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Abstract: Industrial companies focus on efficiency and cost reduction, which is very closely related
to production process safety and secured environments enabling production with reduced risks and
minimized cost on machines maintenance. Legacy systems are being replaced with new systems
built into distributed production environments and equipped with machine learning algorithms that
help to make this change more effective and efficient. A distributed control system consists of several
subsystems distributed across areas and sites requiring application interfaces built across a control
network. Data acquisition and data processing are challenging processes. This contribution aims to
present an approach for the data collection based on features standardized in industry and for data
classification processed with an applied machine learning algorithm for distinguishing exceptions in
a dataset. Files with classified exceptions can be used to train prediction models to make forecasts in
a large amount of data.

Keywords: distributed systems; big data; machine learning; data visualization; process control;
algorithm; clustering; predictions

1. Introduction

With distributed systems and the emergence of Field Area Networks (FANs), it has
become possible to collect data from sensors distributed across geographically dispersed
areas, while their processing was done centrally and at the edge in Programmable Logic
Controllers (PLCs) [1]. The data collected are as simple as an itemized list of assets’ serial
numbers, purchase dates, prices, and costs published later in reports, or more sophisticated
automated monitoring and system recordings from periodic checks and record changes on
to be managed devices and equipment, providing the resulting data to accounting as well
as to other control applications [2].

Asset management is important for the constant evaluation of parameters in any
organization, a contribution can be made to a high-availability solution also for small
and medium-sized enterprises [3]. It is important for an organization to achieve sustain-
able principles as they align the organizational activities with clearly defined goals and
benchmarks [4]. It refers to a methodical procedure of developing, operating, maintaining,
upgrading, and disposing of assets in the most profitable manner including all costs, risks,
and performance attributes.

These procedures use tools that collect the data needed for tracking, accounting,
and managing hardware, software, and system resources. Complex production systems
are generally vulnerable to disturbances that might lead to possible Overall Equipment
Efficiency (OEE) degradation [5]. There could be trade-offs between the performance
indicators, which means that if one indicator’s value increases the other’s value decreases,
i.e., the major trade-off could be between the quality, cost, time, delivery reliability, and
flexibility [6].

Automation Systems—must be modular, open, agile, and knowledge-based—to
promptly “self-adapt” themselves to changing exogenous conditions, like consumers’
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expectations, market dynamics, design innovation, new materials, and components in-
tegration. Software component development regarding user interface in visualization
software follows goals, e.g., “easy to learn” or “easy to use”, however, such specification
does not state much about user interface behavior. In usability engineering approaches
recommended for the assessment of the user performance and user experience, as well
as the analysis of the user interface impact on the system architecture, these goals are
usually evaluated only at the later stages of the software system lifecycle. When initial
designs do not match the expectations of the end-users and require an iteration and an
enhancement, these iterations may slow down the progress of the overall development,
and then the integration of the software components itself into the distributed system
architectures, which contradicts time-critical agile processes [7]. Automation Systems can
assist end-users with the advanced image recognition of industrial objects by implementing
automatic segmentation modules [8].

The ability to learn is the fundamental mark of intelligence. Artificial Intelligence
(AI) [9,10] strives to build intelligent entities as well as to understand them. With legacy
systems in distributed environments, in the event of a failure of execution of an instruction
or working component, such failure can put the entire operation at risk. The operator
then must manually go through the list of events, check the reason for the failure, and
evaluate the next step(s). Therefore, in distributed environments, AI opens an opportunity
for the adoption of machine learning and lowers the barrier to entry for engineers using
AI technology to solve problems or for companies to introduce new processes by adding
intelligent components to existing engineering tools [11]. AI applications can help to
shorten the detection time of the fault improving the process running in no delayed time.

AI has been proven to improve the productivity and efficiency of industrial plants.
Industries use predictive maintenance rather than preventive maintenance, and the results
show about a 20% decrease in overall assets maintenance cost [12]. AI techniques brought
about a revolution in the way people handle data/information [13]. New approaches to AI
in the form of Business Intelligence (BI) solutions show a wide range of uses for the basic
reporting of manufacturing data [14].

