum model is safe from breakage at rated and maximum
rotation speed, mechanical analysis is conducted. The parameters for the mechanical stress
analysis are listed on Table 5. Table 6 and Figure 8 shows the Von Mises stress at the rated
speed and maximum speed, and the maximum Von Mises stress value was 12.48 MPa and
138.72 MPa, respectively. As the yield stress value of rotor core is 450 MPa, the optimum
model is safe from breakage at the maximum rotation speed [25].
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Table 5. Parameters for the mechanical stress analysis.

Young’s modulus (Core/Ferrite) 210/190 [GPa]
Poisson’s ratio (Core/Ferrite) 0.3/0.35

Density (Core/Ferrite) 7850/5100 [kg/m3]
Rotation speed (Rated/Maximum) 3000/10,000 [RPM]

Yield stress of the core 450 [MPa]
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Table 6. Mechanical stress analysis result of the optimum model.

Rotation Speed Maximum Von Mises Stress Value

3000 [RPM] 12.48 [MPa]
10,000 [RPM] 138.72 [MPa]

5. Conclusions

This paper introduces the IDP-GA to relieve the huge computational burden of the
MVMO optimization problem by applying FEA. The IDP-GA accelerated the convergence
by applying novel crossover strategy at the early stage of the algorithm. Moreover, con-
vergence rate was enhanced by combining the VPSM. The superiority of the proposed
algorithm was validated by applying to mathematical test functions and comparing per-
formances with a conventional algorithm. The applicability of the optimization of actual
electric machines was also verified by deriving optimum design with improved perfor-
mances, when the IDP-GA is applied to the optimal design of PMa-SynRM for EBs. The
torque ripple, cogging torque, and B-EMF THD of the optimal model was 73.43%, 36.86%
and 52.57% reduced compared to the initial model. The proposed algorithm is expected to
be utilized for the MVMO optimization design problem of various types of motors.
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