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Abstract: The coronavirus disease 19 (COVID-19) is a global pandemic caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), which has a rapidly increasing prevalence and
has caused significant morbidity/mortality. Despite the availability of many vaccines that can offer
widespread immunization, it is also important to reach effective treatment for COVID-19 patients.
However, the development of novel drug therapeutics is usually a time-consuming and costly
process, and therefore, repositioning drugs that were previously approved for other purposes could
have a major impact on the fight against COVID-19. Here, we first identified lung-specific gene
regulatory/interaction subnetworks (COVID-19-related genes modules) enriched for COVID-19-
associated genes obtained from GWAS and text mining. We then screened the targets of 220 approved
drugs from DrugBank, obtained their drug-induced gene expression profiles in the LINCS database,
and constructed lung-specific drug-related gene modules. By applying an integrated network-based
approach to quantify the interactions of the COVID-19-related gene modules and drug-related gene
modules, we prioritized 13 approved drugs (e.g., alitretinoin, clocortolone, terazosin, doconexent,
and pergolide) that could potentially be repurposed for the treatment of COVID-19. These findings
provide important and timely insights into alternative therapeutic options that should be further
explored as COVID-19 continues to spread.

Keywords: COVID-19; fine-mapping; drug repurposing; protein–protein interaction network; prox-
imity score

1. Introduction

Over the course of the past two years, a novel acute respiratory disease, coronavirus
disease 2019 (COVID-19), has emerged as a global pandemic and resulted in significant
loss of human life. COVID-19 is caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), a positive-stranded RNA virus [1] that shares 79% of its genome sequence
with severe acute respiratory syndrome coronavirus (SARS-CoV) [2,3]. SARS-CoV-2 is
highly transmissible, and the presence of many undocumented/asymptomatic individuals
has facilitated rapid viral spread [4]. Since the outbreak of the COVID-19 pandemic,
SARS-CoV-2 has infected over 245 million people and led to more than 4.9 million deaths
worldwide [5]. Although the majority of infected individuals do not suffer serious clinical
symptoms, a notable proportion (15–30%) of those hospitalized with COVID-19 will become
severely ill and have a significant mortality risk [6]. The burden of severe COVID-19 cases
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is especially large in the elderly, as well as those with chronic diseases such as obesity,
hypertension, diabetes, and cardiovascular diseases [7].

The danger of the pandemic has been exacerbated by the lack of effective therapeutics
for the treatment and prevention of the disease. Several leading vaccines developed
for COVID-19 are currently approved in several countries [8]; however, their efficacy to
generate immunity for SARS-CoV-2 in human populations remains to be seen, as the virus
continually mutates. A number of drugs have been approved or advanced into clinical trials
for COVID-19, but the therapeutic effect for severe COVID-19 cases is far from ideal and
requires further research. According to the COVID-19 Treatment Guidelines of America,
dexamethasone and remdesivir are the most well-recommended therapeutic approaches
that are currently available [9]. However, the various clinical trials of remdesivir have
reported contradictory results [10]. The latest such study, the World Health Organization
(WHO) solidarity trial, found that remdesivir has little or no beneficial effect in hospitalized
COVID-19 patients [11]. While dexamethasone is recommended for the treatment of
critically ill patients [12], this treatment could only moderately reduce mortality (summary
odds ratio, 0.66). Although some treatments are effective for COVID-19 patients, each has
some limitations [6]. Therefore, more effective and safer drugs are still urgently needed, as
the incidence of COVID-19 continues to rapidly increase.

Drug repurposing refers to the discovery of novel indications for previously approved
drugs without the need for de novo drug development [13]. It has become a promising tech-
nique for drug discovery, as it can drastically shorten the time and reduce the overall cost
of therapeutic development. There are several successful examples of drug repositioning,
including (1) dimethyl fumarate, originally approved for psoriasis, which was repurposed
to treat multiple sclerosis, and (2) sildenafil, developed for hypertension, which was reposi-
tioned to treat erectile dysfunction [14]. Drug repositioning for COVID-19 has become a
major focus of the current research in order to identify alternative therapeutic approaches
that are effective in the interim as novel drugs are being developed [13]. Network-based
drug repurposing approaches have been widely used to discover therapeutics for the
treatment of various human diseases [15].

In this study, we performed an integrative network-based drug repurposing analy-
sis [16] to identify previously approved drugs that may be effective for COVID-19 inter-
vention. We identified a number of drugs that may have therapeutic efficacy in COVID-19
patients that should be followed up in clinical trials and validation experiments.

2. Materials and Methods
2.1. Overview of the Computational Procedure

Our analytical workflow to repurpose drugs for COVID-19 is composed of five steps,
as shown in Figure 1. First, significant genes associated with COVID-19 were identified
from previous genome-wide association studies (GWAS) [17] and through text mining in
the literature (Figure 1, step 1). Second, we integrated the lung-specific transcriptional regu-
latory network [18] with the lung-specific human protein–protein interaction network [19]
to construct a lung-specific background network (Figure 1, step 2). Third, we screened
the approved drugs and their targets from DrugBank [20], along with drug-induced gene
expression profiles from the Library of Integrated Cellular Signatures (LINCS) [21], to con-
struct drug-related gene modules (Figure 1, step 3). Fourth, we determined which network
modules in the lung-specific background network are enriched for COVID-19-associated
genes, termed lung-specific COVID-19 gene modules (Figure 1, step 4). Similarly, we
mapped drug targets/signature genes to the lung-specific background network to construct
lung-specific drug-related gene modules (Figure 1, step 4). Finally, to evaluate the potential
drug-induced effects on COVID-19 patients, a proximity score was calculated between the
lung-specific COVID-19 gene modules and the lung-specific drug-related gene modules
(Figure 1, step 5). The detailed approaches for each step are described below.
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Figure 1. Schematic illustration of the computational procedure. Step 1: Significant COVID-19-
associated genes are identified by combining the GWAS results and literature findings, followed
by a filtering step based on the gene set enrichment analysis. Step 2: A lung-specific background
molecular network is constructed by integrating lung-specific transcriptional regulatory and PPI
networks. Step 3: The drug information is downloaded from the DrugBank and LINCS databases.
Step 4: COVID-19-related gene modules and drug-related gene modules are established using the
network analysis. Step 5: To measure the drug effects, a proximity score between the drug- and
COVID-19-related gene modules is computed based on the network distance and semantic similarity.