This contribution presents an approach for the data collection based on features
standardized in the industry and for data classification processed with an applied machine
learning algorithm for distinguishing exceptions in a dataset. This contribution has more
goals, but the main objective is to show the importance of a distributed control system
implementation when replacing legacy control systems and the impact of AI and BI on
industrial control processes. Another objective of this paper is to confirm the assumption
that methods supporting clustering can be used in project engineering to distinguish the
exceptions in data and correct them by applying prediction based standardized features.
We also like to present an experiment, where classified data of such exceptions can also be
used for building training sets used for prediction models. In this contribution, we also
describe the results of this specific experiment with a neural network model trained for the
classification of the real time distributed control system data, which can confirm or predict
the correct data type of configured and monitored variables for a control system deployed
in the Marine industry using a machine learning algorithm.

2. Challenges in Industrial Distributed Environments

Industries and production companies generate a large amount of data from business,
production plants, and operation sites, see Figure 1. It is understandable that we appreciate
having more information based on real time data processed from production, it gives us
a true picture of products on a market. The typical misunderstanding and communica-
tion barrier can be challenging during the conversion of the raw data from production
into information useful for the end-users. Production is based on standardized naming
conventions and built-in control systems, but these are not always being understood by
end-users.
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Figure 1. Operator Environments—An increasing amount of presented data have reached complexity
beyond human comprehension.

According to our experience with engineering projects, the analysis and sorting of
data before the work on a project can start takes, on average, one week of the working load
of a senior engineer. With an increasing amount of data, the challenge for efficiency of
project engineering also increases, resulting in more hours required and the stress caused
by time. This results in man-made mistakes, also classified as human errors. Our objective
in this paper is to confirm the assumption that methods supporting clustering can be used
in project engineering to distinguish the exceptions in data and correct them by applying
predictions based on standardized features. We would also like to present an experiment,
where classified data of such exceptions can also be used for building training sets used for
prediction models.

Project engineering, among other design problems, deals with the replacements of
previously used (legacy) systems, and project managers can confirm that the cost of such
projects is one of the most important decision-making criteria of company management.
The concern of project engineering is to know how to bridge the gap between the “legacy
systems” and the “latest technological systems” while building a “distributed environ-
ment”. A solution to this problem has been supported by Object-Oriented Programming
(OOP) concepts and object technology. A description of such solution implementation can
be found in [2], where three possible ways are described as (i) Replace, (ii) Revamp, or
(iii) Wrap. The authors summarize that from the engineering point of view, “Replace” is
the best way if the budget and time prevail. From the end-user point of view, “Revamp” or
“Wrap” options are preferred. The “Revamp” option means modifying the existing applica-
tion by adding Graphical User Interfaces (GUIs) and rewriting the current user interface
that is allowing the data conversion for communication in and out of the databases. On
the other hand, the “Wrap” option supports the existence of a legacy system with new
innovative ideas. It turns legacy systems into service objects and builds data and control
system interfaces.

Marshaling the data to be rightly understood is one of the challenges in automated
systems. When data are sent or received between system components, it is recommended
to use standardized protocol configurations rather than individually developed system
solutions. It is best practice to avoid errors in classifications of data types, data units,
etc. Applications run across a network, which also requires different methods for alarm
management and error handling in case they occur. Modern control systems are quite
demanding on the market, and the goal of any software is to increase efficiency and
productivity. During an application failure, the Operating System (OS) generally reacts
in three ways: (i) the entire system crashes, (ii) the system restarts, or (iii) it handles the
exception and fixes the problem. The OS is called “efficient” if it is quick to use fault-
resolution and instant fixes.

An important part of the OS is the storage of the data. The programs are vehicles for
entering and retrieving data for most parts of the application. Today with continuously
evolving systems, and increased competition, the requirements for the legacy systems
replacement or modification increase. And the change of the business goals in a competing
environment requires the change of production processes.
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Digital technologies are reviving AI advances, see Figure 2. Algorithms are being de-
veloped further, although they originated in the 1980s. The processing power of computers
raises big data to a level that allows us to solve much more complex problems and that
results in this current trend of AI.

Figure 2. Digital technologies are reviving AI advances—Processing power lifts big data and algo-
rithms to the next level of Artificial Intelligence.

