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Abstract: The rapid advancement of genetically modified (GM) technology over the years has raised
concerns about the safety of GM crops and foods for human health and the environment. Gene
flow from GM crops may be a threat to the environment. Therefore, it is critical to develop reliable,
rapid, and low-cost technologies for detecting and monitoring the presence of GM crops and crop
products. Here, we used visible near-infrared (Vis-NIR) spectroscopy to distinguish between GM
and non-GM Brassica napus, B. juncea, and F1 hybrids (B. juncea X GM B. napus). The Vis-NIR spectra
were preprocessed with different preprocessing methods, namely normalization, standard normal
variate, and Savitzky–Golay. Both raw and preprocessed spectra were used in combination with
eight different chemometric methods for the effective discrimination of GM and non-GM plants.
The standard normal variate and support vector machine combination was determined to be the
most accurate model in the discrimination of GM, non-GM, and hybrid plants among the many
combinations (99.4%). The use of deep learning in combination with Savitzky–Golay resulted in 99.1%
classification accuracy. According to the findings, it is concluded that handheld Vis-NIR spectroscopy
combined with chemometric analyses could be used to distinguish between GM and non-GM B.
napus, B. juncea, and F1 hybrids.

Keywords: Brassica napus; Brassica juncea; genetically modified crops; F1 hybrid; Vis-NIR spec-
troscopy; chemometrics; deep learning

1. Introduction

Brassica juncea L. Czern (Brown Mustard) is an important annual crop and is an
outcome of hybridization between the diploid Brassica species B. rapa (AA, 2n = 20) and B.
nigra (BB, 2n = 16) followed by spontaneous hybridization with chromosome doubling [1].
In China and Korea, wild B. juncea is a natural weedy species widely found along roadsides
or empty lands [2,3]. It is known to have the highest potential for gene transfer from B.
napus after B. rapa [4]. It has previously been reported that conventional and transgenic B.
napus hybridize with B. juncea spontaneously or by hand pollination [5–8]. Recently, Tang
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et al. [9] found the estimated frequencies of natural gene flow from the genetically modified
(GM) B. napus to 10 different B. juncea cultivars in the field experiment varied from 0.08 to
0.93%. The transgenic hybrids’ ability to persist is determined by their fitness as crop–wild
hybrids [10]. Little is known about the fitness of the F1 hybrid between B. juncea and B.
napus in the environment. According to Lim et al. [2], seeds from a hybrid of B. juncea and
GM B. napus have shown an increase in dormancy and overwintering traits, suggesting
that they could become soil seed banks. Seeds in such a seed bank can germinate again if
they meet a favorable environment, leading to the formation of a feral population. As a
result, the transgene may spread across the ecosystem. If the flowering period of B. juncea
overlaps with that of B. napus, there is a possibility of forming hybrids with GM B. napus
and releasing them into the environment. If GM B. napus and hybrids (B. juncea X GM B.
napus) can be quickly identified and removed, it will be useful to avoid the unintentional
environmental release of transgenes and promote the safe management of GM B. napus.

Various methods have been used to detect genetically modified organisms (GMOs),
including enzyme-linked immunosorbent assays (ELISA), lateral flow strips, biosensors,
Western blots, real-time PCR, qualitative polymerase chain reaction (qPCR), microarrays,
electrophoresis, Southern blots, liquid chromatography, and gas chromatography [11].
Nowadays, spectroscopy is one of the rapid, accurate, and nondestructive methods for
distinguishing between GM and non-GM crops that does not require complex sample
processing [11]. Spectroscopy-based GMO identification is not to detect changes in DNA or
single proteins but to detect unknown structural changes due to genotype alterations
generated by the introduction of transgenes for specific traits [12]. Generally, a vast
number of spectroscopy methods are available for detecting structural changes in different
samples, including absorption spectroscopy, photoacoustic spectroscopy, light-induced
thermoelastic spectroscopy, and photothermal spectroscopy [13–15]. Among them, near-
infrared (NIR) spectroscopy working with the principle of absorption spectroscopy is the
most common for the detection of GMOs [11]. NIR spectroscopy coupled with chemometric
analyses was found to be effective in discriminating various types of GM and non-GM
crops with very high accuracy [11,16,17]. To distinguish transgenic soybean oils from
non-transgenic ones, Luna et al. [18] used NIR and support vector machine discriminant
analysis (SVM-DA). Later, Garcia-Molina et al. [19] used NIR spectroscopy in combination
with partial least square (PLS) analysis to successfully distinguish low gliadin wheat grain
from non-transgenic wheat lines with 96% of classification accuracy. It has been shown
that using spectroscopic and machine learning algorithms makes it possible to distinguish
not only GM and non-GM plants, but also plant species [11,20] and even varieties [21].
However, there is no study that discriminates the GM and non-GM plants with their
interspecific hybrids. Therefore, in this study, we used visible near-infrared (Vis-NIR)
spectroscopy coupled with different preprocessing and machine learning methods for
effective discrimination of B. juncea, GM B. napus, and their hybrids (B. juncea X GM
B. napus).

