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Abstract: Meat, fish, coffee, tea, mushroom, and spices are foods that have been acknowledged
for their nutritional benefits but are also reportedly targets of fraud and tampering due to their
economic value. Conventional methods often take precedence for monitoring these foods, but
rapid advanced instruments employing molecular spectroscopic techniques are gradually claiming
dominance due to their numerous advantages such as low cost, little to no sample preparation, and,
above all, their ability to fingerprint and detect a deviation from quality. This review aims to provide
a detailed overview of common molecular spectroscopic techniques and their use for agricultural
and food quality management. Using multiple databases including ScienceDirect, Scopus, Web of
Science, and Google Scholar, 171 research publications including research articles, review papers, and
book chapters were thoroughly reviewed and discussed to highlight new trends, accomplishments,
challenges, and benefits of using molecular spectroscopic methods for studying food matrices. It
was observed that Near infrared spectroscopy (NIRS), Infrared spectroscopy (IR), Hyperspectral
imaging (his), and Nuclear magnetic resonance spectroscopy (NMR) stand out in particular for the
identification of geographical origin, compositional analysis, authentication, and the detection of
adulteration of meat, fish, coffee, tea, mushroom, and spices; however, the potential of UV/Vis,
1H-NMR, and Raman spectroscopy (RS) for similar purposes is not negligible. The methods rely
heavily on preprocessing and chemometric methods, but their reliance on conventional reference
data which can sometimes be unreliable, for quantitative analysis, is perhaps one of their dominant
challenges. Nonetheless, the emergence of handheld versions of these techniques is an area that is
continuously being explored for digitalized remote analysis.

Keywords: authentication; adulteration; NIRS; IR; HSI; Raman spectroscopy; NMR

1. Introduction

Food authentication is a subject of much repute that is continuing to gain attention
due to consumer curiosity and interventions for food safety by regulatory authorities such
as the World Health Organization (WHO), Food and Agriculture Organization (FAO), Food
and Drugs Authority (FDA), and Codex Alimentarius (CODEX). Food authentication en-
compasses all elements of food security, which is defined by the FAO as a state which exists
“when all people, at all times, have physical and economic access to sufficient, safe, and
nutritious food that meets their dietary needs and food preferences for an active and healthy
life” [1]. It is a complex process of evaluating specific constituents or all the components of
food and is a necessary measure that can be implemented across all points of the food chain
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from farm to fork. Basically, there are two different approaches to food authenticity, which
often overlap in connection with the production of the food (e.g., geographical origin, bio
vs. non-bio), as well as in relation to composition (e.g., issues of adulteration). For these,
scientific analytical methods and instrumental analysis are the bedrocks of authenticity and
have been widely studied over the last century. They range from conventional methods
such as the Soxhlet extraction, Dumas method, titration, electrophoresis, etc. to more
refined ones such as chromatography, spectrometry, spectroscopy, radiation technology,
etc. Food authentication has been interchangeably used in the recent decade to relate to
terminologies such as food fraud, food adulteration, and food control, which are all fo-
cused on the deviation of food from its intrinsic (nutritional and compositional parameters)
and extrinsic (size, shape, color, gloss, consistency, texture, etc.) qualities. Publications
focusing on food authentication have steadily increased in the past decade (Figure 1).
In these reports, common methods for food authentication were high-performance liq-
uid chromatography (HPLC), liquid chromatography (LC), proton transfer reaction mass
spectrometry (PTR-MS), matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-TOF-MS), and ambient mass spectrometry techniques such as direct
analysis in real time (DART-MS) [2].

Figure 1. Number of publications in the last decade from Science Direct using search keywords “food
authentication”, “food adulteration”, and “food fraud”. Accessed on 16 November 2021.

Although these methods have been very effective in food authentication, they also
require high technical expertise and can sometimes be expensive, in addition to the use of
reagents and budgets for waste management. Due to these and other issues such as their
bulky nature, lengthy analytical time, and technical design of the instruments, some re-
searchers have focused on rather rapid noninvasive techniques such as spectroscopy. When
matter is exposed to electromagnetic radiation, the radiation can be absorbed, transmitted,
reflected, scattered, or undergo photoluminescence. These interactions can be studied by
molecular spectroscopy. Among the most often used molecular spectroscopic methods
are near-infrared spectroscopy (NIR), ultraviolet–visible spectroscopy (UV/Vis), Raman
spectroscopy (RS), nuclear magnetic resonance (NMR) spectroscopy, and hyperspectral
imaging (HSI).

Generally, molecular spectroscopic methods have been acknowledged for both small-
scale and industry applications in the construction cosmetics, pharmaceutical, medical,
veterinarian agricultural, and food industries but this review mainly focuses on their
applications in the agricultural and food industries.
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2. Principle and Mode of Operation of Molecular Spectroscopy

Molecular spectroscopic techniques operate on the principle that every molecule is
composed of multiple atoms with related characteristic bonds between them. Using a par-
ticular type of electromagnetic radiation, the molecule can be excited (undergoes short-term
vibrations in terms of reflection, transmission, and absorption) on the basis of its elemental
composition and bond strength and can sometimes be referred to as photoluminescence [3].
Photoluminescence is a term used to describe a number of effects, such as fluorescence,
phosphorescence, and Raman scattering. Molecular spectroscopy employs the interaction
of electromagnetic radiation with materials to produce an absorption spectrum that holds
structural and compositional information on the given material. Electromagnetic radiation
is conventionally divided into the following regions [4]: radiofrequency (ca. 105–109 Hz),
microwave (ca. 109 to 3 × 1010 Hz), infrared (ca. 3 × 1010 to 3 × 1014 Hz), visible and
ultraviolet (ca. 3 × 1014 to 3 × 1016 Hz), X-rays (ca. 3 × 1016 to 3 × 1018 Hz), and gamma
(γ)-rays (ca. 3 × 1018 to 1021 Hz). Each region covers a range of energies that correspond
to a different type of molecular process. Every region has different features and stands
for a specific kind of molecular or atomic transition that corresponds to specific spectro-
scopic techniques. Among these, ultraviolet–visible (UV/Vis) and infrared (IR) regions
have received much attention as most spectroscopic instruments used in nonlaboratory
conditions utilize these energy ranges and can result in electron transitions or molecular
vibrations. However, infrared is still a very broad range, covering the far-, mid-, and near-
infrared (FIR, MIR, NIR) regions used in analytical laboratory measurements according to
the International Commission on Illumination (CIE) and the International Organization for
Standardization [5] (Table 1). The behavior of the infrared light is unique for each organic
molecule and acts as a characteristic spectral fingerprint in the infrared region. Infrared
light separates the visible and microwave regions of the electromagnetic spectrum and
ranges from 700 nm to 1 mm.

Table 1. Types of infrared light according to the International Commission on Illumination (CIE) and
the International Organization for Standardization (ISO).

Region Near-Infrared Mid-Infrared Far-Infrared

Photon energies 215–430 eV 100–215 eV 3–100 eV
Wavelength (CIE) 700–1400 nm 1400–3000 nm 3000–1.4 × 104 nm

Wavelength (ISO 20473) 780–3000 nm 3000–5 × 105 nm 5 × 105–106 nm

The most common infrared spectroscopic technology of this current century is the
NIRS, which covers the range of 800–2500 nm. The electromagnetic radiation at this energy
range excites molecular vibrations (stretching, bending) mostly related to hydrogen, since C–
H, O–H, N–H, and S–H bonds are frequent in organic substances. The range and intensity
of the electromagnetic radiation has led to the development diverse instruments that
correspond to the different molecular spectroscopic techniques. The potential applications,
advantages, and disadvantages of some common molecular spectroscopy methods have
been summarized in Table 2 but the factors leading to the choice of an ideal analytical
instrument are continuously being challenged by the ever-evolving complexities of the
food chain. Some of these complexities have been reported to have numerous limitations
for certain analysis due to issues such as instrumental design, sample size requirement,
cost and maintenance, and spectra reliability [6]. Furthermore, consumer intolerance for
low-quality food and a competitive market have resulted in continuous improvement of
these factors of method selection.

The choice of a method or instrument is largely dependent on certain parameters
such as the intrinsic and extrinsic property of the food to be analysis, the sensitivity of the
method/instrument, the cost, ease of application, speed of analysis, and sample preparation
requirements (Figure 2).
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Figure 2. Factors influencing the choice of ideal analytical methods.

NIRS became a widely used technology in agricultural applications where cost-
effective and relatively fast testing is needed. Originally, some decades ago, when it
was still used in laboratories only, its major benefit was the low cost, little or no need
for sample preparation, and the easy-to-use nature. Recently, when NIRS applications
have been broadly appearing out of the laboratories, even the compactness of technology,
and the very rapid feedback capabilities give the greatest benefits such as light weight
and requiring no physical contact between the sample and the instrument; moreover, the
researcher has the option to position the sample either directly on the sample or some
distance away, results can be qualitative or quantitative, it requires no reagents, instru-
ments are often portable, and some can facilitate remote use. Many NIRS instruments
ranging from benchtop to handheld versions have been developed to keep pace with the
complexities of the food chain.

In the case of UV/Vis spectroscopy, the absorption is primarily due to electronic
transitions. Most UV/Vis absorptions by organic molecules are attributed to transitions
involving nonbonding (n) electrons or electrons in molecular orbitals found in unsaturated
molecules [7]. The basic wavelength range may be converted to 340–950 nm using an
accessory phototube and filters. The technique has been employed for analytical purposes
because it is easy-to-use and has handheld or portable instruments available.

Raman spectroscopy (RS), like IR spectroscopy, belongs to the group of vibrational (and
rotational) spectroscopic methods. The vibrational spectrum is used to obtain information
about the type, position, and orientation of functional groups in molecules. IR and RS
differ in the way they produce the analytical signal. IR spectra are mainly recorded in
absorption mode, while RS is based on the principle of light scattering [8]. Until recently,
Raman spectroscopy (RS) was a very difficult technique to use even within a laboratory
environment, especially in the case of biological samples such as food or food ingredients.
Significant improvements in instrument design, detector sensitivity, laser construction, and
the availability of fiber-optic sampling probes have led to an expansion of applications in
this and many other fields and even into process environments [9].

Nuclear magnetic resonance (NMR) is not one of the optical molecular spectroscopy
methods, but its role in authentication and detection of adulteration makes it worth men-
tioning. It is a method of chemical structure analysis, which works by applying radiofre-
quency electromagnetic pulses to nuclei of atoms with magnetic moment placed in a
constant magnetic field by selective excitation with an electromagnetic pulse. The most
commonly studied isotopes are 1H and 13C (Figure 3) [10]. Some NMR methodologies,
for instance, low-field NMR relaxometry and magnetic resonance imaging (MRI), are
completely noninvasive and produce substantial information regarding the texture of the
sample, water distribution, and molecular dynamics, all of which can be important in
determining product authenticity. High-resolution NMR simultaneously brings “high-
throughput” spectroscopic/structural information” on a wide range of metabolites with
high analytical precision, giving a foodstuff a metabolic fingerprint, which is important to
assure its quality, genuineness, geographical origin, etc. [11].
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Figure 3. Characteristics of molecular spectroscopy methods (based on Burns et al. [12]).

HSI was originally developed for remote sensing applications and has since been
applied in many fields. It analyzes the spatial distribution of the sample parameters by
using imaging technology [13].

3. Instrumentation

Mostly, spectrophotometers are the instruments used for spectroscopic measurements.
They are primarily composed of a light source, light adjusting elements (e.g., monochro-
mators, interferometers, microelectromechanical systems, linear variable filters), a sample
chamber, and a detector [14].

The light source is mainly responsible for providing the photonic energy (light) that
will be absorbed or reflected by the sample. It can be a Tungsten halogen lamp, pc-NIR
LED, laser diode, or a Nichrome heater. In pre- or post-dispersion spectrophotometers, the
polychromatic light is decomposed be-fore or after interacting with the sample, respectively,
resulting in the monochromatic light beams reaching the detectors. In spectrophotometers
with diffraction grating monochromators, the monochromator selects a narrow band of
light from a wider range of wavelengths (emitted light) [15]. The gratings are made of
metal or glass engraved surfaces with many fine parallel lines. When the light beam strikes
the surface, it is divided into various wavelengths by diffraction [16], and a small portion
shines through the slits and order sorting filters.

Many modern instruments have an interferometer that decomposes broadband IR
radiation into discrete wavenumber values with a given spectral resolution. The most
common one is the Michelson interferometer, but there are other constructions such as
Rocksolid. In this system, the light beam is split into two beams with a beam splitter. The
two separated beams strike the fixed and moving mirrors, and they are reflected back to
beam splitter. They are then recombined and exit the interferometer in the direction of
sample. From the resulting interferogram, the spectrum of the sample is obtained by Fourier
transform (FT) that is commonly used in Raman, NIR, IR, and NMR spectrophotometers.
A major advantage is that the signal-to-noise ratio of spectrum is significantly higher than
some generation IR spectrophotometers [17].

Small-sized spectrophotometers contain miniaturized microelectromechanical systems
(MEMS) such as digital micro mirrors to produce the monochromatic light or contain no
moving elements and use static systems such as linear variable filters (LVF) as band pass
filters for each pixel of a detector array. A dispersive Raman spectrophotometer uses a
prism or a grating, while a nondispersive Raman spectrophotometer uses an interferometer,
such as a Michelson interferometer in a Fourier-transform Raman spectrophotometer.
Modern Raman spectrophotometers use a laser light source. These laser sources provide
a stable and intense beam. A wide range of lasers, such as the argon ion laser (488 and
514.5 nm), krypton ion laser (530.9 and 647.1 nm), helium–neon (He–Ne) laser (632. 8 nm),
near-infrared (IR) diode lasers (785 and 830 nm), neodymium–yttrium–aluminum–garnet
(Nd:YAG) and neodymium–yttrium–orthrium–vanadate (Nd:YVO4) lasers (1064 nm), and
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frequency-division Nd:YAG and Nd:YVO4 diode lasers (532 nm) can be used as light
sources in Raman spectrophotometers. However, long wavelength sources such as diode or
Nd:YAG lasers can be operated at much higher power without causing photocomposition
of the sample and, in most cases, can eliminate or reduce fluorescence. Band pass filters
are used to isolate a single laser beam. In dispersive instruments, a combination of a notch
filter and a high-quality grating monochromator is most commonly used. Double or even
triple grating monochromators, super notch filters, rejection filters, holographic notch or
edge filters, and holographic filters are used to separate relatively weak Raman lines from
intense Rayleigh scattering radiation.