2.2. Identification of COVID-19-Associated Genes

The COVID-19 GWAS summary statistics were obtained from the COVID-19 Host
Genetics Initiative (COVID19-hg GWAS meta-analyses round 4) [17]. The data included
6406 hospitalized COVID-19 patients (laboratory-confirmed SARS-CoV-2 infection and
hospitalized for COVID-19) and 902,088 controls (everybody that was not a case). All
subjects were from European ancestry. Single-nucleotide polymorphisms (SNPs) with
p-values < 5 × 10−8 in association analyses and without significant heterogeneity in the
allelic effects between studies (p-value > 0.05 in Cochran’s Q test) were considered as
COVID-19-associated SNPs. We used snpclip [22] to choose independent lead SNPs with a
linkage disequilibrium r2 ≤ 0.1 and minor allele frequency > 0.01.

The PAINTOR v3.0 fine-mapping approach [23] was used to prioritize potential causal
variants by integrating the GWAS summary statistics, linkage disequilibrium structure, and
functional annotations for the SNPs located at the risk loci for each trait. The fine-mapping
regions were defined by selecting a window 50 kb upstream and downstream of each
lead SNP. The linkage disequilibrium structure was provided by the 1000 Genomes Project
reference panel. The functional annotations of each SNP were used to improve the accuracy
of the causal variant selection. A total of 5 annotation collections (Supplementary Table S1)
were used in our study. SNPs with a posterior probability of causality >0.90 were annotated
to the corresponding genes using Ensembl Variant Effect Predictor [24]. The gene transcript
boundaries were extended 110 kb and 40 kb in the upstream and downstream directions,
respectively [25].

COVID-19-related genes were also selected by literature mining in PubMed and text
mining of the data associated with COVID-19 in the Open Targets Platform [26]. The
abstracts of the literature containing the following COVID-19-related Medical Subject Head-
ings (MeSH) terms were downloaded from the PubMed library: 2019 novel coronavirus
disease, COVID19, COVID-19 pandemic, SARS-CoV-2 infection, COVID-19 virus disease,
2019 novel coronavirus infection, 2019-nCoV infection, coronavirus disease 2019, coron-
avirus disease-19, 2019-nCoV disease, and COVID-19 virus infection. The tag “MeSH Major
Topic” was used to limit the search. Additionally, we complemented the MeSH Major
Topic search with a keyword search using the PubMed “Title/Abstract” tag. The keyword
search terms were the same as the MeSH terms above. Finally, the search objects were
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limited to humans. All of the PubMed abstracts were downloaded on 20 October 2020. We
extracted the genes mentioned in the downloaded PubMed abstracts with the R package
pubmed.mineR [26]. In the Open Targets Platform, we performed a disease search with
the keyword COVID-19 to identify the genes associated with COVID-19 (downloaded on
20 October 2020). COVID-19-related genes selected by text mining from both data sources
were abbreviated as “text mining genes” in the following.

To refine the list of COVID-19-related genes, we combined GWAS genes and text
mining genes using the following approach. First, we performed a gene set enrichment
analysis (GSEA) of the GWAS genes by using the online tool Enrichr [27]. Second, we
performed another GSEA by using both GWAS genes and text mining genes and selected
those genes that were included in the “significant pathways” as the filtered COVID-19-
associated genes (termed COVID-19 genes). The pathways/functional terms were obtained
from Biocarta, GO (Gene Ontology) biological processes, Humancyc, Kyoto Encyclopedia
of Genes and Genomes (KEGG), NCI-Nature, Panther, Reactome, and WikiPathways.

2.3. Construction of Lung-Specific Background Molecular Network

A lung-specific background network was constructed by integrating the lung-specific
transcriptional regulatory [18] and protein–protein interaction (PPI) networks. The lung-
specific transcriptional regulatory network was obtained from FANTOM5 [28]. A cut-off
value of 0.15 for the edge weights was used to obtain reliable interactions. This value
was determined by considering the following three factors [16]: (a) there were no/few
nodes in the network with a weight over 0.5, (b) the threshold of edge weights smaller than
0.1 significantly increased the false positives, and (c) the threshold of 0.15 ensured that at
least 25% of the nodes in the regulatory network were also included in the PPI network.

The lung-specific PPI network was derived from the Human Reference Interactome
(HuRI) [19]. HuRI is a systematically generated human protein interactome map, which
includes more than 50,000 PPIs with high biophysical quality, as measured by a yeast two-
hybrid (Y2H) and verified in independent assays [19]. Based on the RNA-Seq expression
profiles of the lung tissue from the Genotype-Tissue Expression (GTEx) project [29], we
selected lung-related genes, which are genes with median TPM (Transcripts Per Million)
values ≥ 1 in the lung tissue. Previous studies have shown that disease-associated genes
and drug-targeted genes are expressed in diseased tissues [30,31]. To detect the disease-
related and drug-related gene modules from the lung-specific background molecular
network (see Section 2.5), genes with a low expression in lung tissue (TPM < 1) were
removed.

Subsequently, the lung-specific regulatory and PPI networks were integrated into
a lung-specific background network, which is composed of the nodes and edges of the
lung-specific regulatory network and their first neighbors in the lung-specific PPI network.

2.4. Screening of Drug Information

All available drug information was downloaded from DrugBank [20] (version 5.1.7,
published date: 2 July 2020, obtained on 3 August 2020) and LINCS [21]. We extracted
the development stage, targets, and pharmacological actions for each drug. The drugs
were retained for subsequent analyses if they had an approved status, were included in the
lung-specific background network, and had a known pharmacological action (Figure 2).
Additionally, the gene expression profiles associated with drugs (top 100 upregulated and
top 100 downregulated genes) in special cell lines (HCC515: obtained from a lung tissue
of carcinoma sample) were obtained from RESTful API (https://clue.io/, accessed on
10 October 2020). If the special cell lines were treated with different drug concentrations,
we chose the concentrations with the highest strength parameters (distil_ss).

https://clue.io/
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Figure 2. Overview of drug filtration. Drugs available in DrugBank (version 5.1.7) were selected
according to the following steps: (1) drugs having humans as the organism, (2) drugs must be
approved, (3) drug targets with a pharmacologically active status, (4) the genes for the drug targets
could be mapped to the lung-specific background network, (5) the drug gene expression profiles in
HCC515 (cell line) of these drugs could be retrieved from LINCS, and (6) identified drugs that have a
significant proximity score.

2.5. Identification of COVID-19-Related Gene Modules and Drug-Related Gene Modules

COVID-19-related gene modules were detected in the lung-specific background net-
work through the walktrap algorithm (R package igraph) [32]. The walktrap algorithm
detects network communities (disease modules) based on the idea that a series of short
random walks tend to stay within the same network area [33]. We selected the significant
COVID-19-related modules under the following criteria: (1) the module includes more than
10 genes, and (2) the module was significantly enriched for COVID-19 genes.