2. Results and Discussion
2.1. Spectral Analysis and Preprocessing

The averaged raw spectra of the B. napus, GM B. napus, B. juncea, and F1 hybrids col-
lected in the green house are depicted in Figure 1A. The original unprocessed raw spectra
were ones that had not been altered in any manner. The Savitzky–Golay preprocessed spec-
tra are shown in Figure 1B. Standard normal variate (SNV) (Figure 1C) and normalization
(Figure 1D) procedures were used to preprocess the spectra acquired from these plants. The
spectra were preprocessed to remove systemic noise and highlight the variations across
the samples [17]. The majority of the spectra acquired from four plants followed a similar
pattern, despite variances in spectral reflectance. The difference in average reflectance
between GM and non-GM B. napus, B. rapa, and F1 hybrids is thought to reflect the changes
in hundreds of physicochemical constituents in the plant leaves. In general, NIR spectra
disclose the information about a material’s chemical composition and physical state. This



Processes 2022, 10, 240 3 of 10

provides structural data on the chemical functional groups of the elements that constitute
the molecular fingerprints of the sample [22,23]. The spectral data were preprocessed
to remove systemic noise and emphasize variations across samples. Using a variety of
preprocessing methods at the same time will help us achieve a higher level of classification
accuracy and provide us with the opportunity to choose the optimal preprocessing method
for a specific sample [11]. The average spectra for all the plants, raw and preprocessed,
were effectively visualized using three different methods: the Savitzky–Golay smoothing
filter (21 points), normalization, and standard normal variate (Figure 1). In general, the
normalization is the process of regularizing the data with respect to variations in sample
preparation, sample thickness, absorber concentration, etc. Derivatives are mainly used to
resolve peak overlap and eliminate constant and linear baseline shifts between samples.
SNV is often used on spectra where baseline and path length changes cause differences
between otherwise identical spectra [11,24].
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Figure 1. Average raw and preprocessed spectra of B. napus (YS), GM B. napus (GM), B. juncea (BJ),
and F1 hybrids (B. juncea X GM B. napus). (A) Average raw and preprocessed spectra with different
methods, including (B) Savitzky–Golay, (C) standard normal variate, and (D) normalization.

Some typical peaks can be seen in this figure, especially around 500–600 nm, which is
the spectral range for chlorophyll [25], and also around 800 nm. However, it is difficult to
differentiate these samples solely on the basis of spectral reflectance. Thus, Vis-NIR spec-
troscopy coupled with various models and machine learning methods such as discriminant
analysis and principal component analysis (PCA) was used for effective discrimination [11].
All of the different PCs showed the same slight pattern of separation for the different
samples in the PCA paired plot from PC1 to PC6 (Figure 2A), but PC1 vs. PC2 showed the
most visual differences, as shown in Figure 2B, so outlier detection was performed using
these two PCs before starting preprocessing for the machine learning methods.
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2.2. Chemometric Analysis for Discrimination of B. napus, GM B. napus, B. juncea, and
F1 Hybrids

The classification accuracy of different chemometric methods combined with various
preprocessing methods was calculated in order to determine the most exact way of distin-
guishing between GM and non-GM B. napus, B. juncea, and F1 hybrids. A summary of the
classification accuracy for the different methods can be found in Table 1. Both original raw
spectra and preprocessed spectra assessed with chemometric analyses resulted in effective
discrimination with different classification accuracies. However, preprocessed spectra were
found to have comparatively higher classification accuracy than raw spectra in most of
the chemometric analyses. The classification accuracies of the different methods generally
ranged from 62.6 to 99.4% (Table 1).

From Table 1, the Savitzky–Golay pretreatment proved to be the most efficient prepro-
cessing method for classifying the different plant species with all the tested classification
methods except for the support vector machine (SVM) classification technique, where
SNV proved to be more effective. Using the Savitzky–Golay, classification accuracies were
always higher than when only raw spectra were used. Classification accuracies for the
Savitzky–Golay ranged from 80.1 to 99.1%.