In modern instruments, detectors have been replaced by more sensitive charge transfer
devices (CTDs) such as charge-coupled devices (CCDs) and charge injection devices (CIDs).
In CTD arrays, the photosite converts the incoming optical signal into a charge, which
is integrated and transmitted to the readout devices. Multichannel CCD detectors are
used for laser wavelengths of less than 1 µm, while single-element, low-bandgap semi-
conductors such as germanium (Ge) or indium–gallium–arsenic (InGaAs) detectors are
used for laser wavelengths greater than 1 µm. The low sensitivity due to weak Raman
scattering can be increased by resonance Raman spectroscopy (RRS) and surface-enhanced
Raman spectroscopy (SERS). In RRS, the frequency of the incident radiation matches the
electronic transition of the molecule, resulting in a much more intense Raman spectrum.
SERS is a modified technique in which the sample is adsorbed onto a colloidal metallic
surface (silver, gold, or copper) to improve the intensity of the Raman signal and suppress
fluorescence caused by cutting agents, diluents, and matrices. The combination of RRS
and SERS techniques (i.e., surface resonance-enhanced Raman spectroscopy (SERRS) can
increase sensitivity by up to 10 orders of magnitude compared to RS [18].

Detectors in such instruments (e.g., NIR spectrometers) are mostly made of Si, PbS,
and InGaAs depending on many factors such as the required wavelength range and photo-
sensitivity, the given light intensity, and temperature stability, but they are all responsible
for detecting the amount of light dispersion (transmittance/reflectance/transflectance)
from the sample [15].

Typically, most benchtop spectrophotometers, grating monochromators, or Michel-
son/Rocksolid interferometers are used to decompose light when measuring the full
spectrum. Instruments may be used in transmittance or reflectance mode [15]. Depending
on the energy source and the detectors used [19], instruments measuring the MIR or FIR
regions of the electromagnetic spectrum are mostly used in analytical chemistry where
fundamental vibrations of molecules are measured. The MIR spectrum results from the
absorption of specific frequencies of MIR radiation as a function of the chemical structure
of the sample. The peaks and troughs in a MIR spectrum are very specific to the sample
measured. These techniques require sample preparation for solid samples, usually by some
form of solvation or extraction. Liquid samples can also be analyzed directly. Contrarily,
NIRS measures the overtone and combination bands of the fundamental vibrations, with
the help of highly versatile instrumentation.

HSI systems have evolved from whiskbrooms to push-brooms, wavelength scanning,
and snapshot instrument architectures. At the simplest level, the whiskbroom instrument
architectures have a single image channel (scalar) and a 1D data field sensor (vector). This
instrument architecture can be implemented with an imaging fiber-optic cable connected to
a diffraction grating and a linear optical sensor (corresponding to one spectral dimension).
At the next level of complexity, push-broom instrument architectures consist of a one-
dimensional image channel array (vector) connected to a two-dimensional data array
sensor (matrix). This instrument architecture is implemented by linear imaging coupled to
a diffraction grating and a 2D optical sensor (one spatial and one spectral dimension). For
mapping in the next spatial dimension and to form the two-dimensional image (matrix), the
push-broom instrument architecture scans time line by line, forming a three-dimensional
data cube (tensor). These techniques generally require a large format image sensor to
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provide adequate spatial separation of the three measured dimensions (two spatial and
one wavelength) [20].

Depending on the type of experiments needed in a particular research area, NMR
spectrometers offer different options for 1D and 2D experiments, as well as different types
of nuclei such as 1H, 2H, 7Li, 11B, 13C, 15N, 19F, and 31P. The current trend in instrument
development follows that of conventional high-field NMR instruments, aiming at increasing
sensitivity by improving field strength and field homogeneity, providing access to a wider
range of nuclei, and extending the range of NMR experiments that can be performed.

Today’s NMR spectrophotometers use permanent magnets with similar field strengths
between 1 and 2 T and are inherently less sensitive than high-field-strength spectrometers.
In addition, permanent magnets are sensitive to temperature. Long-term stability of
the magnet is also critical for long-term signal transfer, 2D spectroscopy, and reaction
monitoring. A drifting field spoils the coherent combination of signals and leads to drifting
lines in NMR spectra recorded at different times.

4. Data Processing

Overlapping bands in the electromagnetic spectrum of light sometimes result in a com-
plex spectrum that makes it difficult to read the sorted compositional information directly.
These differences can be due to several conditions such as nonhomogeneous distribution of
the particles, changes in refractive index, particle size distribution, sample packing/density
variability, and sample morphology (surface roughness/shape) [21]. For this reason, many
researchers have studied multiple preprocessing or pretreatment techniques, which are
often mainly mathematical correction techniques.

Wavelength selection is often the first approach in such situations because it is regarded
as the simplest, but most effective pretreatment procedure in spectroscopy if prior knowl-
edge is available about the regions of interest. More advanced techniques are required for
more complex spectra that could be as a result of the following:

1. Reflected baseline offset or simple baseline shift (additive effect);
2. Multiplicative effect (pure) that scales the entire spectrum by a given factor, for

example, due to path length differences;
3. Wavelength-dependent baseline variation, where the degree of baseline shift varies

with wavelength. In addition to wavelength selection, many types of pretreatment
methods have also been reported.

For some of the challenges, prominent methods such as derivatives [22] detrending
(baseline correction) [23], auto-scaling [24], standard normal variate (SNV) [25], standard-
ization [26], normalization [27], multiplicative scatter correction (MSC), and extended
multiplicative scattering correction (EMSC) [28] have proven vital in extracting important
and relevant information from consolidated spectra. These pretreatments can very effec-
tively remove or reduce the additive and multiplicative spectral distortions, but caution
must be exercised when applying them as the mathematical changes in the measured
data may lead to even more destruction; unwise application of derivatives can enhance
noise of the spectral data, the noisy regions of a spectrum can damage the whole spectrum
when pretreated with SNV, and an outlier spectrum can falsify all the other spectra when
MSC is applied [29]. However, variable physical and other properties of the sample or
instrument may cause interference in the spectral data. It is, therefore, important to apply
selection and pretreatment to identify and eliminate extreme outliers that may sometimes
materially decrease the model performance. This is because the chemical information
of the constituent under investigation can be obscured by changes in the spectra due to
some intrinsic properties of the constituent of interest or environmental conditions during
the experiment.

In addition to preprocessing, the recorded spectra may sometimes have to be combined
with reference information, and the combination of the two knowledge may finally result
in a calibration model where the relation of spectral and reference data is described. To
achieve the calibration models, various types of multivariate data analysis approaches are
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used, which, when displayed in ways that allow chemical interpretation of the relation, are
called chemometrics. One of multivariate modeling’s major strengths is the possibility to
measure several constituents concurrently. One of the limitations is the dependence on
some less precise reference methods in food analysis.

Chemometrics or multivariate data analyses are generally computation numerical
analyses that serve as a bedrock for the new age of machine learning. Broadly, they can be
categorized into quantitative and qualitative methods. Quantitative calibration modeling,
as mentioned above, requires reference data to be described by the spectral variables. The
qualitative methods used for pattern recognition and classification can generally be grouped
into supervised and non-supervised methods (Figure 4). Non-supervised modeling, like
principal component analysis (PCA), describes the major variance of the recorded spectral
data without influencing the data reduction with any background information about the
samples or sample groups. Contrary to this descriptive mode, the supervised classification
methods, such as linear discriminant analysis (LDA), find the linear or nonlinear combi-
nations of the spectral variables that optimally describe the differences of the predefined
groups and minimize in-group variations [30–32]. Since multivariate data are often very
complicated, simple non-supervised models are rarely able to explain the desired group
identities. Supervised classification models, on the other hand, serve as highly effective
pattern recognition tools, while they can be easily overfitted, as with the quantitative
calibration models. To minimize overfitting, careful cross-validations and independent
tests have to be applied during the model optimization [29]. Due to the development of the
computational capacity, nonlinear modeling is more often used for both qualitative and
quantitative purposes [30–32]. Although these methods can provide very good results also
for extremely complex cases, it has to be considered that they require a very large amount
of sample, and, from a chemometrician point of view, they are black boxes, since little or no
information can be achieved about the relation of the multivariate spectral data and the
qualitative or quantitative reference variables.

Figure 4. Molecular spectroscopy methods and chemometric data evaluation in food authenticity.

5. Applications of Molecular Spectroscopy for Food Authentication

Molecular spectroscopic methods, in general, are routinely employed to give a com-
positional, functional, and sensory analysis overview of food raw materials, process in-
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termediates, and final products [33]. Therefore, it is nearly impossible to cover all the
diverse foods of application in this review; as such, only some of those with protein-rich
content (meat and fish), medicinal properties (spices, mushroom), and beverages rich in
phytochemicals (coffee and tea) are in focus. In addition, these foods were chosen because
their ubiquitous nature, economic potential, and nutritional value risks of adulteration
across the production chain are some of the reasons why they have been previously targeted
for fraudulent purposes.

5.1. Meat and Fish

Meat is composed of water, proteins, amino acids, fatty acids, cholesterol, phospho-
lipids, minerals, and vitamins, which can all be related to its nutritional quality [34]. A
similar biochemical composition also exists in fish, and these elements are often determi-
nants of wholesomeness or perishability. The vulnerability and perishability of fish and
meat products are premises that make it essential to develop effective and rapid techniques
for monitoring their quality changes and determining authenticity. In the last decade alone,
several methods have been developed and tested to overcome the reported limitations of
conventional methods. In this regard, spectroscopic methods, including MIR, NIR, laser
breakdown (LBD), and RS, have proven to be very successful alternatives to traditional
techniques as different kinds of meat or their products will give varying absorption pat-
terns in the electromagnetic spectrum. This is the basis for applying different spectroscopic
techniques to determine multiple quality parameters of meat and seafood products.

Table 3 shows the current trends of different molecular spectroscopic techniques
for quality assessment in meat and seafood products. UV/Vis spectroscopy has been
applied for both the accurate determination of the K value of fish flesh [35], predicting
fatty acids in fresh and freeze-dried beef [36], and detection of minced beef adulteration
with turkey meat [37].

Using the backpropagation neural network (BP-NN) model, the protein content of
various processed pork meats could be determined with a coefficient of cross-validation
(R2

CV) = 0.8318 and root-mean-square error of cross-validation (RMSECV) = 8.38 mg/g
when HSI was used [38]. For the prediction of monounsaturated and polyunsaturated fatty
acids of various processed pork meats, the improved hyperspectral imaging technique
proved that the performance of least squares support vector machines (LS-SVM) models
was better than that of partial least squares regression (PLSR) models; the R2 of the LS-SVM
based on optimal wavelengths was more than 0.81 [39].

In the monitoring of accumulated toxicity, RS proved vital in the detection of prohibited
drugs including enrofloxacin, furazolidone, and malachite green in tilapia using principal
component analysis (PCA). The R2 of actual values versus values predicted with PLS
models for furazolidone and MG was 0.970 and 0.915 [40]. In the meat industry, the
technique was used to predict drip loss and measure pH of fresh pork, with a secondary
aim to measure intramuscular fat [41].

1H-NMR has not been widely applied for meat quality evaluations, but it has proven
useful in fish monitoring. It was used to prove that the metabolome content of the common
carp oocyte changed with time post ovulation. The metabolite changes were mainly
related to energy-linked metabolites, amino acids, methylated metabolites, citric acid
cycle intermediates, and apoptotic-related metabolites [42]. In the molecular study of
anesthesia in fish, the method showed that plasma levels of valine, isoleucine, creatine, N,N-
dimethylglycine, and glucose significantly increased in the anesthetized group compared
to the control group according to metabolite profiling results. In contrast, the plasma
levels of N-acetylglucosamine and succinate significantly decreased in the anesthetized fish
compared to the control group [43].

Structural and metabolic changes in the liver samples of wild and aqua cultured
gilthead sea bream (S. aurata) were also studied with FTIR, whereby spectral peaks revealed
important information about the different liver structures [44]. In the meat industry, FTIR
has also been applied for the species discrimination of meat and bone meals based on
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lipid characteristics [45], the assessment of red meat quality [46] and the detection of beef,
mutton, camel, and lamb meat adulterated with pork [47].

As shown in Table 4, NIRS has been applied in the rapid discrimination of minced
port quality [48], classification of chicken breast fillet [49], prediction of fatty acids in fresh
and frozen pork [50], quality control of frying fat samples [51], and identification of meat
species [52]. The NIRS has proven to be effective in the determination of intramuscular
fat of pork [53] and rabbit hind leg [54]. High correlations between moisture and fat of
beef have been established using NIRS [55]. The study of major chemical compositions
in fresh meat, such as fat, moisture, or protein, is necessary not only for labeling and
consumer-acceptance purposes, but also for establishing the right balance in the quality of
the fresh or processed products. Table 4 shows a summary of some studies that assessed
these parameters in different meat products using the NIRS. For quality assurance purposes,
NIRS has been used to discriminate turkey meat as an adulterant in beef [56] and to assess
plant and animal proteins as potential adulterants in minced beef and pork [57].