By mapping the drug targets and gene expression profiles associated with drugs
(top 100 upregulated and top 100 downregulated genes) to the lung-specific background
network, we performed a preliminary screening of the drug module genes. GO semantic
similarity of the genes was calculated by using the Wang method [34] with the R package
GoSemSim [35]. Drug-regulated genes that had GO semantic similarity scores > 0.5 with
drug target genes were included as the drug module genes. Finally, the drug-related
gene modules consisted of drug target genes, drug module genes, and the shortest paths
connecting them in the lung-specific background network.

2.6. Evaluation of the Potential Effects of Drug Candidates on COVID-19

The proximity score was used to evaluate the potential effects of the drug candidates
on COVID-19 patients [16]. The score integrates the network-based distance and semantic
similarity of the disease- and drug-related gene modules (Formula (2)). The network-based
distance between the COVID-19-related gene module and the drug-related gene module
was the closest distance, as defined in an earlier study [36]. As shown in Formula (1), the
closest distance dc is the average shortest path length between the drug-related module
genes and their nearest COVID-19-related module genes [36] in the lung-specific back-
ground network:

dc =
1
|T|∑t∈T min

s∈S
d(s, t), (1)
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where T represents the drug-related module, S represents the COVID-19-related module,
and d (s,t) is the closest distance between nodes s and t. Normalizing this measurement
with the diameter of the lung-specific background network and considering the linear
transformation 1−dc, norm defines a score in [0,1]. To evaluate the biological function simi-
larity between the drug- and COVID-19-related modules, we calculated a similarity score
in [0,1] using their GO annotation (biological processes) with the R package GoSemSim [35].
Summing the 1−dc, norm and biological function similarity results in the final score, which
takes values in [0,2]:

Closest(S, T) = (1−
1
|T| ∑t∈T min

s∈S
d(t, s)

Diam(network) ) + Semantic similarity measure
= Score in [0, 2]

(2)

We then constructed a reference score distribution of random drug-related modules to
assess the statistical significance of our results using the following strategy: (1) we selected
a random drug target protein in the same degree bin as the original target, (2) random drug-
induced gene expression profiles were selected, maintaining the same internal distances as
the original module in the lung-specific background network, and (3) random modules of
drugs were constructed using the shortest paths connecting the random target and drug
expression files in the lung-specific background network. We considered drugs with a score
larger than 95% of the reference distribution scores to be statistically significant [16]. A
higher proximity score indicates that the drug-related gene module is closer to the COVID-
19 gene module and/or the genes of the two modules have a higher similarity in biological
functions. Therefore, drugs with higher proximity scores are more likely candidates for
affecting the prognosis and outcome of COVID-19 patients.

3. Results
3.1. Identification of Genes Associated with COVID-19

GWAS has been commonly used to detect disease-associated genetic variants [37], and
GWAS-associated genes have been identified as drug targets in drug repurposing for com-
plex diseases [38]. One hundred and forty-five significant SNPs (Supplementary Table S2)
associated with COVID-19 were selected from The COVID-19 Host Genetics Initiative
GWAS summary statistics. The fine-mapping analysis revealed nine SNPs with a high
probability of causality (rs17763537, rs75826707, rs35044562, rs951347446, rs912805253,
rs1131476, rs4238034, rs6517153, and rs2229207), which were annotated to 26 genes. We fur-
ther obtained 265 PubMed abstract-derived genes and 265 Open Targets Platform-derived
genes for COVID-19 (Figure 3a and Supplementary Table S3). Among the 472 unique
COVID-19-associated genes derived from different data sources, 164 were significantly
enriched (FDR < 0.01) in 35 pathways/functional terms (Figure 4 and Supplementary Ta-
ble S4). Several of these functional terms are related to viral infection, including the negative
regulation of viral genome replication (GO:0045071) and negative regulation of the viral
life cycle (GO:1903901). A number of other functional terms were related to the immune
system, such as the chemokine-related signaling pathway (e.g., inflammation mediated
by the chemokine and cytokine signaling pathways), cytokine-mediated signaling path-
way (GO:0019221), and IFN-alpha signaling pathway. Chemokine signaling is essential
to coordinate cell migration in health and disease and is critical to specifically govern
cell positioning in space and time [39]. Cytokines play a critical role in immune function,
and the abnormal activation of cytokine pathways could impair tissue homeostasis and
amplify the inflammatory response. Additionally, the GSEA of the 164 genes was enriched
for disease genes that were associated with infections, virus diseases, and pneumonitis
(Figure 3b) based on DisGeNET [40].
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3.2. Lung-Specific COVID-19-Related Gene Modules

The lungs are the primary pathological organs of COVID-19, and pneumonia is the
most common complication in hospitalized COVID-19 patients [41]. Hence, we selected the
lung tissue as the most relevant tissue of COVID-19. The lung-specific background network
we constructed contained 3811 nodes and 11,960 edges (Figure 5a and Supplementary
Table S5), including 53 nodes that overlapped with the COVID-19 genes. Construction of
the lung-specific background network could help to further identify COVID-19-related
functional modules. As studies suggest, gene function is closely associated with the tissue
and disease considered [42–44].
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Figure 5. (a) The lung-specific background network. The different colors represented different
modules. (b–d) The 3 COVID-19-related gene modules. Module red contains 903 genes, module blue
contains 24 genes, and module green contains 46 genes. The size of the nodes is correlated with their
degree centrality in the network.

Previous studies have indicated that disease genes are not scattered randomly in the
human interactome but, rather, tend to cluster together and aggregate as a subnetwork (dis-
ease module) in the molecular interaction network [45–47]. In the lung-specific background
network, we detected three COVID-19-related gene modules (Figure 5b–d and Supplemen-
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tary Table S6). The KEGG and Reactome enrichment analyses of these COVID-19-related
gene modules highlighted a number of important biological pathways (Figure 6). The
genes of module 1 were mainly enriched in pathways such as cytokine–cytokine receptor
interactions, the chemokine signaling pathway, and signaling by interleukins. The genes of
module 2 were mainly enriched in pathways such as the NF-kappa B signaling pathway,
T17 cell differentiation, and signaling by interleukins. The genes of module 3 were mainly
enriched in pathways such as complement and coagulation cascades and regulation of the
complement cascade. Additionally, we observed that the module 1 genes were significantly
enriched in Gene Ontology pathways related to morphogenesis and the development of
lung, heart, renal, gland, and vessel (Supplementary Figure S1), including epithelial tube
morphogenesis, the morphogenesis of a branching structure, heart morphogenesis, gland
development, and renal system development. The results indicate that SARS-CoV-2 is
damaging to multiple organs [48,49], which is consistent with the outcomes observed in
the clinical setting. These findings support the relevance of the identified COVID-19 gene
modules, including the dysregulation or imbalance of immune cells and cytokines [50].
Targeting the host immune response may be an effective strategy for the treatment of
COVID-19 [51].
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enrichment analysis of the 46 genes in module 3.
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3.3. Drug Repurposing