AI is a very broad term and with many themes, see Figure 3, which shows the ability to
perceive or infer information, and to retain it as knowledge to be applied towards adaptive
behaviors within an environment or context demonstrated by machines. Machine learning,
neural networks, or deep learning [15,16] are only the subsets of AI. Machine Learning
(ML) involves changes to the content and organization of a system knowledge enabling
it to improve its performance on a task or set of tasks [17]. ML occurs when the system
acquires new knowledge from its environment and organizes its current knowledge to
make better use of it. Neural networks are only a subset of ML, which otherwise include
many more sophisticated methods. Deep Learning (DL) is just a very large neural network.
Most of the approaches we are seeing in industrial practice today are “neural networks”.

Figure 3. AI terms commonly interchanged in industrial practice.

Unlike other methods where we have engineering knowledge and decision-making
systems with human experts, AI defines its models and solutions based on the data it
observes. It takes in data that are collected as measurement. Then it proceeds with two
main steps. First, it needs to teach the system and generate knowledge; this is done by
adjusting connections, and then it uses the information to solve the problem. A learning
method called Explanation-based Generalization uses deductive inference to improve
the performance of an automated reasoning system. In deductive inference, conclusions
follow ‘axioms’ according to specified rules of inference. In inductive inference, we arrive
at general conclusions based on examining examples. Some of the inductive learning
methods make use of techniques in statistical decision-making, others are inspired by
biological systems to perform inductive inferences. Learning and problem solving are part
of a very complex system, or a process optimization, which in the end we need to apply to
the industry, see Figure 4.
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Figure 4. AI key components illustrated in the form of the closed loop control system scheme.

3. Literature Overview

Krose & Smagt, in their introduction to the theory of Artificial Neural Networks
(ANNs), include topics such as error propagation, recurrent networks [18], self-organizing
maps, Hebbian learning, adaptive resonance theory networks, and other areas [19]. It
also contains a chapter on learning with a reward based on neural networks and includes
multiple application chapters in robot control, image processing as well as a section on
hardware implementations. Rojas describes the problem of ANNs and includes topics such
as error propagation, momentum, weight initialization, and advanced learning methods
(e.g., Rprop, Quickprop, QRprop, concatenated gradient, and higher-order optimization),
and chapters on associative networks, Hopfield networks [20], Boltzmann machine [21],
self-organizing maps, ART networks, and hardware implementation of ANNs [22]. An
article describing a number of practical tips and tricks to make learning more effective
through the redistribution of error has been published by LeCun et al. [23].

Let us look at the neural network as a network with several variables at the input
layer nodes, the nodes in the hidden layers, providing all connections are carrying weights
so that the input number is multiplied by its weight, and when all variables at the input
are processed, the highest value at the output will be the result, which supports the
decision [24].

The basic building element mentioned in the concepts of models of ANNs is the
so-called “perceptron”, the schematic diagram shown in Figure 5.

Figure 5. Perceptron.

Perceptron was created in 1958 when Frank Rosenblatt showed that the McCulloch-
Pitts network of so-called “formal neurons” have a symbolic logic to statements composed
of elementary logic operations (x AND y, x OR y, NOT x), see Figure 6, and is able to be
trained to recognize and classify objects [25]. The main idea of this training procedure is
to notice the response of each formal neuron to a given stimulus at the beginning. If the
answer is “correct”, the weights will not be modified. If the response of a given neuron
is “incorrect”, then the weights of all activated inputs will be modified in the following
way: IF the neuron is to be active and it is not, the weight is increased, and vice-versa, IF a
neuron is to be inhibited and is not, the weight is reduced.
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Figure 6. McCulloch-Pitts formal neurons.

The Rosenblatt training procedure is based on knowledge from which it is possi-
ble to determine which patterns belong to which class. Its error correction link weight
modifications form the basis of many of the algorithms used today [26].

Widrow & Hoff used a similar algorithm for training a model for neural classification:
ADAptive LInear Neuron (ADALINE) [27]. For the first time, they showed that during the
learning process, the sums of squares of errors are minimized and this implies that some
global system function is minimized.