It can also be observed in Table 3 that different mathematical correctional approaches
yielded good R2. This emphasizes that a key aspect of multi-sensor analysis is signal
processing. In this regard, Riovanto et al. [58] revealed that, although the raw spectrum
may appear not to be much informative in assessment of the fatty-acid composition of
ground chicken breast, applying a first- and second-derivative mathematical treatment
will improve the models. This was supported by Marchi et al. [59] who used different
combinations of scatter correction and derivative mathematical treatments to achieve the
best model for predicting saltiness in chicken. Meat tenderness is regarded as one of the
most important sensorial qualities for consumers. It is in this sense that NIRS has been
used to predict tenderness in chicken with R2 = 0.70 [60] and 0.81 [61], as well as in cattle
with R2 = 0.45 [62]. Since PLSR can be used as a full-spectrum multivariate analysis to
eliminate collinearity, PLS-based calibrations may be further improved by proper selection
of wavelengths [63,64].

It can be observed in Tables 3 and 4 that various preprocessing techniques have
been explored to enhance spectral information. It can also be concluded that, although
spectral examination methods such as spectral peak analysis and band assignments have
proven useful in using these techniques, several chemometric methods have also been
tested and proven very relevant and important for advanced data analysis and modeling
multiple parameters in meat and fish, ranging from contamination to storage, geographical
identification, adulteration, and even monitoring processed products. Data fusion, a
complex but statically acclaimed method for mathematical evaluation of data from different
instruments, also proved vital for quantitative and qualitative analysis, as well as in the
determination of biochemical changes in meat and fish.

Selecting essential wavelengths with respect to the response information can marginally
reduce the amount of data to be analyzed and, therefore, is a supplementary step for de-
veloping multispectral systems although it is often subjective. In pork analysis, it has
been reported that both the pH and the iodine number 45 min postmortem cannot be
predicted from NIR spectra [65]. In quantitative treatment of data and often with a large
number of calibration sets, it is worth mentioning artificial neural networks (ANNs) as an
emerging alternative for NIRS calibration. This technique may present some advantages
when nonlinearity (not easily accommodated by principal component regression (PCR)
and PLSR) between the spectral data and the quantitative information of interest exists.
Considering the synergism between NIRS technology and chemometrics, it is probable that
new data treatment alternatives, which can help make good use of the NIR spectroscopic
information, will be provided in the near future, but application of mathematical corrective
measures and the ability to select good spectra vary per user and greatly influence the
predictive model.

Clearly, from this review, the different spectroscopic techniques have proven to be
pivotal in quality determination and could be an efficient and promising tool to control
meat and fish quality and authenticity [34]. This is particularly important because the
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high price and scarcity of meat are the major factors that reduce meat consumption and
consequently lead to adulteration/substitution or mislabeling of meat and meat products.
Moreover, many preservation techniques have been applied to retard deterioration and
extend the shelf-life of fish and meat products, but rapid affordable methods have
remained a challenge. From Tables 3 and 4, it can be concluded that these spectroscopic
techniques could bridge this challenge as the method has also been used to monitor and
track biochemical changes in different meat products. Until recently, identification of
meat and fish species in processed products was generally much more difficult than in
raw meat, but spectroscopic technologies have proven that it is now possible.

5.2. Mushroom

The chemical composition of mushrooms is highly dependent on the geographical
region, and different parts of the same mushroom have different chemical compositions.
For this reason, identification and authentication are also important for mushrooms. Of the
nearly 2000 edible mushroom species found in nature, only 35 are cultivated commercially.
In this section, we summarize the molecular spectroscopic methods in the case of the most
common cultivated and wild mushroom species (Table 5) [66]. Furthermore, there have
been many studies on Ganoderma lucidum. As this mushroom is mainly used for medicinal
purposes and not as a food, its analytical analysis is not discussed here.

For mushrooms, adulteration is less of a problem but geographical origin, shelf-life
quality, and avoiding any possible toxicity remain a clarion call. The differentiation of
mushroom samples at a species level (strain classification, taxon delimitation), the differen-
tiation of new candidate varieties with improved nutritional properties, the differentiation
of wild and cultivated or of fresh and old and damaged mushroom samples, and the
identification of mushroom samples from a specific growing area are essential for quality
control of raw materials.

Quality classification was performed on the basis of water content, water-soluble
solids, and freshness for the cultivated mushroom species Agaricus bisporus using Vis/NIR
spectroscopy. Separate analysis of the mushroom cap and stalk was performed, but un-
fortunately no data on the reliability of the classification were reported. The statistical
properties of the models were rather poor (R2 = 0.78) [67].

New cultivar candidates of Pleurotus ostreatus were screened using FT-NIRS techniques
to quickly and nondestructively select a new candidate with the most favorable traits. On
the basis of the free amino-acid content, total polyphenol content, and ferric ion reduc-
ing antioxidant power (FRAP) values, chemometric analysis of the spectra successfully
classified the most favorable candidates [68].

In another study, PCA of the FTIR spectrum of Agaricus bisporus showed that physical
damage to the mushrooms had a significant effect on tissue structure and the aging process.
Random forest (RF) modeling of FTIR data predicted mushroom damage with error rates
of 5.9% and 9.8%, and it successfully distinguished fresh and refrigerated mushrooms [69].
Zervakis et al. [70] used diffuse reflectance Fourier-transform infrared spectroscopy (DRIFT)
to classify the genus Pleurotus and to delimit taxa. A total of 73 strains of 16 taxa of Pleurotus
were examined. A binary matrix based on the presence/absence of FTIR-specific peaks
combined with cluster analysis showed that the IR region is clearly distinct among Pleurotus
species, making this method perfectly suited for species classification. FTIR in conjunction
with appropriate chemometrics was explored for the identification and discrimination of
Boletus edulis and Boletus tomentipes collected from different geographical regions. The
unsupervised PCA and hierarchical cluster analysis (HCA) techniques were reported to
classify and identify both mushroom samples as a function of the differences in their
metabolic fingerprint characteristics. The supervised partial least squares discriminant
analysis (PLS-DA) technique successfully differentiated between both mushroom samples
on the basis of their geographical locations [71].

The geographical tracking of the wild Boletus mushroom was investigated using
FTIR. Samples were collected from 10 different geographical areas in China. Different
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pattern recognition techniques (PCA, support vector machine (SVM), RF) were applied to
discriminate samples from different geographical areas [72].

Further studies confirmed that the combined data fusion of FTIR and UV spectra
of Boletus mushrooms with SVM could be used for efficient geographic classification of
samples. The classification accuracy was 99% [73,74].

Boletus edulis (and related species, BEAS), also known as “porcini mushrooms”, rep-
resent almost the entire range of wild mushrooms available on the Italian market, both
fresh and dried. A significant proportion of these dried mushrooms are imported from
China. The presence of Tylopilus spp. and other foreign species (i.e., edible but not BEAS
species) in dried samples, particularly those imported from China and sold in Italy, may
pose a commercially valuable problem. Partial least squares density modeling (PLS-DM) of
NIR spectra and the application of the modeling version of quadratic discriminant analysis
(UNEQ) and soft independent modeling of class analogy (SIMCA) class assessment tech-
niques resulted in a clear discrimination among dried samples of BEAS, Tylopilus spp., and
Boletus violaceofuscus [75]. The molecular spectroscopic procedures for the authentication
and adulteration of mushroom species and varieties are summarized in Table 5.

In keeping track with the numerous existing species of mushrooms, NIRS, NMR,
UV/Vis, and RS proved to be reliable alternatives for the differentiation of mushroom
samples at species level (strain classification, taxon delimitation). This is particularly
important because the differentiation of new candidate varieties with improved nutritional
properties, the differentiation of wild and cultivated or fresh and old and damaged mush-
room samples, and the identification of mushroom samples from a specific growing area
are essential for quality control of raw materials. The above-introduced examples clearly
present that, despite the rather complex chemical composition and high inhomogeneity
of mushrooms, the various molecular spectroscopic techniques have proven very useful
in characterization, identification, and authentication of various mushrooms. The use
of chemometric methods such as PCA, SVM, PLS-DM, and SIMCA increased the model
performance of the different spectroscopic techniques for monitoring mushroom quality.

5.3. Spices

Different molecular spectroscopic methods combined with chemometric techniques
have proven to be a useful tool for authentication of spices and for the identification of
adulteration and adulterants [76].

Spices are the ingredients of our everyday meals. Their quality is closely linked to the
area where they are grown. For this reason, it is very important to verify their geographical
origin and to detect adulteration. The most commonly adulterated spices include paprika
(Capsicum annuum), black pepper (Piper nigrum), cinnamon (Cinnamon verum), turmeric
(Curcumina longa), oregano (Origanum vulgare L.), and saffron (Crocus sativus L.) (Table 6).

NIRS was applied for the first time to saffron spice to determine the chemical compo-
sition and geographical origin of samples from the three main producing countries: Iran,
Greece, and Spain. Discriminant analysis (DA) of the three geographical origins showed
that the Iranian samples were completely distinct from the others, while the Greek and
Spanish samples showed greater similarity to each other [77].

Turmeric powders of Egyptian and Algerian origin were also classified according to
their geographical origin. The analyses were performed using UV/Vis, FTIR, and 1H-NMR
techniques. PCA and HCA methods were used for chemometric evaluation. The UV/Vis
and FTIR methods were also unable to distinguish between the same species on the basis of
their quality, as all species contained the same phytochemical constituents but in different
concentrations. In the PCA model based on the full spectral range of 1H-NMR, the two
geographical origins could not be distinguished. However, when using only the region of
essential oils/fatty acids (0.4–3 ppm) for the evaluation, complete separation of Algerian
and Egyptian samples was observed [78,79].

The 1H-NMR analytical protocol was proposed to characterize saffron samples
from different geographical origins (Greece, Spain, Hungary, Turkey, and Italy). A
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microwave-assisted extraction procedure was used. Comparing the metabolite profiles
of the saffron extracts, significant differences in the content of each metabolite were
identified. According to the metabolite profiles, the geological identification of saffron
samples was successful [80]. A quantitative NMR metabolomics approach was devel-
oped to distinguish between two cinnamon species (Cinnamomum verum Ceylon and
Cinnamomum cassia China). Nine key organoleptic metabolites were detected, among
which (E)-cinnamaldehyde was the major form. Multivariate data analyses revealed the
leading presence of eugenol in C. verum and its enrichment in fatty acids in C. cassia.
Compounds related to the aroma and flavor of C. verum were identified and quantified,
which can be used as markers to authenticate this spice [81].

Fraud in the global food supply chain is becoming increasingly common due to the
huge profits that are made from this type of crime. Food commodities and ingredients that
are part of expensive and complex supply chains are particularly vulnerable.

In the past, various compounds—often harmful to health—were used, e.g., in the
case of cayenne pepper and chili, red lead (Pb3O4), vermillion (HgS), and venetian red
(Fe2O3) were added as color fillers [82]. Today, the adulteration process does not mainly
involve the addition of chemicals, but of ground rice husks, rice flour, mustard seed husks,
sawdust, salt or brick dust, or Sudan I to the spices. In the case of ground cinnamon, as
with all other finely ground products, common adulterants include flour and other bulking
agents (possibly coffee husks). The use of cinnamon as a spice and flavoring is widespread
throughout the world, often adulterated with inferior cinnamon. Due to the high cost of
true cinnamon, which is only produced in Sri Lanka, it is adulterated with Cinnamon cassia
due to its low commercial value. On the other hand, Cinnamon cassia contains a high content
of coumarin (1%) which is a family of compounds containing 1,2-benzopyrone structures
that are present only in minimal amounts in the barks of Cinnamon verum (0.04%). Due to its
hepatotoxic effects, the Food Safety Regulatory Agencies have imposed restrictions on the
use of coumarin in their countries. NIRS and chemometric analysis have been successfully
used to detect adulterations of genuine cinnamon [83,84].

The performance of three NIR spectroscopic (desktop, handheld, and portable) in-
struments was compared by investigating the authenticity of the coriander seed. A total
of 200 authentic coriander core samples and 90 adulterated samples were analyzed with
each instrument. All instruments correctly predicted 100% of the adulterated samples [85].
The NIR spectroscopic method was used to classify black pepper samples adulterated with
papaya seeds, to distinguish between pure and adulterated samples. However, the authors
only showed that NIRS can distinguish between pure and adulterated samples [86]. The
spice turmeric is often adulterated with metanil yellow (1–25%). This has been successfully
detected using the NIRS method combined with chemometric evaluation. The structure
of metanil yellow resembles that of a secondary amine; thus, high precision (Q2 = 0.99)
can be achieved in the quantification of metanil yellow in turmeric samples [87]. The NIR
and FTIR spectra coupled with chemometrics can be used to detect black pepper adulter-
ated with papaya seeds, chili, and nonfunctional black pepper substances such as black
pepper flakes, pinheads, and degreased used substances. A good separation performance
was demonstrated between black pepper and adulterated samples. After running the
binary classification model with an external test set, the area under the receiver operator
characteristic curve was 0.98 for both the NIRS and the FTIR models [88].

Chili powder is a globally traded commodity, often adulterated with Sudan I dye.
The tests were carried out using NIRS and RS. Chemometric methods were applied to the
spectral data. The detection limit of adulterant dye was 0.25% for the NIRS technique and
0.88% for the Raman technique [88]. Other authors used FTIR to predict the concentration
of Sudan dye in pepper samples [89,90]. Saffron is one of the most important and expensive
spices in the world. It is, therefore, highly vulnerable to fraudulent practices, including the
use of adulterants of plant origin. DRIFTS and chemometric techniques have been used
to investigate saffron adulteration. Six typical commonly used adulterants of plant origin
were investigated: Crocus sativus stamens, marigold, safflower, turmeric, buddleia, and
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gardenia. The investigations were successful in identifying the presence of adulteration, as
well as the quality and quantity of adulterants [90,91].

The main producers of oregano reside in the United States of America, Mexico, Greece,
and Turkey. Compared to most herbs, oregano has a complicated history as its true
identity is very difficult to define. This is partly due to the large heterogeneity of the
Origanum genus, as well as the grouping of different botanical genera: Origanum (lamiaceae)
from the Mediterranean and Lippia (verbenaceae) from Mexico. Although Mexican and
Mediterranean oregano are clearly distinguishable, only Origanum vulgare L. ssp. hirtum and
Origanum onites L. are allowed by the European Pharmacopoeia (PhEur) and the European
Spice Federation to be marketed as true oregano. Oregano is most commonly adulterated
with olive leaf, myrtle leaf, sumac leaf, cistus leaf, or hazelnut leaf. The attenuated total
reflection Fourier-transform infrared (ATR-FTIR) procedure successfully identified the
presence of adulteration (Q2 = 0.96) [90,92].