Among the different classification methods, support vector machine, linear discrimi-
nant analysis, deep learning, and fast large margin were found to have higher classifica-
tion accuracies in combination with different preprocessing methods (SNV/SVM, 99.4%;
Savitzky–Golay/Deep Learning, 99.1%; Savitzky–Golay/SVM, 98.8%) (Table 1). The sup-
port vector machine model showed a high accuracy of 97.1% even when using the raw
spectrum without preprocessing the data. The support vector machine is especially suit-
able for high-dimensional data, and the value of each attribute has no limit [26]. When
comparing the average value of accuracy according to each model application for each of
the four preprocessing methods, Savitzky–Golay showed the highest accuracy, followed
by standard normal variate, raw spectrum, and normalization (Table 1). Similar studies
have already been performed by various researchers on various crops. Feng et al. [17] used
NIR in combination with support vector machine and partial least squares discriminant
analysis (PLS–DA) for the effective discrimination of GM and non-GM maize. Similarly,
VNIR multispectral imaging and PLS–DA were used for discrimination of GM and non-GM
rice using least squares support vector machines (LS-SVM) and PCA backpropagation
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neural network (PCA-BPNN) [27]; Fourier transform Infrared (FT-IR) was also used for
discrimination of GM and non-GM soybeans with Kth nearest neighbors (KNN) [28]. NIR
and support vector machine discriminant analysis (SVM-DA) and PLS–DA were used
for discrimination of GM and non-GM soybean [18], and NIR and PLS–DA were used
for identification of herbicide-resistant GM soybean seeds [16]. The use of Vis-NIR for
discrimination of transgenic tomato using DA and PLS–DA [23] and the use of Vis-NIR
for discrimination of RNAi transgenic wheat using NIR and PLS [19] are examples of
effective discrimination of GM and non-GM crops using spectroscopy and chemometric
analyses. Linear discriminant analysis also yields higher accuracy of 96.5% even when
no preprocessing is performed. Figure 3 also shows the linear discriminant analysis plot
for discriminating the four different plant varieties. GM B. napus slightly overlapped with
B. napus, but B. juncea and F1 hybrids were completely separated from each other and all
the other plant varieties. This suggests that GM B. napus and non-GM B. napus may share
similar biological composition compared to B. juncea and F1 hybrids. Similar studies also
reported higher classification accuracy using NIR spectroscopy and linear discriminant
analysis to monitor mung bean sprouts [29], classify different melon varieties [30], and
detect pea protein powder containing adulterants [31].

Table 1. Classification accuracy of the combinations of preprocessing and model for reflectance
spectra from B. napus, GM B. napus, B. juncea, and F1 hybrids.

S. No. Model Preprocessing Average
Accuracy (%)

Run Time
(ms)

1
Linear

Discriminant
Analysis

Raw Spectra 98.5 -
Normalization (Area) 96.7 -

Standard Normal Variate 96.5 -
Savitzky–Golay 98.9 -

2 Deep Learning

Raw Spectra 89.3 5285.4
Normalization (Area) 93.3 4902.0

Standard Normal Variate 97.2 3439.5
Savitzky–Golay 99.1 3287.5

3 Support
Vector Machine

Raw Spectra 97.1 6883.3
Normalization (Area) 87.9 23,700.0

Standard Normal Variate 99.4 7341.6
Savitzky–Golay 98.8 7933.3

4 Generalized
Linear Model

Raw Spectra 82.9 3691.6
Normalization (Area) 93.2 3364.5

Standard Normal Variate 93.6 5212.5
Savitzky–Golay 91.5 3231.2

5 Decision Tree

Raw Spectra 76.7 3014.5
Normalization (Area) 79.4 2977.0

Standard Normal Variate 67.1 2995.8
Savitzky–Golay 80.1 2785.4

6 Naive Bayes

Raw Spectra 63.5 7727.0
Normalization (Area) 62.6 3614.5

Standard Normal Variate 84.8 3691.6
Savitzky–Golay 92.4 3575.0

7
Fast Large

Margin

Raw Spectra 94.6 9466.6
Normalization (Area) 74.8 10,341.6

Standard Normal Variate 98.8 9095.8
Savitzky–Golay 96.9 9552.0

8 Random Forest

Raw Spectra 79.9 3612.5
Normalization (Area) 85.9 4618.7

Standard Normal Variate 92.4 4583.3
Savitzky–Golay 92.6 4062.5
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2.3. Significance of Preprocessing and Selection of Optimal Classification Model

The efficiency of preprocessing and machine learning methods used in the study was
statistically analyzed (Table 2). After cross-validation, the mean percentage of classification
accuracy of each chemometric method combined with various preprocessing methods
indicated significant modeling for the discrimination of GM and non-GM B. napus, B. juncea,
and F1 hybrids (Table 2).