In their book, Minsky & Papert pointed out the limitations of a perceptron [28]. They
described that it is not possible to reach a universal computation and to solve all classes of
problems. The main problem was that the perceptron cannot solve so-called “linear non-
separable problems”. A classic example of failure is the logical XOR function (excluding
or). There was no other learning method known at that time than modifications of synaptic
weights in ANNs. This problem was solved in 1986 by Rumelhart et al. by introducing a
learning method using error-propagation for multilayer perceptron networks [29].

Neural networks have evolved over the years since their introduction with “forward
multilayer networks” mainly due to their diverse structure and wide range of uses [30]. A
multilayer neural network, see Figure 7, is mostly defined by three basic layer types:

• Input layer—samples from the learning and test set.
• Hidden layer(s)—providing the functionality defined by the application itself.
• Output layer—presenting the neural network response to the input.

Figure 7. Example of forward neural network.

This structure is the most advantageous because of a highly efficient output mapping.
During the ANN learning process, it can learn the hidden properties of a time series based
on the analyzed data and further generalize the results of the future forecast.

Based on the Stone-Weierstrass theorem, any function can be approximated with a
suitably selected higher-order polynomial. In this regard, “forward neural networks” can
be considered a neural network universal approximator. Forward neural networks can
approximate any function at a selected accuracy and correct network settings [31].

A backpropagation algorithm is recommended for forward network training. Experi-
ments have shown various accelerations of this algorithm, which yield the same learning
outcomes. The essence of such networks learning is to store mapped, characteristic features
of a modeled phenomenon in a hidden layer.
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4. AI in the Context of Industry

Learning based on inductive inference can be divided into (i) supervised, and (ii) un-
supervised learning. The supervision in “supervised learning” happens when the learning
program is given both the inputs and outputs corresponding to correct results. In other
cases, when there is “no supervisor” to provide the program with correct outputs, the
learning program must rely on other sources of feedback to determine whether or not it is
learning correctly.

Classification problems are well suited for image [32], voice [33], language [34], and
video recognition [35]. A set of input variables, for example, the pixels of a picture, a
sample of a sound, are matched to a finite set of output variables, for example, recognized
objects in a picture or a spoken word. Learning involves mapping a known output to the
corresponding input by adjusting the network variables but requires high effort optimiza-
tion. Inference starts with an unknown input set (e.g., an image), then triggers the most
likely output variable, which is significantly less effort than learning.

Complex control systems have hundreds of thousands of input and output signals,
which can rarely be provided by sufficient visualization of variables carrying all commu-
nication and control data. This huge load of data can be analyzed by an engineer only if
appropriately visualized in engineering interface and configuration tools [36]. To build a
neural network tool, we need to train an AI system with rich data, see Figure 8. We show
the network data where we want to see the solution. The network learns with neuron
threshold weights from the prepared datasets used for this training. The iterations of
learning with updating the weights in the network connections improve its performance
over time. Optimization algorithms are complex and require big data and large sets of
inputs and outputs. Incomplete data will lead to incomplete solutions, therefore, the data
used for training are important.

Figure 8. Concept of AI training from rich data.

This section shows how machine learning can be implemented together with inter-
active data visualization for process control. The machine learning algorithm worked
on examples simulated with the help of scripting it in the Orange software, a Python 3
data mining library. Orange software was developed by the Bioinformatics Lab of the
University of Ljubljana, Slovenia in collaboration with the open-source community. “Or-
ange” is an open-source project focused on data visualization, machine learning, and data
mining [37]. It supports a visual programming interface for searching data, analyzing them,
and visualizing them in an interactive way.

The standardized ISA-95 model reflects the degrees of intelligence to achieve the full
automation and digitalization of all the levels connected to Business Intelligence (BI), which
works with big data. All levels of intelligence presented in Figure 9 in the ISA-95 model
are supported by automation. Signals are collected from intelligent electronic devices
and sensors (Level 0), then processed in programable logic controllers (PLCs in Level 1),
monitored in Supervisory Control and Data Acquisition system with the Human Machine
Interface (HMI in Level 3).
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Figure 9. Automation hierarchy according to the ISA-95 model [38].