Various forms of adulteration have been found in paprika, including substitution
with waste or inferior products, misrepresentation of origin, and adulteration using
illegal colorants such as the commonly found Sudan I. Examples of adulteration by
substitution with waste products include adulteration by weight gain with white pepper,
turmeric, brick powder, and barium sulfate. Sudan I is the most commonly used dye
in adulteration. RS with a 785 nm laser excitation can be applied directly to paprika
powder for the determination of Sudan I content. Mathematical pretreatment of the
Raman spectra was done by fitting a polynomial to each spectrum and then subtracting it
to remove the fluorescence background signal, and this was key for proper interpretation
and modeling of the spectra. The percentage of correctly classified samples was 89% [93].
Another approach developed for detection and measurement is a sensor combining SERS,
molecularly imprinted polymers, and thin-layer chromatography to identify samples of
paprika adulterated with Sudan I and quantify the adulterant in low proportions (5 to
100 ppm) [94].

The developed Raman HSI system was employed for the simultaneous detection of
Sudan dye and Congo red dye adulteration in paprika powder, as well as benzoyl peroxide
and alloxan monohydrate adulteration in wheat flour at different concentrations (w/w) from
0.05 to 1%. The results obtained based on the Raman chemical images of adulterants showed
a strong correlation (R2 > 0.98) between added and pixel-based calculated concentration of
adulterant materials [95].

Others utilized FT-Raman and FTIR spectroscopy as separate but complementary
methods for detecting metanil yellow adulteration of turmeric powder. Sample mixtures of
turmeric powder and metanil yellow were prepared at concentrations of 30%, 25%, 20%,
15%, 10%, 5%, 1%, and 0.01% (w/w). Spectral analysis showed that the FTIR method in this
study could detect metanil yellow at the 5% concentration, while the FT-Raman method
appeared to be more sensitive and could detect metanil yellow at the 1% concentration.
Relationships between metanil yellow spectral peak intensities and metanil yellow con-
centration were established using representative peaks at FT-Raman 7110 nm and FTIR
8770 nm with correlation coefficients of 0.93 and 0.95, respectively [96]. The same research
group developed a new 1064 nm dispersive point Raman model for the detection of metanil
yellow and Sudan I impurities in curry powder. The results showed that the number of
detected adulterant pixels correlated linearly with the sample concentration (R2 = 0.99).
They further used self-modeling mixture analysis (SMA) to extract the spectra of the pure
components, and then identified from the spectral information divergence (SID) values
that they were identical to the spectra of Sudan I and metanil yellow [97].

Raman imaging and FTIR spectroscopy were used to detect Sudan red and white
turmeric adulteration in turmeric powder. While Sudan red Raman spectral peaks were
identifiable in turmeric/Sudan red samples, Sudan red false-positive detection was ob-
served in binary Raman images, limiting effective quantitative detection. In addition,
white turmeric Raman spectral peaks were unidentifiable in turmeric/white turmeric mix-
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tures. However, IR spectra of turmeric/Sudan red and turmeric/white turmeric samples
provided discrete identifier peaks for both adulterants [98].

For the detection of safflower (Carthamus tinctorius L.) and tartrazine adulterants in
saffron, Dowlatabadi et al. [99] used 1H-NMR spectroscopy combined with chemomet-
ric multivariate data analysis methods. The molecular spectroscopic procedures for the
authentication and adulteration of spices are summarized in Table 6.

The above-listed publications clearly present the wide range of available spices, which
are not only numerous by their varieties and available quality, but also often targeted for
food adulteration; molecular spectroscopic methods combined with chemometric tech-
niques have been proven still very useful for their authentication. Among others, the
different spectroscopic methods were shown useful in the identification of geographical
or botanical origin of spices and in the quantification of different ingredients or fraudu-
lent materials. Spice producers, processes, and quality control personnel can adapt the
techniques for increased quality assurance and nutritional composition fingerprinting.

5.4. Coffee

Coffee and its beverages are becoming increasingly popular because of their pleasant
aroma and high caffeine content. According to internationally accepted definitions,
commercially available coffee products must not contain any substance other than green
coffee beans. Due to the continuous increase in the price of the raw material, industrial
coffee producers often either use low-quality beans (not from the declared geographical
origin or defective beans) [100–102] or roast them with various adulterants (coffee husks,
coffee grounds, cereals like wheat, maize, barley, or rye, soya beans, etc.). These processes
result in misleading consumers and have a negative impact on the aroma and taste of
the coffee drink. There are two main commercial coffee species: Coffea arabica (Arabica
coffee) and Coffea canephora (Robusta coffee) [103]. They are commercially available
in a proportion of approximately 2:1. Arabica coffee is a raw material of high quality
and aroma. Although the caffeine content is lower than that of Robusta coffee, the
taste is silkier and softer, making it more popular. For this reason, its price is higher
than that of Robusta coffee. Many varieties of Arabica are known, such as Bourbon
and Typica, as well as varieties or cultivars that are specific to the area of production.
These include the Caturra (Guatemala, Costa Rica, Honduras, and Panama), Mundo
Novo (Brazil, Peru), Blue Mountain (Jamaica), Villa Sarchi (originally from Ethiopia,
Yemen, but currently more from the Caribbean), Limani and Fronton (Puerto Rico),
Jackson (Rwanda, Burundi), Harrar Rwanda (Rwanda), and Catimor (Malawi, Zambia,
Zimbabwe). The climatic conditions of coffee cultivation give special attributes to the
beverage and could increase its value.

The quality of green coffee is influenced by a number of factors, such as genotype,
growing conditions, and the processing of the coffee beans, which can be closely linked
to the place of origin. There are a number of analytical methods available to qualify and
authenticate coffee samples. These methods (gas chromatography–mass spectrometry (GC–
MS), gas chromatography with flame ionization detection (GC-FID), gas chromatography–
time-of-flight mass spectrometry (GC–TOF-MS), high-performance liquid chromatography-
mass spectrometry (HPLC–MS), high-performance liquid chromatography with UV de-
tection (HPLC-UV), high-performance liquid chromatography with diode-array detection
(HPLC-DAD), etc.) are chemical and labor-intensive processes. Lengthy analytical proce-
dures can be replaced by nondestructive molecular spectroscopic methods as a result of
advances in instrumentation and statistical evaluation software [104].

To identify the geographical origin, genetic variety, and farming system of coffee, NIRS
and HSI, together with chemometrics, offer a nondestructive, noninvasive, and accurate
technical option. Both techniques have been shown to be effective, accurate, and sufficiently
selective for the detection of adulteration and for the identification of geographical origin,
genetic variety, and farming system [105].
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For the identification of Arabica coffee by geographical origin and genotype, NIR
spectroscopic data and PLS-DA evaluation gave similarly successful results (sensitivity
and specificity = 1.0) [106]. The analysis of Robusta coffee beans using FT-NIRS coupled
with a self-organizing map (SOM) method allowed the identification and classification of
the genotypic origin of Robusta coffee (with 100% accuracy) [107].

Arabica and Arabica/Robusta blends produced under different farming systems
(conventional and organic) from five geographically distinct production areas in Brazil were
analyzed using PTR-MS and NIRS to determine whether the samples could be distinguished
from each other by the producing areas and farming method. In the case of geographical
origin, both methods gave almost the same accuracy (PTR-MS = 69%, NIR = 61%), whereas,
for the farming systems aspect, the NIRS method combined with PLS-DA gave a better
accuracy (PTR-MS = 39%, NIR = 69%) [108,109].

Giraudo et al. [110] analyzed Arabica and Robusta samples from nine countries (from
Central–South America and Asia), using FT-NIRS combined with PLS-DA chemometric
data processing. The discrimination according to the variety was 100%. They achieved
>93% accuracy for both continent- and country-based classification. Their results were
confirmed by two independent laboratories.

Jesztl et al. [111] analyzed beans and ground Arabica samples using FT-NIRS. The
geographical origin of the samples (Colombia, Guatemala, Brazil, and India) was certified.
Samples subjected to different roasting procedures (Viennese, Italian, and French) were
ground under identical conditions and parameters. It was found that the spectra of both
beans and ground coffee were perfectly distinguishable between samples from different
production areas using linear discriminant analysis (LDA). The accuracy of the classification
was verified by random grouping.

Using the FT-NIRS technique, Bertone et al. [112] investigated the Arabica/Robusta
ratio in roasted ground coffee blends. The determination coefficient (R2) of the validated
PLSR model was 0.97 for the Arabica content. Mees et al. [113] examined coffee leaves for
identification and obtained a 100% classification rate.

NIRS combined with a one-class classification method has been used to monitor
Brazilian specialty coffee. The spectral data were obtained with a portable NIRS in-
strument, and a Savitzky–Golay filter was applied to correct the baseline variation (a
second-order derivative based on a quadratic polynomial and an 11-point window).
Unsupervised pattern recognition techniques (PCA and HCA) were used, and the classi-
fication was built using the data-driven soft independent modeling of class analogy (DD

-SIMCA) algorithm. The classification model achieved the highest correct classification
rate (CCR) of 100% and 87% in the validation and test groups, respectively. The results
showed that the applied procedure can be used to verify the authenticity of samples
produced by specialty agroforestry [109].

According to the results of analysis of variance (ANOVA)/simultaneous component
analysis (ASCA), PLS-DA and SIMCA were used to generate classification models to
validate the varietal origin of coffee beans by NIR spectroscopy. PLS-DA resulted in a CCR
of about 98% on the test set (100% for Arabica and 95% for Robusta), while SIMCA almost
always achieved sensitivity and specificity values above 90% (93% and 96% for Arabica
and 77% and 96% for Robusta) [114].

The use of portable micro-spectrometers such as a micro near-infrared region (mi-
croNIR) spectrometer is a promising technique for solving analytical problems in several
areas of science. Accordingly, microNIRS was successfully used to determine the quality of
Arabica coffee by identification and quantification of adulterations such as Robusta coffee
(in different roasting levels), as well as corn, peels, and sticks. The NIR data were combined
with chemometric evaluation using PCA and PLSR. The developed models were also
applied to monitor the quality of 16 commercial coffee samples. The results obtained using
microNIRS proved the ability of the method to be efficient and capable in the prediction of
adulterations with minimum quantification levels (LOQs of 5–8 wt.%) [115].
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IR and SVM were used to geographically classify different genotypes of Arabica coffee.
The spectra were recorded in the NIR and MIR regions. For data analysis, an SVM was
built using radial basis as kernel function and a one-versus-all multiclass approach. Using
the NIRS-SVM method, all test samples were correctly classified with 100% sensitivity and
specificity, while FTIR-SVM showed slightly lower performance [116]. In terms of Arabian
coffee, for geographic and genotypic ancestry classification, FTIR spectra were analyzed
using a type of ANN (artificial neural network), the radial basis function network (RBF).
The optimized RBFs were able to classify Arabica coffee samples both geographically (100%
correct classification) and genotypically (94.44%) [117,118]. Moreira and Scarminio [119]
examined four different Coffea arabica cultivars using FTIR spectroscopy and HPLC with
diode array detector (DAD). Different extraction mixtures were studied, and the IR spectra
were collected in the 2500–25,000 nm region. PCA was successfully used for pattern
recognition purposes. The chromatographic elution was monitored at 210, 240, and 254 nm
to gain deeper insight into the composition of the samples.

The HSI technique can also be successfully used in combination with different dis-
criminant models to identify coffee beans. Bao et al. [120] applied NIR-HSI technology to
identify different coffee beans of Chinese origin. Different discriminant methods were used
to evaluate the data: PLS-DA, RF, K-nearest neighbor algorithm (k-NN), SVM, and extreme
learning machine (ELM). Prior to the evaluation, a successive projection algorithm (SPA)
was used to select the sensitive wavelengths from the whole spectrum. For each coffee
bean variety, the sensitivity, accuracy, and specificity of the ELM models based on the full
spectrum and the sensitive wavelengths were above 93.5% in both the calibration and the
prediction sets. SVM models applied optimal wavelengths selected using second-derivative
spectra gave even better results (prediction accuracy 98%) [117].

Hawaiian Kona coffee is a highly prized and sought-after variety. Because of its
value, it is often blended with less valuable varieties. ATR-FTIR spectroscopy has been
used to test these blends. Using second derivative and mean-centered data preprocessing
and PLS regression, a prediction model was developed in the 5260–12,500 nm range with
R2 = 0.999 and a mean error of prediction SEP = 0.7% [100]. Mixing good-quality coffee
beans with defective beans (black, unripe, and acidic) is considered adulteration in the same
way as adulteration with any other substance. Ripe, unripe, defective, and non-defective
green coffee beans from Brazil were analyzed by FTIR spectroscopy using transmission and
reflectance measurements. In the latter, ATR and diffuse reflectance (DR) enhancements
were used. PCA and HCA were performed to distinguish between defective and non-
defective coffee samples [102]. Barbin [121] and Ebrahimi [122] applied NIRS to different
blends using Arabica and Robusta coffees and four types of barley at different roasting
degrees. PLSR was used to predict the amount of barley (% w/w) in the mixtures. The best
results were obtained after applying genetic algorithm (GA) variable selection method.

DRIFT has been successfully applied to the detection of adulterated roasted coffee.
The most common adulterants are coffee husks and corn. Using chemometric data pro-
cessing (PCA and LDA) of DRIFT spectra, a 100% detection and prediction model was
developed to discriminate among roasted coffee, pure adulterants (corn and coffee husks),
and adulterated coffee samples [123]. The FTIR method has been used to detect the most
commonly used substances for roasted coffee adulteration (coffee grounds, roasted coffee
husks, roasted maize, and roasted barley) using two different acquisition techniques (ATR
and DR).