Table 2. Means of percentage of B. napus, GM B. napus, B. juncea, and F1 hybrids correctly classified
using four different preprocessing methods and four different classification models using reflectance
spectra.

Model

Species Accuracy (% ± SE)

Raw Spectra Normalization
(Area) Savitzky–Golay SNV Significance

Naive Bayes 63.5 ± 3.2 Cb 62.6 ± 5.6 Cb 92.4 ± 3.3 a 84.8 ± 2.1 ABa ***
Generalized Linear

Model 82.9 ± 3 AB 93.2 ± 3.2 A 91.5 ± 6 93.6 ± 3.5 A ns

Fast Large Margin 94.6 ± 3 ABa 74.8 ± 2.5 BCb 96.9 ± 3.1 a 98.8 ± 0.8 Aa ***
Deep Learning 89.3 ± 6.1 AB 93.3 ± 5 A 99.1 ± 0.6 97.2 ± 2 A ns
Decision Tree 76.7 ± 11.7 BC 79.4 ± 10.2 AB 80.1 ± 15.4 67.1 ± 14.7 B ns

Random Forest 79.9 ± 4.4 ABC 85.9 ± 3.7 AB 92.4 ± 4.6 92.6 ± 4.6 A ns
Support Vector Machine 97.1 ± 2.9 Aa 87.9 ± 2.5 ABb 98.8 ± 0.8 a 99.4 ± 0.3 Aa **

Significance ** ** ns *

ns, not significant; * significant with p ≤ 0.05, ** p ≤ 0.01 and *** p ≤ 0.001. Different alphabetical small and capital
letters show the significance of the value in the order of column (machine learning) and row (preprocessing),
respectively. Same letters are not significantly different at p ≤ 0.05 based on Tukey’s range test.

The statistical analysis with analysis of variance (ANOVA) (Table 3) showed the
sum of square and mean sum of square values of various preprocessing and machine
learning approaches used with statistical significance at p ≤ 0.005. However, there was
no significance with p ≥ 0.005 when using a combination of preprocessing and different
machine learning methods together (p value of 0.0005).
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Table 3. Analysis of variance of percentage of correctly classified B. napus, GM B. napus, B. juncea,
and F1 hybrids from four different preprocessing methods and four different classification models
using reflectance spectra.

Source df SS MS f Value p Value

Preprocessing (P) 3 2289.98041 763.326803 5.35 0.002
Model (M) 7 6677.677368 1112.946228 7.8 <0001

P × M 21 3664.723846 203.595769 1.43 0.0005
Error 84 11,992.48392 142.76767
Total 115 24,624.86555

df: degree of freedom. SS: sum of squares. MS: mean sum of squares.

The confusion matrix depicts the degree of error in the classification of the evaluated
plants, indicating that Savitzky–Golay smoothing in combination with support vector
machine was the most effective classification approach (Table 4).

Table 4. Confusion matrix from the execution with the best accuracy (Savitzky–Golay and support
vector machine).

Classified as

SNV/SVM B. napus GM B. napus B. juncea F1 Hybrid Classification Accuracy (%)

B. napus 86 1 0 0 98.85
GM B. napus 0 84 1 0 98.82

B. juncea 0 0 85 0 100
F1 hybrid 0 0 0 86 100

Class recall (%) 100 98.82 98.84 100 -

Classified as

Savitzky–Golay/Deep Learning B. napus GM B. napus B. juncea F1 Hybrid Classification Accuracy (%)

B. napus 84 1 0 0 98.82
GM B. napus 2 84 0 0 97.67

B. juncea 0 0 86 0 100
F1 hybrid 0 0 0 86 100

Class recall (%) 97.67 98.82 100 100 -

Classified as

Savitzky–Golay/SVM B. napus GM B. napus B. juncea F1 Hybrid Classification Accuracy (%)

B. napus 84 3 1 0 96.65
GM B. napus 1 83 2 0 98.81

B. juncea 0 0 85 0 100
F1 hybrid 0 0 0 86 100

Class recall (%) 98.82 96.51 100 100 -

3. Materials and Methods
3.1. Plant Materials

The seeds used in the study, namely B. napus L. ‘Youngsan’ and B. juncea var. inte-
grifolia and GM B. napus seeds with CAMV 35S-regulated bar and early flowering gene
(BrAGL20), were procured from the National Agrobiodiversity Center, Jeonju, Republic
of Korea. For the hybrid preparation, artificial hand pollination was performed with B.
juncea and GM B. napus, and the seeds of F1 hybrids (B. juncea X GM B. napus) were used for
further research. The hybrids were confirmed through the survival assay after 0.3% Basta
treatment; the phenotype of the hybrids; and polymerase chain reaction with 35S ribosomal
DNA, BrAGL20 gene partial region, bar gene, and chloroplast marker. All of the seeds
were grown in soil pots (Figure 4) and kept in a controlled environment. This research
was carried out in the greenhouse of the National Institute of Agricultural Sciences, Jeonju,
Republic of Korea, during May–July 2019.
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Figure 4. Representative figures for the plants selected for the spectral analysis. (A) B. napus; (B) GM
B. napus; (C) B. juncea; (D) F1 hybrids.