To identify which drugs potentially act on the COVID-19-related gene modules, we
filtered 220 approved drugs from DrugBank and constructed drug-related gene modules.
By calculating the proximity scores [16] between the COVID-19-related gene modules and
drug-related gene modules, we identified 47 drugs (Supplementary Table S7) that may have
potential therapeutic value for COVID-19 patients. To select the most promising drugs that
can be repurposed to treat COVID-19, further filtration and optimization were performed
as follows. First, we excluded those drugs with serious side effects and contraindications
for COVID-19 patients, according to the information from the DrugCentral platform [52]
and DrugBank descriptions [20]. Second, among those drugs that had the same target,
we excluded some drugs that had a reverse pharmacological action compared to the
therapeutic drugs. For example, dexamethasone is an agonist of the NR3C1 receptor, and it
has a treatment effect for severe COVID-19 patients. Hence, we removed the drugs that
were antagonists/inhibitors of the NR3C1 receptor. After the filtration, we revealed 13
promising COVID-19 repurposing candidates with literature-reported antiviral or anti-
inflammation evidence (Table 1).

Table 1. Promising candidate drugs for COVID-19 treatment.

Drug IDs Drug Name Targets Action Score Module

DB00523 alitretinoin RXRB agonist 1.731911 1
DB00459 acitretin RARG agonist 1.663944 1
DB00755 tretinoin RARG agonist 1.754273 1
DB00838 clocortolone NR3C1 agonist 1.468 2
DB00223 diflorasone NR3C1 agonist 1.458 2
DB00180 flunisolide NR3C1 agonist 1.468551 2
DB13867 fluticasone NR3C1 agonist 1.45833 2
DB00450 droperidol ADRA1A antagonist 1.65669 1
DB01162 terazosin ADRA1A antagonist 1.660944 1
DB00797 tolazoline ADRA1A antagonist 1.641605 1
DB03756 doconexent PPARA ligand 1.674037 1
DB03756 doconexent PPARA ligand 1.452954 2
DB03756 doconexent PPARA ligand 1.470426 3
DB01241 gemfibrozil PPARA agonist 1.640439 1
DB01241 gemfibrozil PPARA agonist 1.444263 2
DB01241 gemfibrozil PPARA agonist 1.464193 3
DB01186 pergolide DRD2 agonist 1.500818 1

4. Discussion

In this study, we presented an integrative network-based analysis to rapidly identify
previously approved drugs that may potentially be repositioned for the treatment of
COVID-19. We identified 164 COVID-19 genes and three disease-related gene modules.
The GSEA of the disease genes and modules indicated that they have a high degree of
correlation with immune system functionality. Finally, we found 47 drugs that might
influence the outcome of COVID-19 patients and highlighted 13 of the most promising
candidates.

4.1. Retinoids

We identified three drugs (acitretin, alitretinoin, and tretinoin) belonging to the
retinoids that may benefit COVID-19 patients. Retinoids are a family of molecules related
to vitamin A, including retinyl-esters, all-trans-retinal, and all-trans-retinoic acid [53]. They
are commonly used to treat severe cystic acne, psoriasis, and other disorders of keratiniza-
tion [20]. Many studies have indicated the immune-modulating effects of retinoids, such as
modulating T-cell activation [54], increasing the expression of interleukin-2 receptor and as-
sociated interferon (IFN)-γ levels [55]. Tretinoin and acitretin have been confirmed to inhibit
SARS-CoV-2 replication through high-throughput analysis [56]. Isotretinoin, a retinoid
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derivative of vitamin A, has also been advanced into clinical trials (NCT04361422 and
NCT04353180) of COVID-19. However, it is currently unclear how the retinoids inhibit
SARS-CoV-2 replication. Given that SARS-CoV and Middle East respiratory syndrome
coronavirus (MERS-CoV) can inhibit Type I interferon (IFN-I)-mediated antiviral responses,
some articles have suggested that retinoids may stimulate the secretion and potentiate the
effects of IFN-I to play an antiviral role in COVID-19 patients [57,58].

4.2. Glucocorticoids (GCs)

We found that four GCs (clocortolone, diflorasone, flunisolide, and fluticasone) may
influence the clinical outcomes of COVID-19 patients. GCs have been shown to play an
important role in anti-inflammatory and immunosuppressive activities, and GCs have been
widely used to treat autoimmune and inflammatory disorders [59]. Dexamethasone is a
GC that has been reported to decrease mortality and shorten the hospital stays of COVID-
19 patients who require mechanical ventilation or nonventilated oxygen therapy [60]. At
present, dexamethasone is the first and only drug that has been shown to improve the
survival rate of severe COVID-19 patients. However, the early use of GCs did not decrease
mortality or the need for mechanical ventilation of COVID-19 patients [61]. The success of
treatment with GCs may depend on the inflammation severity. GCs might help prevent the
alveolar/pulmonary damage induced by the cytokine and chemokine storm that occurs
in the most critically ill patients. Several studies have indicated that severe cases may
benefit from the treatment of GCs [62,63]. In addition to dexamethasone (the score of
dexamethasone was less than the 95 percentile of the reference distribution scores, so
we did not present it in our results), many other GCs have advanced into clinical trials,
such as methylprednisolone (NCT04263402), budesonide (NCT04355637), hydrocortisone
(NCT02735707), and prednisone (NCT04359511).

4.3. Alpha-1A Adrenergic Receptor Antagonists

We found three antagonists of the alpha-1 adrenergic receptor (droperidol, terazosin,
and tolazoline) that could be repurposed to treat COVID-19 patients. The alpha-1 adrener-
gic receptor antagonists are used to treat hypertension and symptomatic benign prostatic
hypertrophy by inhibiting smooth muscle contraction [20]. One previous study indicated
that the alpha-1A adrenergic receptor (α1-AR) is involved in the development of the cy-
tokine storm [64]. In general, the cytokine storm is accompanied by a massive increase in
catecholamines [65]. Catecholamine excess stimulates immune cells to secrete an overabun-
dance of interleukin 6 (IL-6) and other cytokines, which could result in tissue damage [64].
Therefore, blocking the catecholamine–cytokine axis may be effective to prevent tissue
damage caused by the cytokine storm. It has been reported that α1-AR antagonists help
mitigate the cytokine storm and reduce mortality in mice [65]. Additionally, the preprinted
results from a recent retrospective clinical group study revealed that α1-AR antagonists
could regulate immune responses and prevent COVID-19 patients from developing into
severe cases [66]. Based on these results, prazosin (NCT04365257) has been advanced into
clinical trials for COVID-19.