Hierarchical models were constructed using two-level PLS-DA models. The first
level included a model that discriminates between unadulterated and adulterated coffee
samples. The second tier included four models that could identify the presence of each
of the adulterants tested, in pure or blended form. The models were constructed using
DR, ATR, and combined DR/ATR data (data fusion). At the first level, each model was
constructed using 310 samples (30 samples of coffee grounds, 45–45 samples of pure
coffee, pure roasted barley, pure roasted maize, and roasted coffee beans, and 100 samples
containing a mixture of the four adulterants and coffee). Each of the four models in the
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second tier was constructed from 265 samples (the same 310 samples as in the first-tier
model-except for 45 pure coffee samples). The percentage of misclassified samples in the
second level models went as low as 0% [90,124].

Sibutramine, a neurotransmitter reuptake inhibitor used to treat obesity, has effects
on the human body such as heart attack and stroke. For this reason, it has been banned
since 2010. Because it has overweight-reducing effects, it is artificially added to green
coffee samples, which are then marketed as “100% natural overweight-reducing effect
products”. A method for detecting this banned adulterant has been developed using a
combination of ATR-FTIR spectroscopy and chemometrics. HCA and PCA were applied to
the 3640–3770 nm region for classification and discrimination using Euclidean distance and
Ward’s algorithm. It was found that the method could be successfully applied to the detec-
tion of the banned substance in the concentration range of 0.375–12 mg sibutramine [125].

Given the price and quality differences, it is essential to have effective tools to dis-
tinguish between green Arabica and Robusta coffee. To this end, the use of multispectral
imaging systems can provide reliable and accurate real-time monitoring at relatively
low cost. Hyperspectral data of green coffee samples were evaluated using PLS-DA to
perform classification and sparse PLS-DA (sPLS-DA) for variable selection. According
to the results, four band pass filters showed the best match with the selected region.
From 33 coffee bean samples (18 Robusta and 15 Arabica), three batches per sample were
selected to be representative of the sample. Two images were taken of each selected
unit, repeated on two different days. Finally, 12 hyperspectral images were included
for each lot, resulting in a dataset of 396 hyperspectral images. Proper strategies for
the definition of the training set and the selection of the most effective combinations
of spectral channels led to satisfactory classification performances (100% classification
efficiency in prediction of the test set) [126].

A special application of Fourier-transform Raman spectroscopy (FT-RS) was used
for the differentiation of botanical species of green and roasted coffee. Samples with
25 different geographic origins were examined. The analyzed Kenyan and Jamaican
coffees were grown at high altitudes (Arabica), while the Australian coffees were grown
at low altitudes (Robusta). It was recognized that the lipid fractions of the coffee species
studied showed differences. In particular, they differed in their kahweol content (diter-
pene), which is present in Arabica beans at 0.1–0.3% dry matter, whereas, in Robusta,
it is only present in trace amounts (<0.01%). Visual inspection of the Raman spectra
of the lipid fraction extracted from Arabica, Robusta, and Liberica samples showed
variations in the mid-infrared region. The spectrum of Arabica contained two charac-
teristic scattering bands at 6380 and 6770 nm, which were found to be similar to the
spectrum of pure kahweol. The spectra were evaluated using PCA. The first principal
component (PC1) explained 93% of the spectral variations. It was observed that the
loading plot of PC1 corresponded to the spectrum of kahweol. As a result of the PCA,
the two groups of coffees analyzed could be clearly distinguished: one group with high
kahweol content (Kenyan and Jamaican samples) and the other group with low kahweol
content (Australian samples) [127].

Most NMR technique-based research is carried out on liquid samples primarily
to determine coffee quality; it is most often used to identify the geographical origin of
roasted coffee and to investigate Arabica–Robusta blend ratios. The first studies on the
geographical origin of roasted coffee were carried out with African, Asian, and American
Coffea arabica samples. The NMR results, evaluated by multivariate statistical analysis,
perfectly distinguished the profile of metabolic aqueous extracts [128]. NMR has proven
to be a versatile and robust tool for the identification of adulterants in foods. 1H-NMR
combined with chemometric tools is a successful technique for the quantification of
coffee adulteration. 1H-NMR analysis of aqueous extracts of roasted and ground coffee
blends of Coffea arabica and Coffea canephora var. robusta was combined with multivariate
statistical analysis to obtain an orthogonal projection to latent structures (OPLS) model
with high predictive power. This approach allowed the evaluation of the composition of
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coffee blends with unknown Arabica and Robusta content based on several chemical
components. Differences in the geographical origin of the samples analyzed did not
affect the determination of the composition of the coffee blends. This approach is a
valid tool for the authentication of roasted and ground Arabica and Robusta coffee
blends [129,130]. In a study, OPLS model was used to correlate sensory parameters
with NMR spectra of roasted Arabica and Robusta coffees from Brazil, Colombia, and
Indonesia. Sourness, saltiness, and astringency were correlated with Arabica coffee
(due to chlorogenic acid, citric acid, malate, formic acid, acetate, trigonelline, arabinose,
and galactose contents), while sweetness, body, and bitterness were correlated with
Robusta coffee (due to lipid, quinine, quinic acid, and mannose contents). Using this
model, the taste of four commercial coffees was correctly estimated, confirming the
correct choice of NMR-based metabolomics to predict the sensory characteristics of
roasted coffee beans [131]. NMR was applied to the geographical identification of 192
roasted coffee samples of different species. The samples came from Asia, Africa, and
the USA. The 1H-NMR spectra were acquired in a fully automated procedure (tuning,
shimming, pulse calibration, and spectral processing) using a 400 MHz spectrometer.
Particular attention was paid to Colombian coffee, which showed good separation from
non-Colombian coffee; PLS-DA models highlighted fatty acids, acetate, and caffeine as
metabolites characteristic of Colombian samples [132].

Kwon et al. [133] used an NMR-based metabolomics approach to investigate the qual-
ity class of Arabica green coffee beans. High-quality green coffee beans were characterized
by high sucrose content and lower γ-aminobutyric acid (GABA), quinic acid, choline,
acetate, and fatty acid content, while lower-quality green coffee beans reported lower
GABA, quinic acid, choline, acetate, and fatty acid content compared to commercially
available coffees.

The 1H-NMR method was also applied to investigation of samples from different
Brazilian states (São Paulo, Minas Gerais, Espírito Santo, Santa Catarina, Bahia, Paraná,
Maranhão, and Paraíba) and four other countries (Spain, Italy, Argentina, and Colombia).
Two different roasting methods were used (medium and dark). The adulterants used
were coffee husks, soya beans, maize, barley, rice, and wheat. The spectrum used for the
authentication of coffee samples was the pre-saturated 1H spectrum. When comparing
the spectra of pure 100% Arabica samples with the spectra of coffee samples adulterated
at a 1:1 weight ratio, it was found that a chemical shift signal was observed in the spectra
of samples containing maize, rice, barley and wheat. This shift occurred in areas which,
as further experiments confirmed, were clearly associated with the starch in maize, rice,
barley, and wheat used as adulterants. The same phenomenon was not observed in
coffee husks, soya beans, and pure coffee, as no starch is present in the composition of
soya beans and coffee husks. In these adulterants, signal shifts were observed at sites
that could be linked to sugars in the endocarp of the grain (in the case of coffee husks) or
to hydrogen atoms in the carbon atoms of the stachyose or sucrose anomer (in the case
of soybeans) [134,135].

1H-NMR was used to investigate the metabolic fingerprinting of Brazilian and Colom-
bian coffee varieties of different qualities. As a result of the evaluation of the data by PCA,
they were able to successfully distinguish among the conventional, superior, and gourmet
groups, as well as between samples with different caffeoylquinic acid, trigonelline, and
quinine levels related to quality [136]. The molecular spectroscopic procedures for the
authentication and adulteration of coffee species and varieties are summarized in Table 7.

The diversity of coffee in both price and quality, as well as in its popularity, results in
an immense need for its rapid quality determination. The above-reviewed publications
clearly present the unique potential of the different molecular spectroscopic methods
combined with chemometric techniques in the quality characterization of coffee from many
various aspects. These include but are not limited to the fast and nondestructive botanical
or geographical origin identification, quality grade determination, or quantification of
composition or intentional compositional manipulations. Coffee beans and tea leaves
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of different origins could be distinguished using the molecular spectroscopic methods,
and their quality parameters could also be predicted. This is essential for the beverage
industry as these are all economic drivers for the preparation of beverages and products
from raw materials. Furthermore, consumer preferences for specific coffee and tea varieties
or blends are an ever-increasing challenge that can be bridged with these methods when
rapid assessment is used in the right way.

5.5. Tea

Tea is the oldest and most consumed beverage in the world [137]. The classic tea is
an article of enjoyment produced from the leaves or buds of the Camellia sinensis plant by
various processes. Green, yellow, and white tea products undergo minimal processing,
whereas oolong and black tea products are oxidized, and Pu-erh tea is fermented [138]. Tea
is chemically a very complex system as it contains caffeine, polyphenols, polysaccharides,
and other nutrients such as proteins, amino acids, lipids, and vitamins [139]. The character
and quality of tea products are determined by the quantity and quality of free amino acids,
total tea polyphenols, soluble sugars, and caffeine [140], which typically depend on the
processing technology of the tea leaves and buds. In the case of tea made from Camellia
sinensis leaves, classification according to oxidation and/or fermentation conditions is an
important criterion, in addition to geographical classification.

Green teas have been discriminated using UV/Vis spectroscopy [141] and FTIR spec-
troscopy in combination with chemometric methods. The results obtained from the un-
supervised pattern recognition techniques (HCA and PCA) clarified the differentiation
of the samples into discriminate clusters in accordance with their geographical origin,
which reflect the notable variation among the green tea samples. SIMCA and PLS-DA as
supervised pattern recognition techniques were adopted to further ascertain the results
obtained from the unsupervised techniques composition [142].

NIR spectra were used to identify green, black, and oolong teas from different ge-
ographical areas in China. PCA and SVM methods were used for pattern recognition
and classification. The identification rate ranged from 90–100% depending on the type
of tea [143,144].

HSI coupled with four kinds of classification methods were applied to detect the vari-
ety and grade of five green teas (Biluochun, Jingshan, Longjing, Queshe, and Sanbeixiang).
Robust models were built for green tea classification using the SVM method on separating
three grades of each green tea with the classification accuracy higher than 93% [145]. Using
visible and near-infrared hyperspectral imaging (Vis/NIR-HSI), five tea categories (green,
yellow, white, black, and oolong tea) were identified on the basis of classification pattern
recognition. The CCR achieved 98.39% [146]. An adaptive improved possibility c-means
(AIPCM) clustering with fuzzy Mahalanobis distance has been proposed for fast, efficient,
and nondestructive identification of different tea varieties of geographical origin for FTIR
spectral classification of tea samples. After MSC data preprocessing, PCA and LDA analysis
were applied and the data were clustered using several fuzzy clustering algorithms. The
maximum accuracy was 98.5% [147].

NIR-HSI has been successfully used to classify, authenticate, and detect adulteration
of tea products produced by different technologies. HSI data were processed by comparing
linear data visualization methods. The oolong, green, yellow, white, black, and Pu-erh teas
studied could be classified into three groups with 97% classification accuracy using a newly
developed classification model (multiclass error-correcting output code model containing
support vector machine (SVM-ECOC)): minimally processed, oxidized, and fermented
products [148]. A simple method based on surface-enhanced Raman spectroscopy (SERS)
has been developed to extract the full spectrum of tea varieties to detect the purity of
samples based on processing and cultivation type. For this purpose, fingerprints of tea
samples from seven different tea species (herbal tea, rosehip, chamomile, lime, green, and
sage, black tea, and Earl Grey green tea) were analyzed using SERS. PCA was used to
separate the individual teal samples [149].
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Visible spectroscopy combined with chemometric data analysis has been successfully
used to identify matcha tea powder adulterants. Matcha is rich in nutrients and is more
expensive than green tea. It is often adulterated using steamed green tea powder. The pres-
ence of steamed tea leaves can be detected by classification methods (PCA-LDA, SIMCA),
and the amount of adulterant in matcha tea can be estimated by PLS regression [150].

Darjeeling black tea is a tea variety known worldwide and is currently listed in both
the Register of Protected Designations of Origin (PDO) and the Register of Protected
Geographical Indications (PGI). As it is a valuable tea, adulteration is often a problem. To
clarify this issue, the NIRS technique using PLS-DA and SIMCA classifications is satisfactory
to distinguish PGI samples from other teas and adulterated Darjeeling. In the adulteration
process, genuine Indian Darjeeling tea is most often blended with various Ceylon teas [151].
Roasted green tea is adulterated with sugar and glucose syrup, which, in addition to the
adulteration, is also extremely dangerous because it increases the risk of moisture sensitivity
and microbiological hazards in tea products. The detection of sugar and glucose syrup is
generally carried out by HPLC, which has a sufficiently high specificity and sensitivity, but
is a time-consuming and expensive method. This has been replaced by FT-NIR spectroscopy.
A prediction model was constructed by PLS regression and optimized by leave-one-out
cross-validation. The identification accuracy of adulterants in roasted green tea was 96%
(sugar) and 100% (glucose syrup) [152]. As in the case of coffee, green tea leaves have been
blended with sibutramine and marketed as a “100% natural” weight loss product. The
ATR-FTIR method combined with chemometric methods also resulted in perfect pattern
recognition in this case [125].

FTIR combined with chemometrics has been successfully used to detect talcum il-
legally added to tea. Smoothing, normalization, and SNV were used to preprocess the
FTIR raw spectra. Before data evaluation, variable selection was performed to improve the
model [153]. The molecular spectroscopic procedures for the authentication and adulter-
ation of Camellia sinensis are summarized in Table 8.

Similarly to coffee, tea is also a broadly consumed drink, raising the need for analytical
techniques providing rapid and nondestructive quality analysis. A wide arsenal of molecu-
lar spectroscopic methods combined with chemometric techniques have been found to be
indispensable in this concept, as explored in the above research studies. The advantages of
these rapid analytical techniques have been clearly proven in the classification of teas with
different botanical and geographical origin or on the basis of their different preparation
technologies, as well as further applications.