3.2. Spectral Data Collection

A handheld integrated portable spectrum analyzer (FieldSpec HandHeld 2, ASD Inc.,
Longmont, CO, USA) was used to collect Vis-NIR diffuse reflectance spectra in the range
of 325–1075 nm with a stepping of 1.5 nm in reflectance mode (log/R). The spectra were
collected on the adaxial surface of the fully expanded leaves, which can easily capture light.
Three spectra were obtained from various parts of the leaf blade of 100 plants in each group.
A total of 300 (3 × 100 = 300) spectra were collected from each group and used for further
analysis. To avoid unnecessary noise, the optical window of the Vis-NIR device was placed
in direct contact with the leaf’s surface throughout each spectrum capture, ensuring that
the sensor window was completely covered [32,33].

3.3. Preprocessing and Machine Learning Methods

Due to system parameters and environmental noise, background signals appeared
in the raw spectra of samples. Different preprocessing methods, such as raw spectra
assessment, normalization (area), standard normal variate (SNV), and derivatives (Savitzky–
Golay (first differentiation)) were used, which can reduce the spectral noise and improve
the accuracy of modeling approaches. The computations on preprocessing were performed
with Unscrambler X software, version 10.5.1 (CAMO ASA, Oslo, Norway).

For the effective visualization and discrimination of spectral data, several machine
learning methods were used and compared. The modeling was performed with the
software package RapidMiner studios Version 9.0.002 (Rapidminer, Inc., Boston, MA, USA).
In the study, eight classification methods were used to find the best modeling approach
with the highest classification accuracy, namely deep learning, decision tree, support vector
machine, random forest, generalized linear model, fast large margin, naive Bayes, and
linear discriminant analysis. Linear discriminant analysis was performed in R-studio using
the Aquap2 package developed by Kovacs and Pollner [34]. For each of the algorithms, the
inputs were provided as the data points of the spectra and the classes were the identification
labels of B. napus, GM B. napus, B. juncea, and F1 hybrids (B. juncea X GM B. napus). Cross-
validation was performed to assess the robustness of the models in predicting the different
sample types. For this, the data were divided into a training set and a validation set. The
training set was made up of two-thirds of the data; thus, the spectra from the first and
second replicates of each sample were included, while the validation set was made up
of spectra from the third replicate. The data splitting was done three times, such that
each sample was used at least once in the calibration and validation set. The classification
results are displayed as score plots or confusion matrix, which illustrates the percentages
of classification accuracy. One-way analysis of variance (ANOVA) was used to compare
means for determining the influence of (1) the scatter correction method, (2) the eight
machine learning methods, and (3) the interaction of preprocessing and machine learning
methods. As a mean comparison method, Tukey’s range test was used at a significance
level of p ≤ 0.05.
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4. Conclusions

In conclusion, Vis-NIR spectroscopy in combination with machine learning methods
could effectively discriminate between GM and non-GM B. napus, B. juncea, and the F1
hybrids (B. juncea X GM B. napus). The utilization of Vis-NIR spectroscopy and chemometric
analyses for the discrimination of GM and non-GM crops is quick and accurate. It can also
deliver information for monitoring and safety management of agro-food market products
in which GMOs are introduced. Among the different combinations of preprocessing and
machine learning methods, the combination of standard normal variate and support vector
machine was found to be the most effective method, with 99.6% classification accuracy, but
Savitzky–Golay smoothing also yields good classification accuracy when other classification
methods are used. Thus, it is proposed that this nondestructive method be employed in the
field for the rapid detection and management of unintended releases of GM Brassicaceae
crops into the environment. It is suggested to create a database with broad-spectrum results
on GM and non-GM Brassicaceae crops for the effective utilization of the technology in
the field.