4.4. Peroxisome Proliferator-Activated Receptor Alpha (PPARα)-Related Drugs

We identified two drugs (doconexent and gemfibrozil) that might have anti-inflammatory
effects on COVID-19 patients via the activation of PPARα. PPARα is a member of the per-
oxisome proliferator-activated receptors (PPARs), which consists of three nuclear receptor
isoforms: PPARα, PPARδ, and PPARγ [67]. Previous studies have shown that PPARα
can repress inflammatory activity both in vitro and in vivo [68]. For instance, PPARα-free
mice showed a sustained inflammatory response stimulated by Leukotriene B4 (LTB4) or
arachidonic acid [69]. PPARα agonists could reduce the expression of acute-phase proteins
such as fibrinogen, C-reactive protein, and IL-6 [70].
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4.5. Dopamine Receptor D2 (DRD2)-Related Drugs

We identified pergolide, which may have a therapeutic effect on COVID-19, through
the activation of DRD2. DRD2 is a common target of antipsychotic drugs and Parkinson’s
disease medication [71], and its G protein-coupled receptor inhibits adenylyl cyclase activ-
ity. Additionally, DRD2 can modulate cytokine production, activation, and proliferation
in immune cells [72,73]. As a DRD2 agonist, dopamine, a potential anti-inflammatory
drug, significantly inhibits the expression of proinflammatory factors secreted by M1
macrophages [74]. According to a questionnaire-based study of COVID-19 patients, those
who received treatment with either amantadine or memantine (DRD2 agonist) did not
present any clinical manifestations [75]. These results indicate the protective effects of
adamantane by attenuating the manifestations of COVID-19 patients (the score of adaman-
tane is less than the 95th percentile of the reference distribution scores, so we did not present
it in our results). Amantadine and memantine have also displayed moderate antiviral ef-
fects in models for the bovine coronavirus, mouse hepatitis virus, human coronavirus OC43,
and SARS-CoV [76]. Memantine has been reported to reduce SARS-CoV-2 virulence by
decreasing ACE2 receptor expression and reducing oxidative stress and inflammation [77].

In addition to the drugs discussed above, we also found a number of other approved
drugs that might be worthy to explore for treating COVID-19 patients (Supplementary
Table S7). Thalidomide is used for some immunological disorders, and recent research
suggests that thalidomide (NCT04273529) can be used to suppress the cytokine storm and
modulate immune functions in COVID-19 patients [78]. Fostamatinib has been approved
to treat chronic immune thrombocytopenia by inhibiting the spleen tyrosine kinase (SYK),
and it has been reported that fostamatinib (NCT04581954) may be a potent drug for the
treatment of acute lung injury (ALI) caused by SARS-CoV-2 [79]. Liothyronine is the active
form of thyroxine that is used to treat thyroid hypofunction and myxedema coma [20]. Due
to the protective effect in virally infected tissue and antiapoptotic action, triiodothyronine
(NCT04348513) has been used to treat critically ill COVID-19 patients in a clinical trial [80].
To demonstrate the reliability of our results, we conducted a systematic review of the
literature. Seventeen of the 47 drugs presented in our study are verified to have a positive
effect on SARS-CoV-2 by previous studies in vitro, in vivo, or clinical trials. The associated
references are presented in Supplementary Table S7.

While the network-based approach for drug repurposing has identified some potential
candidates in our study, there are still a few limitations to be considered. First, the analysis
was conducted using a tissue-level background network, but in the future, it may be
worthwhile to explore background networks at the cell level (such as endothelium or
immune cells). Second, some notable drugs were not prioritized in our results, such as
dexamethasone and adamantane. This is at least partially due to the limitations of network-
based proximity and semantic similarity due to the incompleteness of the current PPI
network and Gene Ontology annotation sets. Third, the SARS-CoV-2–host interactome was
not considered in the analysis. This may impede the identification of some effective drugs
that specifically block viral infection and suppress viral replication. Lastly, the identified
repurposing candidates still require prospective validation in vitro or in vivo to determine
if they are able to enhance the body’s antivirus immune function.

At present, despite great effort, many COVID-19 patients have succumbed to their
condition due to invalid treatment. The FDA-approved and clinically used drugs are
only partially effective for COVID-19 patients. Therefore, novel therapeutic strategies
still need to be explored. Previous studies have reported many different methods for
drug repurposing [81]. Due to the inconsistent input data and the calculation method,
different results will be obtained. However, there is no perfect approach to get the best
results [82]. Our study used different methods and data from previous drug repurposing
research of COVID-19, obtained some different results, and conducted literature verification.
Our research represents a significant step towards identifying novel, effective therapeutic
drugs. Our recommendations are immune-regulated drugs. Therefore, we suggest that
experimental validation of these recommended drugs in our study should preferably be
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performed in vivo rather than in vitro (absence of the immune system). It is our hope
that the drugs prioritized by this network-based computational approach will be further
explored in clinical trials to validate their efficacy and effectiveness.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/pr10020326/s1, Supplementary Figure S1: Gene Ontology en-
richment pathways of genes in module 1. Supplementary Table S1: Total 52 types of annotations used
with resources and descriptions. Supplementary Table S2: 145 SNPs were selected from the original
GWAS data at the genome-wide significance level. Supplementary Table S3: COVID-19 related genes
derived from 3 data sources. Supplementary Table S4: Significant pathways enriched for COVID-19
associated genes identified by GWAS. Supplementary Table S5: Lung-specific background network
of COVID-19. Supplementary Table S6: Genes included in the 3 COVID-19 related gene modules.
Supplementary Table S7: 46 approved drugs that could influence the outcome of COVID-19 patients.

Author Contributions: H.-W.D. conceived, designed, initiated, and directed the whole project. S.L.,
as the first author, performed the data analysis and drafted the manuscript. H.-W.D., H.-M.L., W.-
Q.L., S.-R.W., J.G., H.S. and H.-M.X. revised, rewrote/restructured some sections, and finalized the
manuscript. D.-Y.L. and J.-C.L. contributed to the data collection and storage, text revision, and/or
discussion. All authors have read and agreed to the published version of the manuscript.

Funding: HWD was partially supported by grants from the National Institutes of Health (U19AG05537301
and R01AR069055). HMX was partially supported by National Key Research & Developmental Pro-
gram of China (SQ2017YFSF080009).