Our team worked with current system data exported from a distributed control system
to a spreadsheet, so we presented a selected set of raw data about the process start, stop,
and alarm limits on monitored variables and downtime. This information is available to an
operator authorized for working on a workstation. The reports for the updated status of
control systems are prepared for the operator workstation displays by software teams. For
other users who need to work with raw data, the export by project engineering is done. We
set the experiment with datasets obtained from the Marine industry, originated at operator
workstation during a project dealing with a vessel control system update. The operator
workstation screenshot in Figure 10 shows that the alarm data are designed into the alarm
list. Priorities and importance of the data are marked with colors, without these the data
is practically unreadable on a smaller screen. The operator acknowledges all visualized
alarms, then decides about further steps, and logs the action into the Event list as required.

Figure 10. DCS alarm features for alarm display and event log.

5. Findings and Implications

The same data exported from a distributed control system later were imported into
a spreadsheet for our team for further research. Figure 11 shows the control system raw
exported data in a spreadsheet format. The screenshot shows a fragment of data, different
alarms originating in the monitored system, and caused by various reasons identified with
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low-limit and high-limit values, signal differences, communication link errors, deviations,
feedback faults on equipment and/or the sensors, on which we focused.

Figure 11. Screenshot of the exported data table.

Work with raw data using tools for data visualization and reporting, such as Power
BI, helps us interactively search for different ISA-95 level data and to understand the
interpretation of the reported data from the production level. Misinterpretation causes
errors, these failures in operation can be classified as human factor errors. The long-term
analysis of the history plant data gives significant ideas on how to modify the properties
for the observed equipment and instrumentation which is important to focus on and what
to improve to avoid future failures.

We classified alarm data into groups based on the type of alarm using a binary dataset
for our case study with respect to the definitions given from the system configuration—
communication link errors, signal differences, high-limits and low-limits, feedback alarms,
signal errors, very high- and very low-limits, deviations, sensor switch overs, feedback
faults, process controller control. Based on these alarm type features we grouped data into
these 11 classes namely:

• Alarm
• AlarmDIFF
• AlarmH
• AlarmL
• FBAlarm
• AlarmERR
• AlarmLL
• Sensor
• PosError
• FBFault
• PCC

By setting these classes we obtained a table. Figure 12 shows a screenshot of only a part
of this table with variable labels and visualized numeric values colored by instance classes.
The dataset with binary values consists, in this case, of 82 instances. The classification task
works with 11 features, which need to be classified into 11 different classes. Each instance
has only two possible unit states, either 1, indicating that it is true for mapping the feature
to its respective class, or 0 indicating a false state.
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Figure 12. Screenshot of alarm data classification table using binary value instances.

Figure 13 illustrates the next steps with data processing in a selected neural network
software environment tool for the experiment setting. These steps are:

1. Training data setting by selecting columns from the table provided for the training
2. Operational data setting

Figure 13. Simulation model in Orange software environment showing seven different machine learning methods of data
processing from the input File with the data from which the neural network will learn from. File (2) goes to the widget and
uploads the data, where human error caused unclassified exceptions.



Processes 2021, 9, 2247 11 of 16

The training set is set by selecting columns from the table provided for the training.
The input data from the file provided for our experiment are the data from which the neural
network will learn. The option Select Columns in the software helps us to select the respec-
tive features and target output. The data from the selected columns are then put into seven
different machine learning methods available in the Orange software environment [37].

The operational dataset is set with the Predictions widget. We can make a prediction
of the alarm target type for data, which were misclassified by human operators. We use the
File (2) widget to upload the data, where human error caused unclassified exceptions. The
trained neural network now can predict missing data and include them in the Target Type
column of the data table. During the experiment verification, we uploaded the dataset with
43 instances for training into the File widget.

Then, we perceptively fed the dataset with two incorrect features to create exceptions
in the output of the clustering, as we present in Figure 14.

Figure 14. Misclassified data: at line 41 and 42 target types do not correspond to features.

The incorrectly entered data in the Data Table are on the 41st and 42nd row, where
the low-low-limit is classified as a feedback fault domain and a high-limit as PCC children
object alarm. This way we aimed to present the error entered by a human operator
that can happen while managing an operation with many input and output data at the
operator workstation.