Author Contributions: Conceptualization: S.-I.S., Y.-J.O. and C.-S.N.; methodology: S.-I.S., S.P.,
Y.-J.O., Y.-H.L., E.-K.S., H.-J.K., T.-H.R. and Y.-S.C.; formal analysis: S.-I.S., S.P., Y.-J.O. and W.-S.C.;
data curation: S.-I.S., Y.-J.O. and C.-S.N.; writing—original draft preparation: S.-I.S., S.P. and J.-L.Z.Z.;
visualization: S.P. and J.-L.Z.Z.; project administration: S.-I.S.; funding acquisition: S.-I.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This study was carried out with the support of “Research Program for Agricultural Science
& Technology Development and 2022 Post-doctoral Fellowship Program (Project No. PJ014943012022)”,
National Institute of Agricultural Sciences, Rural Development Administration, Korea.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, J.; Liu, D.; Wang, X.; Ji, C.; Cheng, F.; Liu, B.; Hu, Z.; Chen, S.; Pental, D.; Ju, Y.; et al. The genome sequence of allopolyploid

Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat. Genet. 2016, 48, 1225–1232.
[CrossRef] [PubMed]

2. Lim, Y.; Yook, M.J.; Zhang, C.J.; Nah, G.; Park, S.; Kim, D.S. Dormancy associated weedy risk of the F1 hybrid resulted from gene
flow from oilseed rape to mustard. Weed Turfgrass Sci. 2015, 4, 35–43. [CrossRef]

3. Zhang, C.J.; Yook, M.J.; Park, H.R.; Lim, S.H.; Kim, J.W.; Song, J.S.; Nah, G.; Song, H.R.; Jo, B.H.; Roh, K.H.; et al. Evaluation of
maximum potential gene flow from herbicide resistant Brassica napus to its male sterile relatives under open and wind pollination
conditions. Sci. Total Environ. 2018, 634, 821–830. [CrossRef] [PubMed]

4. Devos, Y.; De Schrijver, A.; Reheul, D. Quantifying the introgressive hybridisation propensity between transgenic oilseed rape
and its wild/weedy relatives. Environ. Monit. Assess. 2009, 149, 303–322. [CrossRef] [PubMed]

5. Scheffler, J.A.; Dale, P.J. Opportunities for gene transfer from transgenic oilseed rape (Brassica napus) to related species. Transgenic
Res. 1994, 3, 263–278. [CrossRef]

6. Song, X.L.; Huangfu, C.H.; Qiang, S. Gene flow from transgenic glufosinate-or glyphosate-tolerant oilseed rape to wild rape.
Chin. J. Plant Ecol. 2007, 31, 729–737.

7. Cao, D.; Stewart Jr, C.N.; Zheng, M.; Guan, Z.; Tang, Z.X.; Wei, W.; Ma, K.P. Stable Bacillus thuringiensis transgene introgression
from Brassica napus to wild mustard B. juncea. Plant Sci. 2014, 227, 45–50. [CrossRef]

8. Liu, Y.; Neal Stewart Jr, C.; Li, J.; Wei, W. One species to another: Sympatric Bt transgene gene flow from Brassica napus alters the
reproductive strategy of wild relative Brassica juncea under herbivore treatment. Ann. Bot. 2018, 122, 617–625. [CrossRef]

9. Tang, T.; Chen, G.; Bu, C.; Liu, F.; Liu, L.; Zhao, X. Transgene introgression from Brassica napus to different varieties of Brassica
juncea. Plant Breed. 2018, 137, 171–180. [CrossRef]

10. Di, K.; Stewart Jr, C.N.; Wei, W.; Shen, B.C.; Tang, Z.X.; Ma, K.P. Fitness and maternal effects in hybrids formed between transgenic
oilseed rape (Brassica napus L.) and wild brown mustard [B. juncea (L.) Czern et Coss.] in the field. Pest Manag. Sci. 2009, 65,
753–760. [CrossRef]

http://doi.org/10.1038/ng.3657
http://www.ncbi.nlm.nih.gov/pubmed/27595476
http://doi.org/10.5660/WTS.2015.4.1.35
http://doi.org/10.1016/j.scitotenv.2018.03.390
http://www.ncbi.nlm.nih.gov/pubmed/29653426
http://doi.org/10.1007/s10661-008-0204-y
http://www.ncbi.nlm.nih.gov/pubmed/18253849
http://doi.org/10.1007/BF01973586
http://doi.org/10.1016/j.plantsci.2014.06.018
http://doi.org/10.1093/aob/mcy096
http://doi.org/10.1111/pbr.12567
http://doi.org/10.1002/ps.1749


Processes 2022, 10, 240 10 of 10

11. Sohn, S.-I.; Pandian, S.; Oh, Y.-J.; Zaukuu, J.-L.Z.; Kang, H.-J.; Ryu, T.-H.; Cho, W.-S.; Cho, Y.-S.; Shin, E.-K.; Cho, B.-K. An
Overview of Near Infrared Spectroscopy and Its Applications in the Detection of Genetically Modified Organisms. Int. J. Mol. Sci.
2021, 22, 9940. [CrossRef] [PubMed]

12. Ahmed, F.E. Detection of genetically modified organisms in foods. Trends Biotechnol. 2002, 20, 215–223. [CrossRef]
13. Ma, Y.; Lewicki, R.; Razeghi, M.; Tittel, F.K. QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL.