Institutional Review Board Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Romano, M.; Ruggiero, A.; Squeglia, F.; Maga, G.; Berisio, R. A Structural View of SARS-CoV-2 RNA Replication Machinery:

RNA Synthesis, Proofreading and Final Capping. Cells 2020, 9, 1267. [CrossRef]
2. Xu, J.; Zhao, S.; Teng, T.; Abdalla, A.E.; Zhu, W.; Xie, L.; Wang, Y.; Guo, X. Systematic Comparison of Two Animal-to-Human

Transmitted Human Coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses 2020, 12, 244. [CrossRef] [PubMed]
3. Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and

epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [CrossRef]
4. Li, R.; Pei, S.; Chen, B.; Song, Y.; Zhang, T.; Yang, W.; Shaman, J. Substantial undocumented infection facilitates the rapid

dissemination of novel coronavirus (SARS-CoV-2). Science 2020, 368, 489–493. [CrossRef] [PubMed]
5. Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020, 20,

533–534. [CrossRef]
6. Attaway, A.H.; Scheraga, R.G.; Bhimraj, A.; Biehl, M.; Hatipoglu, U. Severe covid-19 pneumonia: Pathogenesis and clinical

management. BMJ 2021, 372, n436. [CrossRef]
7. Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early Transmission

Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [CrossRef]
8. Zimmer, C.; Corum, J.; Wee, S. Coronavirus Vaccine Tracker. Available online: https://www.nytimes.com/interactive/2020

/science/coronavirus-vaccine-tracker.html (accessed on 1 March 2021).
9. NIH. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. Available online: https://www.covid19treatmentguidelines.

nih.gov/ (accessed on 1 March 2021).
10. Edwards, J.K.; Cole, S.R.; Adimora, A.A. Remdesivir and COVID-19. Lancet 2020, 396, 953. [CrossRef]
11. Pan, H.; Peto, R.; Karim, Q.A.; Alejandria, M.; Henao-Restrepo, A.M.; García, C.H.; Kieny, M.-P.; Malekzadeh, R.; Murthy,

S.; Preziosi, M.-P.; et al. Repurposed antiviral drugs for COVID-19—Interim WHO SOLIDARITY trial results. medRxiv 2020.
[CrossRef]

12. The WHO Rapid Evidence Appraisal for COVID-19 Therapies Working Group. Association Between Administration of Systemic
Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Meta-analysis. JAMA 2020, 324, 1330–1341.
[CrossRef]

13. Zhou, Y.; Wang, F.; Tang, J.; Nussinov, R.; Cheng, F. Artificial intelligence in COVID-19 drug repurposing. Lancet Digit. Health
2020, 2, e667–e676. [CrossRef]

14. Jourdan, J.P.; Bureau, R.; Rochais, C.; Dallemagne, P. Drug repositioning: A brief overview. J. Pharm. Pharmacol. 2020, 72,
1145–1151. [CrossRef] [PubMed]

15. Alaimo, S.; Pulvirenti, A. Network-Based Drug Repositioning: Approaches, Resources, and Research Directions. Methods Mol.
Biol. 2019, 1903, 97–113. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/pr10020326/s1
https://www.mdpi.com/article/10.3390/pr10020326/s1
http://doi.org/10.3390/cells9051267
http://doi.org/10.3390/v12020244
http://www.ncbi.nlm.nih.gov/pubmed/32098422
http://doi.org/10.1016/S0140-6736(20)30251-8
http://doi.org/10.1126/science.abb3221
http://www.ncbi.nlm.nih.gov/pubmed/32179701
http://doi.org/10.1016/S1473-3099(20)30120-1
http://doi.org/10.1136/bmj.n436
http://doi.org/10.1056/NEJMoa2001316
https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html
https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html
https://www.covid19treatmentguidelines.nih.gov/
https://www.covid19treatmentguidelines.nih.gov/
http://doi.org/10.1016/S0140-6736(20)32020-1
http://doi.org/10.1101/2020.10.15.20209817
http://doi.org/10.1001/jama.2020.17023
http://doi.org/10.1016/S2589-7500(20)30192-8
http://doi.org/10.1111/jphp.13273
http://www.ncbi.nlm.nih.gov/pubmed/32301512
http://doi.org/10.1007/978-1-4939-8955-3_6
http://www.ncbi.nlm.nih.gov/pubmed/30547438


Processes 2022, 10, 326 14 of 16

16. Misselbeck, K.; Parolo, S.; Lorenzini, F.; Savoca, V.; Leonardelli, L.; Bora, P.; Morine, M.J.; Mione, M.C.; Domenici, E.; Priami, C. A
network-based approach to identify deregulated pathways and drug effects in metabolic syndrome. Nat. Commun. 2019, 10, 5215.
[CrossRef]

17. The Covid-Host Genetics Initiative. The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic
factors in susceptibility and severity of the SARS-CoV-2 virus pandemic. Eur. J. Hum. Genet. 2020, 28, 715–718. [CrossRef]

18. Marbach, D.; Lamparter, D.; Quon, G.; Kellis, M.; Kutalik, Z.; Bergmann, S. Tissue-specific regulatory circuits reveal variable
modular perturbations across complex diseases. Nat. Methods 2016, 13, 366–370. [CrossRef]

19. Luck, K.; Kim, D.K.; Lambourne, L.; Spirohn, K.; Begg, B.E.; Bian, W.; Brignall, R.; Cafarelli, T.; Campos-Laborie, F.J.; Charloteaux,
B.; et al. A reference map of the human binary protein interactome. Nature 2020, 580, 402–408. [CrossRef]

20. Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank
5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [CrossRef]

21. Subramanian, A.; Narayan, R.; Corsello, S.M.; Peck, D.D.; Natoli, T.E.; Lu, X.; Gould, J.; Davis, J.F.; Tubelli, A.A.; Asiedu, J.K.; et al.
A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell 2017, 171, 1437–1452. [CrossRef]

22. Machiela, M.J.; Chanock, S.J. LDlink: A web-based application for exploring population-specific haplotype structure and linking
correlated alleles of possible functional variants. Bioinformatics 2015, 31, 3555–3557. [CrossRef]

23. Kichaev, G.; Roytman, M.; Johnson, R.; Eskin, E.; Lindström, S.; Kraft, P.; Pasaniuc, B. Improved methods for multi-trait fine
mapping of pleiotropic risk loci. Bioinformatics 2016, 33, 248–255. [CrossRef] [PubMed]

24. McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect
Predictor. Genome Biol. 2016, 17, 122. [CrossRef] [PubMed]

25. Segrè, A.V.; Consortium, D.; Investigators, M.; Groop, L.; Mootha, V.K.; Daly, M.J.; Altshuler, D. Common Inherited Variation
in Mitochondrial Genes Is Not Enriched for Associations with Type 2 Diabetes or Related Glycemic Traits. PLoS Genet. 2010, 6,
e1001058. [CrossRef]

26. Rani, J.; Shah, A.B.; Ramachandran, S. pubmed.mineR: An R package with text-mining algorithms to analyse PubMed abstracts. J.
Biosci. 2015, 40, 671–682. [CrossRef] [PubMed]

27. Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.;
Lachmann, A.; et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016, 44,
W90–W97. [CrossRef]

28. Lizio, M.; Harshbarger, J.; Shimoji, H.; Severin, J.; Kasukawa, T.; Sahin, S.; Abugessaisa, I.; Fukuda, S.; Hori, F.; Ishikawa-Kato, S.;
et al. Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biol. 2015, 16, 22. [CrossRef]

29. Aguet, F.; Brown, A.A.; Castel, S.E.; Davis, J.R.; He, Y.; Jo, B.; Mohammadi, P.; Park, Y.; Parsana, P.; Segrè, A.V.; et al. Genetic
effects on gene expression across human tissues. Nature 2017, 550, 204–213. [CrossRef]

30. Kumar, V.; Sanseau, P.; Simola, D.F.; Hurle, M.R.; Agarwal, P. Systematic Analysis of Drug Targets Confirms Expression in
Disease-Relevant Tissues. Sci. Rep. 2016, 6, 36205. [CrossRef]

31. Lage, K.; Hansen, N.T.; Karlberg, E.O.; Eklund, A.C.; Roque, F.S.; Donahoe, P.K.; Szallasi, Z.; Jensen, T.S.; Brunak, S. A large-scale
analysis of tissue-specific pathology and gene expression of human disease genes and complexes. Proc. Natl. Acad. Sci. USA 2008,
105, 20870–20875. [CrossRef]

32. Csardi, G.; Nepusz, T. The igraph software package for complex network research. Inter J. 2006, 1695, 1–9.
33. Pons, P.; Latapy, M. Computing communities in large networks using random walks. Comput. Inf. Sci. 2005, 3733, 284–293.
34. Wang, J.Z.; Du, Z.; Payattakool, R.; Yu, P.S.; Chen, C.F. A new method to measure the semantic similarity of GO terms.

Bioinformatics 2007, 23, 1274–1281. [CrossRef] [PubMed]
35. Yu, G.; Li, F.; Qin, Y.; Bo, X.; Wu, Y.; Wang, S. GOSemSim: An R package for measuring semantic similarity among GO terms and

gene products. Bioinformatics 2010, 26, 976–978. [CrossRef] [PubMed]
36. Guney, E.; Menche, J.; Vidal, M.; Barábasi, A.-L. Network-based in silico drug efficacy screening. Nat. Commun. 2016, 7, 10331.

[CrossRef]
37. Visscher, P.M.; Wray, N.R.; Zhang, Q.; Sklar, P.; McCarthy, M.I.; Brown, M.A.; Yang, J. 10 Years of GWAS Discovery: Biology,

Function, and Translation. Am. J. Hum. Genet. 2017, 101, 5–22. [CrossRef]
38. Nabirotchkin, S.; Peluffo, A.E.; Rinaudo, P.; Yu, J.; Hajj, R.; Cohen, D. Next-generation drug repurposing using human genetics

and network biology. Curr. Opin. Pharmacol. 2020, 51, 78–92. [CrossRef]
39. Legler, D.F.; Thelen, M. New insights in chemokine signaling. F1000Research 2018, 7, 95. [CrossRef]
40. Pinero, J.; Bravo, A.; Queralt-Rosinach, N.; Gutierrez-Sacristan, A.; Deu-Pons, J.; Centeno, E.; Garcia-Garcia, J.; Sanz, F.; Furlong,

L.I. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic
Acids Res. 2017, 45, D833–D839. [CrossRef]

41. Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment
of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 324, 782–793. [CrossRef]

42. Greene, C.S.; Krishnan, A.; Wong, A.K.; Ricciotti, E.; Zelaya, R.A.; Himmelstein, D.S.; Zhang, R.; Hartmann, B.M.; Zaslavsky, E.;
Sealfon, S.C.; et al. Understanding multicellular function and disease with human tissue-specific networks. Nat. Genet. 2015, 47,
569–576. [CrossRef]

43. Kitsak, M.; Sharma, A.; Menche, J.; Guney, E.; Ghiassian, S.D.; Loscalzo, J.; Barabási, A.-L. Tissue Specificity of Human Disease
Module. Sci. Rep. 2016, 6, 35241. [CrossRef] [PubMed]

http://doi.org/10.1038/s41467-019-13208-z
http://doi.org/10.1038/s41431-020-0636-6
http://doi.org/10.1038/nmeth.3799
http://doi.org/10.1038/s41586-020-2188-x
http://doi.org/10.1093/nar/gkx1037
http://doi.org/10.1016/j.cell.2017.10.049
http://doi.org/10.1093/bioinformatics/btv402
http://doi.org/10.1093/bioinformatics/btw615
http://www.ncbi.nlm.nih.gov/pubmed/27663501
http://doi.org/10.1186/s13059-016-0974-4
http://www.ncbi.nlm.nih.gov/pubmed/27268795
http://doi.org/10.1371/journal.pgen.1001058
http://doi.org/10.1007/s12038-015-9552-2
http://www.ncbi.nlm.nih.gov/pubmed/26564970
http://doi.org/10.1093/nar/gkw377
http://doi.org/10.1186/s13059-014-0560-6
http://doi.org/10.1038/nature24277
http://doi.org/10.1038/srep36205
http://doi.org/10.1073/pnas.0810772105
http://doi.org/10.1093/bioinformatics/btm087
http://www.ncbi.nlm.nih.gov/pubmed/17344234
http://doi.org/10.1093/bioinformatics/btq064
http://www.ncbi.nlm.nih.gov/pubmed/20179076
http://doi.org/10.1038/ncomms10331
http://doi.org/10.1016/j.ajhg.2017.06.005
http://doi.org/10.1016/j.coph.2019.12.004
http://doi.org/10.12688/f1000research.13130.1
http://doi.org/10.1093/nar/gkw943
http://doi.org/10.1001/jama.2020.12839
http://doi.org/10.1038/ng.3259
http://doi.org/10.1038/srep35241
http://www.ncbi.nlm.nih.gov/pubmed/27748412


Processes 2022, 10, 326 15 of 16

44. Sonawane, A.R.; Platig, J.; Fagny, M.; Chen, C.Y.; Paulson, J.N.; Lopes-Ramos, C.M.; DeMeo, D.L.; Quackenbush, J.; Glass, K.;
Kuijjer, M.L. Understanding Tissue-Specific Gene Regulation. Cell Rep 2017, 21, 1077–1088. [CrossRef] [PubMed]

45. Barabasi, A.L.; Gulbahce, N.; Loscalzo, J. Network medicine: A network-based approach to human disease. Nat. Rev. Genet. 2011,
12, 56–68. [CrossRef] [PubMed]