6. Future Prospects of Sensor-Based Equipment: Mobile and Online Diagnostics

There has been a steady rise in demand for mobile devices with online technology-
based functions. Such devices have been widely applied for purposes of monitoring
and evaluation in the agro industry [154] as they provide rapid and on-site analysis
for preliminary and meaningful information extraction. The goal is to avoid the use
of expensive and bulky instrumentations that are routinely used by trained personnel
but with the motive of saving cost and time. For these devices, essential prerequisites
are to be compact enough, robust, high temperature-resistant, waterproof, and easy
to clean [155]. Materials having direct contact must also be food-safe. Recently, new
innovative handheld devices based on micro-electro-mechanical systems (MEMS) have
been developed and incorporated into the NIRS fields of application [50] and can be
easily applied with internet access (Figure 5).

Bázár et al. [157] reported the use of an advanced handheld NIRS scanner (Tell-
spec), with a spectral interval of 950–1630 nm, to successfully analyze beef sirloin and
tenderloin samples that were stored at 4 ◦C in plastic bags for a 10 day period with a
93.55% accuracy of LDA classification by days of storage. A handheld fiber-optic NIRS
spectrometer with a spectral range of 700 to 1050 nm was used by [158] for the assess-
ment of fatty acids in 12 market beef samples. These results proved that the optical
data could be applied for breeding, as well as improving beef quality and feedback data
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on beef production. A similar brand of handheld spectrophotometer (SCiOTM), with a
spectral range of 740 nm to 1070 nm, was reportedly used [155] for egg evaluation. It
was observed that the reflectance spectral data of the egg contained important infor-
mation about its shelf-life (storage time), an essential quality of freshness. There were
also noticeable differences in the processed spectral values of the eggs as a function of
storage time.

Figure 5. Flow diagram for the implementation of mobile diagnostics (based on Wijaya et al. [156]).

Tellspec and Texas Instrument’s NIRScan nano scanners possess a wider spectral range
(950–1630 nm) than both the fiber-optic NIRS (700 to 1050 nm) and SCiOTM (740 to 1070
nm), but a narrower range than the indico-pro NIRS (350 to 1800 nm). Tellspec, however,
possesses the advantage of being the post portable in terms of size. Nonetheless, all the
three devices are effective and have a great potential of application in the meat industry.
Both SCiOTM and Tellspec provide an advantage of real-time data transfer onto servers that
can be remotely assessed by the users. The devices can be used for preliminary evaluation
of carcass before they are transferred to the lab for major quality assurance tests.

Miniaturization can be seen in all the analytical technologies, as well as in the
molecular spectroscopic devices. Not only NIRS [159], but also Raman spectrometers
can reach the portable size and may be a highly practical tool in advanced field testing
for contaminants in food industry [160]. Some decades ago, it was the big achieve-
ment of NIR spectroscopy to allow nontechnical personnel to perform routine quality
measurements, but still in lab conditions. Currently, as process analytical technologies
are becoming more required by intelligent industrial systems, tools such as NIRS and
other molecular spectroscopic applications provide great opportunities out of labo-
ratories [161]. Unquestionably, there is a potential of these technologies to reach the
end-users as hidden tools, for example, as part of a smart refrigerator or as an NIR
camera of a smartphone. Novel miniaturization technologies allow all these devel-
opments. However, the biggest challenge remains to prepare predefined calibration
models that work in everyday conditions provided by nonprofessional end-users. This
is an even harsher challenge than required by the industrial applications where, al-
though spectrometers may have to withstand vibration and humid conditions, the
spectral acquisition is nevertheless performed in standardizable way. It also becomes
obvious that, in addition to data scientists and mathematicians preparing sophisticated
calibration models for large spectral databases, classical and practical spectroscopic
experiences remain crucial while planning future applications.
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Table 2. Advantages and disadvantages of different molecular spectroscopy methods.

Important Parameters Advantages Disadvantages

UV/Vis [162,163]

200 nm ≤ λ ≤ 800 nm
absorption
excitation of valence
(bonding) electrons

1. Cheap
2. Relatively simple method
3. Linear relationship between absorbance and

concentration (Lambert–Beer law)
4. Both organic and inorganic molecules

can be measured
5. Selectivity is component dependent

6. The sample quantity is medium/high
7. Requires chemical

sample preparation
8. Only liquid samples can be measured
9. Only possible for the analytes which

have a chromophore
10. Strongly affected by pH, temperature,

contaminants, and impurities.
NIRS [164,165]

780 nm ≤ λ ≤ 2500 nm
diffuse reflection/
transmission/transflection
vibrational energies (bond
length/angle of bond)
infra-active molecule
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HSI [167]

Measuring range: Vis
(400–1000 nm) or NIR/Vis
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and traditional image processing

2. Infer the spatial distribution of content
properties of materials with
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6. Solid/gel samples
7. Mainly surface measurements
8. Mainly surface measurements
9. Special sensors
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12. Small sensitivity
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Table 2. Cont.

RS [168,169]

800 nm ≤ λ ≤ 2500 nm
based on light scattering
Raman-active
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they can
have significant heat dissipation

24. The detection limit is strongly influenced
by the particle size, the chemical and
spatial heterogeneity of the sample, and
the spatial resolution of the image

NMR [170]

nucleus spin energies
nonoptical method

1. Nondestructive
2. Chemical reaction testing
3. Structural analysis
4. Isomerism study: enantiomers
5. Organic chemistry: qualitative analysis
6. Physicochemical tests, reaction kinetics
7. Solid and liquid samples
8. Lower maintenance cost
9. Lower analysis time
10. Easy sample preparation
11. Require very small sample volumes
12. High reproducibility

13. Can be used online
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the sample
15. Data processing, data evaluation complex
16. Expensive instrument
17. Sample requirements are significant
18. Molecular size limitations
19. Real-time data collection results in

broader signals and less clean spectrum
20. Chemical shielding
21. Signal strength is lower compared to

techniques such as optical spectroscopy

Table 3. Overview of molecular spectroscopic techniques for quality determination in meat and fish.

Spectroscopic Technique Investigated Parameter Spectral
Region (nm)

Preprocessing
Method Chemometrics Reference

Ultraviolet/visible/near-
infrared spectroscopy
(UV–Vis–NIR)

Predicting fatty acids in fresh and
freeze-dried beef 400–2400 Not reported ANOVA, PLSR [36]

Accurate determination of the K value of
fish flesh 250–600 SG + MSC iPLS [35]

Detecting bovine meat adulteration with
turkey meat 220–700 SNV PCA, LDA [37]

Fourier-transform near
infrared spectroscopy
(FT-NIRS)

Detection of beef, mutton, camel, and lamb
meat adulterated with pork 1000–2500 SNV+ auto

scaling PCA, PLS-DA, PLSR [47]

Fourier-transform
infrared spectroscopy
(FTIR)

Structural and metabolic
changes in the liver samples of wild and
aqua cultured gilthead sea bream (S. aurata)

2702–10,638 SG-19 points
Spectral peak
analysis and

band assignments
[44]

Hyperspectral imaging
spectroscopy
(HSI)

Prediction of monounsaturated and
polyunsaturated fatty acids of various
processed pork meats

1000–2000 Not reported SVM [38]

Protein content evaluation of processed
pork meats 465–630 Not reported BP-NN, PLSR [39]
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Table 3. Cont.

Spectroscopic
Technique Investigated Parameter Spectral

Region (nm)
Preprocessing

Method Chemometrics Reference

Determination of pH in pork 400–750 Not reported SVR [171]
Muscle type, rigor process, and aging
assessment of lamb 550–1700 MSC, SNV SVM, PLSR [39]

Raman spectroscopy
(RS)

Analyses of prohibited
drugs including enrofloxacin, furazolidone,
and green malachite in tilapia

5000–25,000 Not reported PCA, PLSR [40]

Testosterone propionate and
nandrolone residues in duck meat 5555–25,000 Normalization + D1 SVM [172]

Raman, near-infrared,
and fluorescence
spectroscopy
(RS + NIR + FS)

Predict drip loss and
measure pH of fresh pork, with a secondary
aim to measure intramuscular fat

5291–6666
400–2500
300–500

SG + EMSC + SNV ANOVA, PLSR [173]

Predict drip loss and
measure pH of fresh pork, with a secondary
aim to measure intramuscular fat

5291–6666
400–2500
300–500

SG + EMSC + SNV ANOVA, PLSR [173]

Fourier-transform
infrared spectroscopy
and Raman
spectroscopy
(FTIR + RS)

Species discrimination of meat and bone
meals based on lipid characteristics 5555–18,181 SNV+ auto scaling PCA, PLS-DA [45]

Low-, mid-, and high-level fusion strategies
for combining Raman
and infrared spectroscopy for quality
assessment of red meat

3306–3623
5618–5847
6734–9479

5814–13,333

LBC + SNV + SG-7

Spectral peak
analysis and

band
assignments,

PLSR

[46]

Proton nuclear
magnetic resonance
(NMR)

Metabolite profiling of the post-ovulatory
oocytes of the common carp, Cyprinus carpio Not reported Normalization +

auto scaling
ANOVA, PCA,

PLS-DA [42]

Molecular study of anesthesia in fish 400 MHz Normalization +
auto scaling

ANOVA, PCA,
PLS-DA [43]

Laser-induced
breakdown
spectroscopy

Authentication of salami and
processed sausages 186–900 Not reported PCA, PLSR, LOD,

LOQ [174]

Laser-induced
breakdown
spectroscopy

Discrimination of beef, chicken, and pork
from five different farms 186–900 1st der. PCA, PLSR, LOD,

LOQ [52]

Laser micro-Raman
spectroscopy and
Fourier-transform
spectroscopy

Effect of NaNO2 on protein structure
changes during oxidation of myoglobin

6060–7410
5882–6250 Not reported

Spectral peak
analysis and

band
assignments,

ANOVA

[175]

1st der. = first derivative; ANOVA: analysis of variance; EMSC: extended multiplicative scattering correction;
iPLS: interval partial least squares; LBC: linear baseline correction; LOD: limit of detection; LOQ: limit of
quantification; MSC: multiplicative scatter correction; PCA: principal component analysis; PLS-DA: partial least
squares discriminant analysis; PLSR: partial least squares regression; SG: Savitzky–Golay smoothing; SNV:
standard normal variate; SVM: support vector machine.

Table 4. PLSR prediction of different quality parameters in meat and fish using near infrared
spectroscopy.

Objective of
Study

Spectral
Region

(nm)
Predicted
Parameter

Spectral
Pre-

Treatments
R2

V RMSECV Reference Findings/Implications

Potential of NIR
to predict drip
loss and
intramuscular
(IMF) fat of pork

780–1850
Drip loss

Vacuum drip loss
Intramuscular fat

SNV
0.06
0.12
0.57

1.69 g/100 g
1.00 g/100 g
0.11 g/100 g

[173]

Regression coefficients from NIR
spectroscopy was only meaningful
for IMF models. This was attributed
to noisy spectra from regions
suspected to be drip loss regions

Potential of NIR
in predicting pork
belly softness

780–1900

Lean
Intramuscular fat
Subcutaneous fat

lean
Subcutaneous fat

SNV + DT
SG

SNV + DT
SNV + DT

0.44
0.72
0.65
0.66

0.67 g/100 g
0.44 g/100 g
0.51 g/100 g
0.49 g/100 g

[33]

NIR offers the option of a
noninvasive pork belly softness
classification. This can be used for
export and merchandise in the
pork industry
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Table 4. Cont.

Objective of
Study

Spectral
Region

(nm)
Predicted
Parameter

Spectral
Pre-

Treatments
R2

V RMSECV Reference Findings/Implications

Determine the salt
content in fish
water phase in
marinated
herring fillets

1000–2500 Salt SNV 0.91 0.27 g/100 g [176]

NIR wavelength in the range of
1170–1290 nm holds information
related to the changes in salt, but
spectral ranges of 1180–1290 nm
contained information associated
with the change in salt of herring
marinade. These can be used
markers of quality in similar
fish species

Determination of
fat content in
commercial
chicken
hamburgers

1000–2500 Fat
iPLS

(MSC)
iSPA-PLS

(MSC)

0.76
0.94

3.59 g/100 g
1.59 g/100 g [177]

Successive projections algorithm for
interval selection in partial least
squares regression (iSPA-PLS)
showed superior predictive
performance and can be used in
tandem with NIR for quality control
purposes in chicken hamburger

Classification of
intact chicken
breast fillets
(pectoralis major)
with PC scores
extracted from 5
quality traits: color,
pH, drip loss (DL),
expressible fluid
(EF), and
salt-induced water
(SIW) as quality
parameters

400–2500

Color
pH

Drip loss
Expressible

fluid

Not stated
0.77
0.40
0.52
0.83

1.91
0.19

0.86 g/100 g
0.36

[49]

PC1 could represent the measured
quality traits well and generated
classification results similar to or
better than those based on the
quality traits alone

Evaluate NIR
reflectance
spectroscopy as a
tool for detecting
lipid peroxidation
of light lamb meat

400–2500 Lipid
peroxidation Not stated 0.77 0.406 [178]

NIR spectroscopy was able to
confirm lipid oxidation of light
lamb meat measured using the
thiobarbituric reactive substances
(TBARS) method. Thus, NIR was
able to detect analytes at
concentrations of parts per million,
although the model could be
improved as the authors reported
that it could have been over fitted

Evaluate the
feasibility of NIR
spectroscopy to
predict Sodium
(Na) content in
commercial processed
meat sample

850–1050

Fresh meat
Cured meat

Dry meat
boiled

sausages

SNV + DT
SNV + DT

MSC
None

0.91
0.92
0.97
0.40

0.08 g/100 g
0.12 g/100 g
0.07 g/100 g
0.09 g/100 g

[59]

NIR is more adaptable for
predicting Na content in fresh,
cured, and dry meat than in
sausages. Similar studies on fresh
sausages can help understand this
important phenomenon, as Na in
meat products has gained attention
for health reasons

Predict chicken color 400–2498

Color (intact
chicken)

Color
(minced
chicken)

None
MSC
None
MSC

0.91
0.88
0.89
0.87

1.99
2.30
1.93
2.09

[60]

Spectral preprocessing techniques
did not improve the robustness of
prediction methods when compared
to the raw spectra

Predict the physical
traits of yak meat
using NIRS

1000–1800
Color

Saturation
index

Shear force

OSC + DT
+ 1st der.
D1 + OSC
D1 + OSC

0.71
0.85
0.46

1.90
1.63
27.43

[179]

NIR spectra predictive performance
was worst for shear force
performance although it was better
for saturation index

Predict protein,
moisture and lipid
levels in
Tilapia fillets

1000–2500

Moisture
Crude
protein
Lipid

SNV +
MSC

0.95
0.30
0.97

0.87
0.55 g/100 g
0.70 g/100 g

[180]

NIRS showed good prediction level
for moisture and lipid, but weaker
results for crude protein in
tilapia fillets

1st der.: first-order derivative; DT = detrend; MSC = multiplicative scatter correction; OSC = orthogonal signal cor-
rection; R2

V = coefficient of determination of cross-validation; SG = Savitzky–Golay smoothing; SNV = standard
normal variate.
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Table 5. Overview of molecular spectroscopic techniques for authentication and adulteration deter-
mination in cultivated mushroom.