Opt. Express 2013, 21, 1008–1019. [CrossRef]
14. Ma, Y.; He, Y.; Tong, Y.; Yu, X.; Tittel, F.K. Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace

gas detection. Opt. Express 2018, 26, 32103–32110. [CrossRef] [PubMed]
15. Qiao, S.; Ma, Y.; He, Y.; Patimisco, P.; Sampaolo, A.; Spagnolo, V. Ppt level carbon monoxide detection based on light-induced

thermoelastic spectroscopy exploring custom quartz tuning forks and a mid-infrared QCL. Opt. Express 2021, 9, 25100–25108.
[CrossRef] [PubMed]

16. Lee, J.H.; Choung, M.G. Nondestructive determination of herbicide-resistant genetically modified soybean seeds using near-
infrared reflectance spectroscopy. Food Chem. 2011, 126, 368–373. [CrossRef]

17. Feng, X.; Peng, C.; Chen, Y.; Liu, X.; Feng, X.; He, Y. Discrimination of CRISPR/Cas9-induced mutants of rice seeds using
near-infrared hyperspectral imaging. Sci. Rep. 2017, 7, 15934. [CrossRef]

18. Luna, A.S.; da Silva, A.P.; Pinho, J.S.; Ferré, J.; Boqué, R. Rapid characterization of transgenic and non-transgenic soybean oils by
chemometric methods using NIR spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 100, 115–119. [CrossRef]

19. Garcia-Molina, M.D.; Garcia-Olmo, J.; Barro, F. Effective identification of low-gliadin wheat lines by near infrared spectroscopy
(NIRS): Implications for the development and analysis of foodstuffs suitable for celiac patients. PLoS ONE 2016, 11, e0152292.
[CrossRef]

20. Li, T.; Su, C. Authenticity identification and classification of Rhodiola species in traditional Tibetan medicine based on Fourier
transform near-infrared spectroscopy and chemometrics analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 204, 131–140.
[CrossRef]

21. Carvalho, L.C.; Morais, C.L.; Lima, K.M.; Leite, G.W.; Oliveira, G.S.; Casagrande, I.P.; Neto, J.P.S.; Teixeira, G.H. Using intact nuts
and near infrared spectroscopy to classify Macadamia cultivars. Food Anal. Met. 2018, 11, 1857–1866. [CrossRef]

22. Cordella, C.; Moussa, I.; Martel, A.C.; Sbirrazzuoli, N.; Lizzani-Cuvelier, L. Recent developments in food characterization and
adulteration detection: Technique-oriented perspectives. J. Agric. Food Chem. 2002, 50, 1751–1764. [CrossRef] [PubMed]

23. Xie, L.; Ying, Y.; Ying, T.; Yu, H.; Fu, X. Discrimination of transgenic tomatoes based on visible/near-infrared spectra. Anal. Chim.
Acta 2007, 584, 379–384. [CrossRef] [PubMed]

24. Rinnan, Å.; Van Den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra.
TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [CrossRef]

25. Smith, H.L.; McAusland, L.; Murchie, E.H. Don’t ignore the green light: Exploring diverse roles in plant processes. J. Exp. Bot.
2017, 68, 2099–2110. [CrossRef]

26. Gaye, B.; Zhang, D.; Wulamu, A. Improvement of support vector machine algorithm in big data background. Mat. Prob. Eng.
2021, 2021, 5594899. [CrossRef]

27. Liu, C.; Liu, W.; Lu, X.; Chen, W.; Yang, J.; Zheng, L. Nondestructive determination of transgenic Bacillus thuringiensis rice seeds
(Oryza sativa L.) using multispectral imaging and chemometric methods. Food Chem. 2014, 153, 87–93. [CrossRef]

28. Alcantara, G.B.; Barison, A.; Santos, M.D.S.; Santos, L.P.; de Toledo, J.F.; Ferreira, A.G. Assessment of genetically modified soybean
crops and different cultivars by Fourier transform infrared spectroscopy and chemometric analysis. Orbital Electr. J. Chem. 2010, 2,
41–52.