We can distinguish the exceptions using clustering during analysis and focus on further
processing, see Figure 15. In our presented experiment, we can see that our Confusion
Matrix widget, in Figure 16, clearly shows a low-low- limit classified as feedback fault and
high-limit as PCC children object alarm, confirming the same two incorrect data entered in
the dataset.
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Figure 15. Test and score results: (a) Test and score results for each method, Naïve Bayes shows 1; (b) Misclassified data
caused that the CA of the Naïve Bayes model is now not 1.

Figure 16. Confusion matrix shows and confirms 2 cases of incorrectly classified data.

Then we uploaded the operation data, which corresponded to the data of I/O (input
and output) variables of distributed control system parameters, into the file prepared for the
Prediction widget of our selected software tool. The Naive Bayes model previously trained
on the training dataset with already known I/0 values, and verified with classification
accuracy equal to 1, was now connected and ready to process a data file with known input
features and unknown target type output values. The prediction model for target types of
operation data is in Figure 17.

The Target Type column of the data table with the “?” mark indicated earlier the data
to be predicted, those to be looked for. For these rows, the comparison of both Naive Bayes
and Target Type columns confirms that we received correctly predicted outputs. The result
now also demonstrated in Figure 18 shows that with this model we can predict the output
domain for 500 instances and have them all correctly classified.
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Figure 17. Prediction model for target types of operation data.

Figure 18. Result of target types for operation data.

The experimental results in Table 1 show the calculation models of the selected Data
Mining Toolbox [37] tool applied on the dataset of the 82 instances previously. The clas-
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sification done by Naive Bayes for the fed data shows no errors. In 82 instances, all 82
were correct, and the classification accuracy is calculated to be 1, as it has been previously
shown in the test and score tool. Naive Bayes had 100% accuracy for this data, and the
corresponding accuracy of other tested models reached over 90%.

Table 1. Methods comparison with their classification accuracy.

Method Total Number of
Input Samples

Correct
Classifications

Classification
Accuracy

Logistic regression 82 81 0.987
kNN 82 79 0.961
SVM 82 79 0.961

Naive Bayes 82 82 1.000
Random Forest 82 80 0.974

Tree 82 77 0.935
Neural Network 82 80 0.974

6. Conclusions

In this contribution, we described the experiment with a neural network model
trained for the classification of the real time distributed control system data, which can
either confirm or predict correct data type for a control system deployed in the Marine
industry using a machine learning algorithm. The data were obtained from the alarm
management module of a control system as a file exported into an Excel sheet and used as
“offline” data for demonstrating the data classification requirements to distinguish human
errors previously introduced by a mistake of a human operator into the control system
during I/O variables configuration. The data classification using machine learning may
help, when a new or upgraded control system of thousands of input and output variables is
deployed. Clustering of the data shows the exceptions from the standardized configurations.
Distinguishing those exceptions in a dataset of many entries manually is a very boring and
time demanding work for an engineer, but very necessary for control system deployment.
This need motivated us to experiment with a machine learning algorithm. Clustering,
which sort exceptions distinguished in a large amount of data, and prediction, which can
replace the wrong or missing data may be very useful for process control deployment.
The quality of the proposed approach will be measured by the standard quality methods.
For example, Failure Mode and Effect Analysis examines all potential manufacturing and
assembly process failures and their causes and identifies the necessary corrective actions.
The working group is led by an employee of the relevant department of production,
technical preparation of production, quality assurance, or industrial engineering, and the
aim is to prepare a detailed analysis of the entire engineering process in terms of its failure
rate, mistakes, and possible corrective measures proposed in the pre-production stages.
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Orange: Data Mining Toolbox in Python. J. Mach. Learn. Res. 2013, 14, 2349–2353.
38. George, G.A.; Landryova, L. Interaction between human and AI systems—When automated systems move towards autonomous.

In Proceedings of the 2019 20th International Carpathian Control Conference, ICCC 2019, Wieliczka, Poland, 26–29 May 2019.

http://doi.org/10.1109/TASLP.2019.2892235
http://doi.org/10.1109/MCI.2018.2840738
http://doi.org/10.1109/TMM.2018.2823900

	Introduction 
	Challenges in Industrial Distributed Environments 
	Literature Overview 
	AI in the Context of Industry 
	Findings and Implications 
	Conclusions 
	References