Spectroscopic
Technique

Investigated
Parameter

Spectral
Region (nm)

Pre-Processing
Method Chemometrics Results Reference

Vis/NIR
spectroscopy

classification
Agaricus
bisporus quality:
water content,
Brix%

400–1000 SNV PCA, PLS No data on classification [67]

Fourier-
transform
near-infrared
spectroscopy
(FT-NIR)

classification
Pleurotus
ostreatus
cultivar
candidates

1111–2630 SG-2nd der. PCA, LDA,
HCA

Probability
Free amino acid: 100%
Cysteine, methionine,
proline: >90%
TPC, FRAP > 83%

[68]

Near-infrared
spectroscopy
(NIR)

adulteration
“porcini”
mushroom

1111–2500 SNV, SG-11
points 2nd der.

PCA,
PLS-DM,
UNEQ,
SIMCA

PCA: Tylopilus spp. and
the BEAS samples are well
separated, but there is
more overlap with the
Boletus violaceofuscus
samples
sensitivity
UNEQ: 100%
SIMCA: 81.8%

[75]

Fourier-
transform
mid-infrared
spectroscopy
(FTIR)

classification
aging;
fresh vs.
refrigerated

2500–3230
3700–5880

5880–25,000
SNV RF, PCA,

PLS-DA
sensitivity: 89.2%
specificity: 91.2% [69]

classification
geographical
origin:
B.edulis vs. B.
tomentipes

5555–25,000 MSC, 2nd der. PCA, HCA,
PLS-DA Accuracy: 100% [71]

authentication
geographical
Boletus
tomentipes

2700–3570
4170–4350

4760–25,000

SNV, SG-2nd
der.

PCA, SVM,
RF Accuracy > 94% [72]

classification
Boletaceae 2500–25,000 SG-15 points,

2nd der., SVM Accuracy > 98% [74]

classification
geographical
origin Boletaceae

2500–25,000 SNV, SG-15
points, 2nd der.,

PCA, SVM,
PLS-DA Accuracy > 99% [73]

Diffuse
reflectance
Fourier-
transform
mid-infrared
spectroscopy
(DRIFT)

classification
Pleurotus taxa

5555–5880
7353–7782
8890–9360

10,530–15,380

SG-95 points HCA Successful classification [70]

HCA = hierarchal cluster analysis; PLS-DM = partial least squares density modeling; RF = random forest; SG-2nd
= Savitzky–Golay second derivative; SVM = support vector machine; UNEQ = modeling version of quadratic
discriminant analysis.
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Table 6. Overview of molecular spectroscopic techniques for authentication and adulteration deter-
mination in spices.

Spectroscopic
Technique

Investigated
Parameter

Spectral
Region (nm)

Preprocessing
Method Chemometrics Results Reference

UV/Vis spectroscopy
classification
geographical origin
turmeric

200–800 SNV PCA, HCA Unsuccessful
clustering [78]

Near-infrared
spectroscopy
(NIRS)

classification
geographic origin
saffron

1610–2530 2nd der. PCR

Pattern
recognition for
Iranian samples
100%

[77]

adulteration
chili 1110–2500 SNV, MSC, SG PCA, PLS-DA,

PCR, PLS LOD 0.25% [181]

adulteration
turmeric 1350–1550 SNV, MSC, 1st

der. 2nd der. PCA, PCR, PLSR
Prediction ability:
Q2 = 0.993

[87]

adulteration
black pepper 1100–2300 BC PCA

Discrimination:
pepper vs.
papaya: 100%

[86]

833–1100 SNV, SG-der PCA, OPLS-DA
Prediction ability:
Q2 = 0.98

[88]

classification
geographic origin
cinnamon
adulteration
cinnamon

944–1640
1850–2500 Not reported PCA, PLS,

PLS-DA, PNN,

Discrimination:
99.25%;
R2: 0.97

[83,84]

adulteration
coriander seed

A. 740–1070
B. 1350–2550
C. 1100–1350

1350–1650
1550–1950
1750–2150
2000–2450

SNV, SG-35
points, 1st der.,

2nd der.
PLS-DA, PLS-R Discrimination:

100% [85]

Fourier-transform
mid-infrared
spectroscopy (FTIR)

classification
geographical origin
turmeric

2500–25,000 SNV PCA, HCA Unsuccessful
clustering [89]

adulteration
paprika 2500–15,400 SNV NAS, HLA R2 = 0.97

RMSEP= 0.05% [89,90]

adulteration
turmeric

6262–10,030
6060–14,280

SG-3 points
Not reported

Single peak
intensity, ratio of

peak intensity,
and intensity at a

neutral band
PLSR

R2 = 0.95
R2 = 0.97 and R2

= 0.95

[96]
[84]

Attenuated total
reflectance
Fourier-transform
infrared spectroscopy
(ATR-FTIR)

adulteration
cinnamon 2850–5560 SNV, MSC, SG-4

points 2nd der. PLSR R2: 0.96 [84]

adulteration
black pepper 3570–5560 SNV, SG-der PCA, OPLS-DA

Prediction ability:
Q2 = 0.97

[88]

adulteration
oregano 5560- 11,100 SNV, SG-2nd der. PCA, OPLS-DA Q2 = 0.96

RMSECV = 9.7% [90,92]

Diffuse reflectance
Fourier-transform
mid-infrared
spectroscopy (DRIFT)

adulteration
saffron 2500–16,700 BC, MC, MSC,

SNV, SG 1st der.
PCA, PLS-DA,

PLS, siPLS Discrimination: 99% [90,91]

Raman spectroscopy (RS) adulteration
paprika 5550–11,100 Not reported PLSR %CC = 89 [93]

Raman hyperspectral
imaging system (R-HSI)

adulteration
paprika 785 BC QRM R2 > 0.98 [85,89]

Fourier-transform
raman spectroscopy
(FT-RS)

adulteration
chili 5560–12,500 SNV, MSC, SG PCA, PLS-DA,

PCR, PLS LOD 0.88% [181]

adulteration
turmeric 3570–11,760 SG-3 points, MSC

Single peak
intensity, ratio of

peak intensity,
and intensity at a

neutral band

R2 = 0.93 [96,98]

Sensor combining
Raman spectroscopy
(SERS)

adulteration
paprika

8100–8260
13,800–14,100 BC PCA, PLSR Q2 = 0.978 [85]
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Table 6. Cont.

Spectroscopic
Technique

Investigated
Parameter

Spectral
Region (nm)

Preprocessing
Method Chemometrics Results Reference

Nuclear magnetic
resonance (1H-NMR)

classification
geographical origin
saffron

600 MHz MC PCA Not reported [80]

classification
geographical origin
turmeric

400 MHz
500 MHz

Not reported
BC

PCA, HCA
PLS-DA,

OPLS-DA
Classification: 100%
Q2: 0.706

[78]
[79]

classification
geographical origin
cinnamon

600 MHz MC PCA, OPLS-DA Q2 = 0.65 [81]

adulteration
saffron 500 MHz Not reported PCA, PLS-DA sensitivity: 100% [99]

BC = baseline correction; % CC: percentage of correctly classified samples, HCA = hierarchal cluster analysis;
HLA = hybrid linear analysis, MC = mean centering, MSC = multiplicative scatter correction; NAS = a net
analyte signal; OPLS-DA =orthogonal partial least square discriminant analysis; PLS-DA = partial least squares
discriminate analysis; QRM = quadratic regression model; SG-2nd = Savitzky–Golay; siPLS = synergy interval
PLS; SNV = standard normal variate; SVM = support vector machine; UNEQ = modeling version of quadratic
discriminant analysis.

Table 7. Overview of molecular spectroscopic techniques for authentication and adulteration deter-
mination in coffee bean, roasted coffee, and grounded coffee.

Spectroscopic
Technique

Investigated
Parameter

Spectral
Region (nm)

Pre-Processing
Method Chemometrics Statistical Parameters Reference

Fourier-transform
near-infrared
spectroscopy
(FT-NIR)

identification
geographical
origin

1000–2500

SNV, MSC,
SG-1st der.,
SG-2nd der.,

SNV + SG-1st der.,
SNV + SG-2nd der.,
MSC + SG-1st der.,
MSC + SG-2nd der.

PLS-DA
Continent-based
classification > 98%
City-based classification
100%

[110]

identification
geographical
origin
roasting type

800–2500 No preprocessing PCA, LDA
Roasting method 100%
Geographical origin:
100%

[111]

identification
Arabica/Robusta
ratio

1580–1750,
1820–1890
1970–2240

SNV, 1st der., BC, 2nd
der. PLS

RMSECV: 4.58%
RMSEP: 4.34%
R2: 0.97
Bias: −4.10−3

[112]

identification
coffee leaves 800–2500 SG-17 points 2nd der. PCA, SIMCA Classification rate: 100% [113]

Near-infrared
spectroscopy (NIRS)

classification
geographical
origin

1100–2498 MSC SVM, PCA
SV: 10–25
Accuracy: 1.0000
SENS: 1.0000
SPEC: 1.0000

[116]

authentication
geographic and
genotypic origin
Arabica

1100–2498 MSC + SG-2nd PLS-DA

Geographic origin
(Sample from Londrina
-south of Brazil):
RMSEP: 0.1024
SENS: 1.0000
SPEC: 1.0000
Genotip origin (IA59
cultivated variety)
RMSEP: 0.1585
SENS: 1.0000
SPEC: 1.0000

[106]

classification
Robusta varieties 1000–2500

MSC, EMSC, SNV
SG-15 points 1st der.

OSC

PCA
PLS-DA;

SIMCA, SOM,
SVM,

MCC
SIMCA: 0.922–1.000
PLS-DA: 0.430–1.000 (1st)
PLS-DA: 0.841–1.000
(OSC)
SVM (4PCs): 0.922–1.000
SOM: 1.000

[107]
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Table 7. Cont.

Spectroscopic
Technique

Investigated
Parameter

Spectral
Region (nm)

Pre-Processing
Method Chemometrics Statistical Parameters Reference

authentication
roasting
conditions,
geographical
origin
varietal origin

1000–2500 SNV
ASCA,

PLS-DA
SIMCA

Classification: 98%
SENS > 0.9000
SPEC > 0.9000

[114]

authentication:
geographical
origin
farming system

1400–1500
SNV, Detrending,
SG.9 points, LDA,

LDA-SVM,
LDA-kNN

PLS-DA geographical origin. 39%
farming system: 89% [108]

authentication
specialty type 900–1650 SG-11 points 2nd der. PCA, HCA,

SIMCA, ED CCR: 87–100% [109]

adulteration
peels/sticks, corn,
Robusta coffee in
three roasting
levels

908–1676 SG-7 points 1st der. PCA, PLS

adulterant with
peels/sticks
RMSEP: 11.4 %w/w
R2: 0.8589
adulterant with corn
RMSEP: 4.0 %w/w
R2: 0.9788
roasting level
RMSEP: 2.8–6.6% w/w
R2: 0.9700–0.9925

[115]

adulteration
with barley

1660–1740
2050–2090
2130–2340

No data pretreatment PLS + GA RMSEP: 0.8–1.4 %, w/w [121,122]

Fourier-transform
mid-infrared
spectroscopy (FTIR)

classification
geographical
origin

5560–12,500 MSC SVM, PCA
SV: 34–55
Accuracy: 0.9504–0.9835
SENS: 08889–1.0000
SPEC = 0.9412–1.0000

[116]

classification
geographical
origin
genotypic origin

2670–13,300 SNV
RBF

SIMCA
MLP

geographically 100%
genotypically 94.44% [118]

identification
traditional vs.
genetically
modified
cultivars

2780–3130
6250–9090 No data pretreatment PCA Not reported [119]

Diffuse reflectance
Fourier-transform
mid-infrared
spectroscopy (DRIFT)

adulteration
with barley, corn,
coffee husks

3333–3570
5560–14,300 SNV, BC PCA Recognition and

prediction 100% [123]

Attenuated total
reflectance
Fourier-transform
infrared spectroscopy
(ATR-FTIR)

authentication
geographical
origin

3230–3640 no data pre-treatment PCA, SIMCA Classification rate: 100% [101]

adulteration
Sibutramine 3640–3770 SNV + 1st der. HCA, PCA,

k-NN Accuracy: 100% [125]

adulteration
defective and non-
defective Arabica
coffee bean

3230–3310
5560–5630
6440–6750

BC, SNV PCA, HCA Accuracy: 100% [102]

adulteration
roasted barley
roasted maize 2500–14,300 SNV PLS-DA

HM, DF

First-level models:
unadulter-
ated/adulterated
misclassification:
ATR: 4.5%; DR:3.3%
Second-level models
Identity of each specific
adulterant
Misclassification: 0%

[90,124]

adulteration
blends 5260–12,500 1st der., 2nd der. PCR, PLS R2 = 0.999 [100]
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Table 7. Cont.