29. Nugraha, D.T.; Zaukuu, J.L.Z.; Bósquez, J.P.A.; Bodor, Z.; Vitalis, F.; Kovacs, Z. Near-infrared spectroscopy and aquaphotomics
for monitoring mung bean (Vigna radiata) sprout growth and validation of ascorbic acid content. Sensors 2021, 21, 611. [CrossRef]

30. Zaukuu, J.L.Z.; Gillay, Z.; Kovacs, Z. Standardized extraction techniques for meat analysis with the electronic tongue: A case
study of poultry and red meat adulteration. Sensors 2021, 21, 481. [CrossRef]

31. Zaukuu, J.L.Z.; Aouadi, B.; Lukács, M.; Bodor, Z.; Vitális, F.; Gillay, B.; Gillay, Z.; Friedrich, L.; Kovacs, Z. Detecting low
concentrations of nitrogen-based adulterants in whey protein powder using benchtop and handheld NIR spectrometers and the
feasibility of scanning through plastic bag. Molecules 2020, 25, 2522. [CrossRef] [PubMed]

32. Sohn, S.I.; Oh, Y.J.; Pandian, S.; Lee, Y.H.; Zaukuu, J.L.Z.; Kang, H.J.; Ryu, T.H.; Cho, W.S.; Cho, Y.S.; Shin, E.K. Identification of
Amaranthus Species using Visible-Near-Infrared (Vis-NIR) spectroscopy and machine learning methods. Remote Sens. 2021, 13,
4149. [CrossRef]

33. Sohn, S.I.; Pandian, S.; Zaukuu, J.L.Z.; Oh, Y.J.; Park, S.-Y.; Na, C.S.; Shin, E.K.; Kang, H.J.; Ryu, T.H.; Cho, W.S.; et al.
Discrimination of transgenic canola (Brassica napus L.) and their hybrids with B. rapa using Vis-NIR spectroscopy and machine
learning methods. Int. J. Mol. Sci. 2022, 23, 220. [CrossRef] [PubMed]

34. Pollner, B.; Kovacs, Z. Dedicated Aquaphotomics-Software R-Package „aquap2“General Introduction and Workshop. Aquapho-
tomics: Understanding Water in the Biological World. In Proceedings of the 5th Kobe University Brussels European Cen-
tre Symposium Innovation, Environment and Globalization—Latest EU-Japan Research Collaboration, Bruxelles, Belgium,
14 October 2014.

http://doi.org/10.3390/ijms22189940
http://www.ncbi.nlm.nih.gov/pubmed/34576101
http://doi.org/10.1016/S0167-7799(01)01920-5
http://doi.org/10.1364/OE.21.001008
http://doi.org/10.1364/OE.26.032103
http://www.ncbi.nlm.nih.gov/pubmed/30650676
http://doi.org/10.1364/OE.434128
http://www.ncbi.nlm.nih.gov/pubmed/34614848
http://doi.org/10.1016/j.foodchem.2010.10.106
http://doi.org/10.1038/s41598-017-16254-z
http://doi.org/10.1016/j.saa.2012.02.085
http://doi.org/10.1371/journal.pone.0152292
http://doi.org/10.1016/j.saa.2018.06.004
http://doi.org/10.1007/s12161-017-1078-9
http://doi.org/10.1021/jf011096z
http://www.ncbi.nlm.nih.gov/pubmed/11902909
http://doi.org/10.1016/j.aca.2006.11.071
http://www.ncbi.nlm.nih.gov/pubmed/17386628
http://doi.org/10.1016/j.trac.2009.07.007
http://doi.org/10.1093/jxb/erx098
http://doi.org/10.1155/2021/5594899
http://doi.org/10.1016/j.foodchem.2013.11.166
http://doi.org/10.3390/s21020611
http://doi.org/10.3390/s21020481
http://doi.org/10.3390/molecules25112522
http://www.ncbi.nlm.nih.gov/pubmed/32481691
http://doi.org/10.3390/rs13204149
http://doi.org/10.3390/ijms23010220
http://www.ncbi.nlm.nih.gov/pubmed/35008646

	Introduction 
	Results and Discussion 
	Spectral Analysis and Preprocessing 
	Chemometric Analysis for Discrimination of B. napus, GM B. napus, B. juncea, and F1 Hybrids 
	Significance of Preprocessing and Selection of Optimal Classification Model 

	Materials and Methods 
	Plant Materials 
	Spectral Data Collection 
	Preprocessing and Machine Learning Methods 

	Conclusions 
	References