Spectroscopic
Technique

Investigated
Parameter

Spectral
Region (nm)

Pre-Processing
Method Chemometrics Statistical Parameters Reference

NIR hyperspectral
imaging system
(NIR-HSI)

classification
Arabica/Robusta

1150; 1200;
1250; 1400 Not reported PLS-DA;

sPLS-DA
Average spectra
EFFCV: 97.3–99.3
EFFTEST: 94.0–98.3

[126]

classification
Arabica/Robusta 900–1700 MA, EMD, MF, WT SVM Classification: 88.4–90.9% [117]

classification
Arabica/Robusta 874–1734 Not reported

PLS-DA, RF,
SVM, k-NN,

ELM
Classification: 97% [120]

Fourier-transform
Raman spectroscopy
(FT-RS)

botanical origin:
Arabica/Robusta

5880–7140
6380; 6770 BC, SNV, PCA PC1 = 93%; PC2 = 3%

Accuracy: 100% [127]

Nuclear magnetic
resonance (NMR)

origin
Arabica/Robusta

400 MHz
7.85 ppm,
9.20 ppm

Not reported PCA,
PLS-DA

SEN: 95–95%
SPEC: 96–97% [132]

geographical
origins
Arabica/Robusta
and blends

500 MHz Not reported OPLS-DA Classification: 100% [128,130]

classified
according to
quality

5.29–5.43
ppm

6.55 ppm
8.77 ppm
9.12 ppm

Signal alignment, area
normalization, auto
scaling of the data

PCA

Lipids, organic and
caffeoylquinic acids:
unique characteristics in
order to discriminate
them from the other
samples
gourmet/superior
Quality samples had as
descriptors the malic,
citric and caffeoylquinic
acids

[136]

authenticity
Arabica

60 MHz,
600 MHz;
3.16 ppm

Not reported Not reported Accuracy: 100% [135]

authenticity 600.13 MHz Mean centering,
smoothing, SNV PCA, SIMCA Classification: 100% [134]

ASCA = ANOVA simultaneous component analysis; BC = baseline correction; CCR = correct classification rate;
DF = data fusion; ED = Euclidean distance; EDF = empirical mode decomposition; EFFCV = classification efficiency
values of cross-validation; EFFTEST = classification efficiency values of test validation; EMSC= extended multiplica-
tive scattering correction; EX/EM = excitation–emission pairs; GA = genetic algorithm; HCA = hierarchical cluster
analysis; HM = hierarchical models; k-NN = k-nearest neighbors; LDA = linear discriminant analysis; MA = moving
average smoothing; MCC = Matthews correlation coefficient; MF = median filter; MSC = multiplicative scatter
correction; NMC = number of misclassifications; NPLS-DA = superior order or N Partial least squares or multi-
linear PLS discriminant analysis; OPLS-DA = orthogonal projections to latent structures discriminant analysis;
OSC = orthogonal signal correction; PARAFAC = parallel factor analysis; RBF = radial basis function network;
SENS = sensitivity; SG-1st der. = Savitzky–Golay first derivative; SG-2nd der. = Savitzky–Golay second derivative;
SIMCA = soft independent modeling of class analogies; SNV = standard normal variation; SPEC = specificity;
sPLS-DA = sparse PLS-DA; SV = support vectors; UPLS-DA = unfolded partial least squares with discriminant
analysis; WT = wavelet transform.

Table 8. Overview of molecular spectroscopic techniques for authentication and adulteration deter-
mination in tea.

Spectroscopic
Technique Investigated Parameter Spectral

Region (nm)
Pre-Processing

Method Chemometrics Results Reference

UV/Vis
spectroscopy

identification
green tea varieties 200–800 - PCA, RF, PLSR

Successful
discrimination of
3 varieties from 5

[141]

authentication
green tea varieties

200–400,
400–800 PCA, HCA Not reported [142]

adulteration:
Matcha vs. green tea 500–700 - PCA, LDA,

SIMCA, PLS Accuracy: 100% [150]
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Table 8. Cont.

Spectroscopic
Technique Investigated Parameter Spectral

Region (nm)
Pre-Processing

Method Chemometrics Results Reference

Fourier-transform
near-infrared
spectroscopy
(FT-NIRS)

adulteration:
sugar and glucose syrup 1450–2440

SNV, MSC,
MIN/MAX, 1st der.,
2nd de., 1st + SLS,

1st +SNV, 1st +
MSC

PLS
Accuracy: 96%
(sugar) 100%
(glucose syrup)

[152]

Near-infrared
spectroscopy
(NIRS)

identification
green tea varieties 1000–2500 SNV, MSC,

SG-1st PCA, RF, PLSR
Successful
discrimination of
all 5 varieties

[141]

identification
green, black, and
Oolong tea varieties

9090–2500 SNV, SG-1st,
SG-2nd SVM, PCA

Identification rate:
green tea: 95%
black tea: 100%
Oolong tea: 90%

[143,144]

adulteration:
Darjeeling vs.
Ceylon tea

1000–2000

SNV, SG-15 points,
1st, 2nd der.

SNV + 1st der. +
mean centering

PLS-DA, SIMCA
Correct
classification:
92.3–100%

[151]

Fourier-transform
mid-infrared
spectroscopy (FTIR)

authentication
green, yellow, white,
black, and Oolong tea

2500–25,000 SNV PCA, HCA,
PLS-DA, SIMCA

Modeling power
nearly 0.85 [146]

authentication
different tea varieties
geographical origin

2500–7520
7520–25,000 MSC PCA, LDA,

AIPCM Accuracy 98.5% [147]

adulteration:
talcum 9480–10,100 smoothing, SNV PCA, PLS, biPLS,

CARS, SPA R2: 0.963 [153]

Attenuated total
reflectance
Fourier-transform
infrared
spectroscopy
(ATR-FTIR)

adulteration
sibutramine 3640–3770 SNV + 1st der. HCA, PCA,

k-NN Accuracy: 100% [125]

NIR hyperspectral
imaging system
(NIR-HSI)

classification
Oolong, green, yellow,
white, black, and Pu-erh

950–1760 Not reported

PCA, MDS,
t-SNE, ISOMAP,

ECOC, SVM,
SVM-ECOC

Accuracy 97.41 ±
0.16% [148]

classification
green tea 380–1030 Not reported SVM, CT, LDC,

k-NN Accuracy > 93% [145]

classification
fermentation degree

589, 635,
670, 783 SNV PCA, LDA,

Lib-SVM, ELM CCR > 98% [146]

Surface-enhanced
Raman
spectroscopy
(SERS)

classification
processing (black,
green) and cultivation

5000–25,000 baseline correction
derivatization PCA Identification

rate:100% [149]

AIPCM = adaptive improved possibilistic c-means; biPLS = backward interval partial least squares;
CARS = competitive adaptive reweighted sampling algorithm; CCR = correct classification rate;
CT = classification tree; ELM = extreme learning machine; ISOMAP = isometric mapping; k-NN = k-nearest
neighbor; LDC = linear discriminant classification; Lib-SVM = library support vector machine;
MDS = multidimensional scaling; MIN/MAX = minimum/maximum normalization; MSC = multiplicative
scatter correction; RF = random forest; SG-1st, Savitzky–Golay first derivative; SG-2nd Savitzky–Golay second
derivative; SLS = straight line subtraction; SNV = standard normal variation; SVM = support vector machine;
SPA= successive projections algorithm; t-SNE = nonlinear t-distributed stochastic neighbor embedding.

7. Conclusions

Of the molecular spectroscopic techniques presented, NIRS, IR, and NMR stand
out in particular for the identification of geographical origin, compositional analysis,
authentication, and the detection of adulteration. UV/Vis and RS techniques have been
sparely applied in these areas, but their potential is not negligible. Clearly, from this review,
the different spectroscopic techniques have proven to be capable in the monitoring of
geographical origin, compositional qualities, conditions of production, and conditions of
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storage for meat, fish, mushroom, spices, coffee, and tea. As these products are highly sorted
and prone to certain forms of adulteration, which can result in severe health consequences,
molecular spectroscopic tools could be an efficient and promising tool to guarantee that
meat and fish products are safe before reaching the consumer.

Perhaps, the critical need for preprocessing and chemometric analysis may be among
the dominant challenges when non-experts use these methods. However, many programs
have simplified the application of these preprocessing methods and chemometric tech-
niques such that, even with little expertise, the instruments can be successfully used for
food quality monitoring. As outlined in this review, baseline correction, standard normal
variate, multiplicative scatter correction, Savitzky–Golay smoothing, and derivation are
the most commonly used data preprocessing methods for the evaluation of spectral data.
Quantitative and classification chemometric evaluation methods have been used to classify
and predict different quality criteria in meat, fish, coffee, tea, mushroom, and spices. Lastly,
the emergence of handheld versions of these spectroscopic techniques further highlights
their potential and advantages, as the portable versions present the unique advantage
of rapid and on-site analysis for preliminary and meaningful information extraction, in
addition to all the other existing advantages of the techniques.
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Abbreviations

% CC Percentage of correctly classified samples;
1st der First derivative;
AIPCM Adaptive improved possibility c-means;
ANN Artificial neural network;
ANOVA Analysis of variance;
ASCA ANOVA simultaneous component analysis;
ATR-FTIR Attenuated total reflection Fourier-transform infrared;
BC Baseline correction;
biPLS Backward interval partial least squares;
BP-NN Backpropagation neural network;
CARS Competitive adaptive reweighted sampling algorithm;
CASSI Coded aperture snapshot spectral imaging;
CCDs Charge-coupled devices;
CCR Correct classification rate;
CIE Commission on Illumination;
CODEX Codex Alimentarius;
CT Classification tree;
CTDs Sensitive charge transfer devices;
DA Discriminant analysis;
DAD Diode-array detector;



Processes 2022, 10, 214 34 of 42

DART-MS Direct analysis in real time mass spectrometry;
DD-SIMCA Data-driven soft independent modeling of class analogy;
DF Data fusion;
DR Diffuse reflectance;
DRIFT Diffuse reflectance Fourier-transform infrared spectroscopy;
DT Detrend;
ED Euclidean distance;
EDF Empirical mode decomposition;
EFFCV Classification efficiency values of cross-validation;
EFFTEST Classification efficiency values of test validation;
ELM Extreme learning machine;
EMSC Extended multiplicative scattering correction;
EX/EM Excitation–emission pairs;
FAO Food and Agriculture Organization;
FDA Food and Drugs Authority;
FIR Far-infrared;
FRAP Ferric ion reducing antioxidant power;
FT Fourier transformation;
FT-RS Fourier-transform Raman spectroscopy;
GA Genetic algorithm;
GC-FID Gas chromatography with flame ionization detection
GC-MS Gas chromatography–mass spectrometry;
GC-TOF-MS Gas chromatography–time-of-flight mass spectrometry
HCA Hierarchical cluster analysis;
HIS Hyperspectral imaging;
HLA Hybrid linear analysis;
HM Hierarchical models;
HPLC High-performance liquid chromatography;
HPLC-DAD High-performance liquid chromatography with diode-array detection
HPLC-MS High-performance liquid chromatography– mass spectrometry;
iPLS Interval partial least squares;
ISO Organization for Standardization;
ISOMAP Isometric mapping;
k-NN k-nearest neighbors algorithm;
LBC Linear baseline correction;
LBD Laser breakdown;
LC Liquid chromatography;
LDA Linear discriminant analysis;
LDC Linear discriminant classification;
Lib-SVM Library support vector machine;
LOD Limit of detection;
LOQ Limit of quantification;
LVF Linear variable filters;
MA Moving average smoothing;
MALDI-TOF-MS Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry;
MC Mean centering;
MCC Matthews correlation coefficient;
MDS Multidimensional scaling;
MEMS Micro-electro-mechanical systems;
MF Median filter;
MIN/MAX Minimum/maximum normalization;
MIR Middle infrared;
MRI Magnetic resonance imaging;
MSC Multiplicative scatter correction;
NAS Net analyte signal;
NIR Near-infrared;
NIRS Near-infrared spectroscopy;
NMC Number of misclassifications;
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NMR Nuclear magnetic resonance;
NPLS-DA Superior order or N partial least squares or multilinear PLS discriminant analysis;
OPLS-DA Orthogonal partial least square discriminant analysis;
OSC Orthogonal signal correction;
PARAFAC Parallel factor analysis;
PCA Principal component analysis;
PDO Protected Designations of Origin;
PGI Protected Geographical Indications;
PLS-DA Partial least squares discriminate analysis;
PLS-DM Partial least squares density modeling;
PLSR Partial least squares regression
PTR-MS Proton transfer reaction mass spectrometry;
QRM Quadratic regression model;
R2

V Coefficient of determination of cross-validation;
RBF Radial basis function network;
RF Random forest;
RMSECV Root-mean-square error of cross-validation;
RRS Resonance Raman spectroscopy;
RS Raman spectroscopy;
SENS Sensitivity;
SEP Mean error of prediction;
SERRS Surface resonance-enhanced Raman spectroscopy;
SERS Surface-enhanced Raman spectroscopy;
SG Savitzky–Golay smoothing;
SG-1st der Savitzky–Golay first derivative;
SG-2nd der Savitzky–Golay second derivative;
SID Spectral information divergence;
SIMCA Soft independent modeling of class analogy;
siPLS Synergy interval PLS;
SLS Straight line subtraction;
SMA Self-modeling mixture analysis;
SNV Standard normal variate;
SOM Self-organizing map;
SPA Successive projection algorithm;
SPEC Specificity;
sPLS-DA Sparse PLS-DA;
SV Support vectors;
SVM Support vector machine;
SVM-ECOC Multiclass error-correcting output code model containing support vector machine;
t-SNE Nonlinear t-distributed stochastic neighbor embedding
UNEQ Modeling version of quadratic discriminant analysis;
UPLS-DA Unfolded partial least squares with discriminant analysis;
WHO World Health Organization;
WT Wavelet transform
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