46. Gandhi, T.K.; Zhong, J.; Mathivanan, S.; Karthick, L.; Chandrika, K.N.; Mohan, S.S.; Sharma, S.; Pinkert, S.; Nagaraju, S.;
Periaswamy, B.; et al. Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets.
Nat. Genet. 2006, 38, 285–293. [CrossRef] [PubMed]

47. Oti, M.; Snel, B.; Huynen, M.A.; Brunner, H.G. Predicting disease genes using protein-protein interactions. J. Med. Genet. 2006, 43,
691–698. [CrossRef] [PubMed]

48. Robba, C.; Battaglini, D.; Pelosi, P.; Rocco, P. Multiple organ dysfunction in SARS-CoV-2: MODS-CoV-2. Expert Rev. Respir. Med.
2020, 14, 865–868. [CrossRef] [PubMed]

49. Zhang, Y.; Geng, X.; Tan, Y.; Li, Q.; Xu, C.; Xu, J.; Hao, L.; Zeng, Z.; Luo, X.; Liu, F.; et al. New understanding of the damage of
SARS-CoV-2 infection outside the respiratory system. Biomed. Pharmacother. 2020, 127, 110195. [CrossRef]

50. Vabret, N.; Britton, G.J.; Gruber, C.; Hegde, S.; Kim, J.; Kuksin, M.; Levantovsky, R.; Malle, L.; Moreira, A.; Park, M.D.; et al.
Immunology of COVID-19: Current State of the Science. Immunity 2020, 52, 910–941. [CrossRef]

51. Yang, L.; Liu, S.; Liu, J.; Zhang, Z.; Wan, X.; Huang, B.; Chen, Y.; Zhang, Y. COVID-19: Immunopathogenesis and Immunothera-
peutics. Signal Transduct. Target. Ther. 2020, 5, 128. [CrossRef]

52. Ursu, O.; Holmes, J.; Knockel, J.; Bologa, C.G.; Yang, J.J.; Mathias, S.L.; Nelson, S.J.; Oprea, T.I. DrugCentral: Online drug
compendium. Nucleic Acids Res. 2017, 45, D932–D939. [CrossRef]

53. Gudas, L.J. Emerging roles for retinoids in regeneration and differentiation in normal and disease states. Biochim. Biophys. Acta,
Mol. Cell Biol. Lipids 2012, 1821, 213–221. [CrossRef] [PubMed]

54. Garbe, A.; Buck, J.; Hämmerling, U. Retinoids are important cofactors in T cell activation. J. Exp. Med. 1992, 176, 109–117.
[CrossRef] [PubMed]

55. Rook, A.H.; Kubin, M.; Fox, F.E.; Niu, Z.; Cassin, M.; Vowels, B.R.; Gottleib, S.L.; Vonderheid, E.C.; Lessin, S.R.; Trinchieri, G. The
potential therapeutic role of interleukin-12 in cutaneous T-cell lymphoma. Ann. N. Y. Acad. Sci. 1996, 795, 310–318. [CrossRef]
[PubMed]

56. Riva, L.; Yuan, S.; Yin, X.; Martin-Sancho, L.; Matsunaga, N.; Burgstaller-Muehlbacher, S.; Pache, L.; De Jesus, P.P.; Hull, M.V.;
Chang, M.; et al. A Large-scale Drug Repositioning Survey for SARS-CoV-2 Antivirals. bioRxiv 2020. [CrossRef]

57. Trasino, S.E. A role for retinoids in the treatment of COVID-19? Clin. Exp. Pharmacol. Physiol. 2020, 47, 1765–1767. [CrossRef]
[PubMed]

58. Sarohan, A.R. COVID-19: Endogenous Retinoic Acid Theory and Retinoic Acid Depletion Syndrome. Med. Hypotheses 2020, 144,
110250. [CrossRef]

59. Liberman, A.C.; Budziñski, M.L.; Sokn, C.; Gobbini, R.P.; Steininger, A.; Arzt, E. Regulatory and Mechanistic Actions of
Glucocorticoids on T and Inflammatory Cells. Front. Endocrinol. 2018, 9, 235. [CrossRef]

60. Lammers, T.; Sofias, A.M.; van der Meel, R.; Schiffelers, R.; Storm, G.; Tacke, F.; Koschmieder, S.; Brümmendorf, T.H.; Kiessling, F.;
Metselaar, J.M. Dexamethasone nanomedicines for COVID-19. Nat. Nanotechnol. 2020, 15, 622–624. [CrossRef]

61. Keller, M.J.; Kitsis, E.A.; Arora, S.; Chen, J.T.; Agarwal, S.; Ross, M.J.; Tomer, Y.; Southern, W. Effect of Systemic Glucocorticoids
on Mortality or Mechanical Ventilation in Patients With COVID-19. J. Hosp. Med. 2020, 15, 489–493. [CrossRef]

62. Fadel, R.; Morrison, A.; Vahia, A.; Smith, Z.; Chaudhry, Z.; Bhargava, P.; Miller, J.; Kenney, R.; Alangaden, G.; Ramesh, M. Early
Short Course Corticosteroids in Hospitalized Patients with COVID-19. Clin. Infect. Dis. 2020, 71, 2114–2120. [CrossRef]

63. Wu, C.; Chen, X.; Cai, Y.; Xia, J.a.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk Factors Associated With
Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA
Intern. Med. 2020, 180, 934–943. [CrossRef] [PubMed]

64. Konig, M.F.; Powell, M.; Staedtke, V.; Bai, R.Y.; Thomas, D.L.; Fischer, N.; Huq, S.; Khalafallah, A.M.; Koenecke, A.; Xiong, R.;
et al. Preventing cytokine storm syndrome in COVID-19 using α-1 adrenergic receptor antagonists. J. Clin. Investig. 2020, 130,
3345–3347. [CrossRef] [PubMed]

65. Staedtke, V.; Bai, R.Y.; Kim, K.; Darvas, M.; Davila, M.L.; Riggins, G.J.; Rothman, P.B.; Papadopoulos, N.; Kinzler, K.W.; Vogelstein,
B.; et al. Disruption of a self-amplifying catecholamine loop reduces cytokine release syndrome. Nature 2018, 564, 273–277.
[CrossRef] [PubMed]

66. Konig, M.F.; Powell, M.; Staedtke, V.; Bai, R.-Y.; Thomas, D.L.; Fischer, N.; Huq, S.; Khalafallah, A.M.; Koenecke, A.; Xiong, R.;
et al. Targeting the catecholamine-cytokine axis to prevent SARS-CoV-2 cytokine storm syndrome. medRxiv 2020. [CrossRef]

67. Berger, J.; Moller, D.E. The Mechanisms of Action of PPARs. Annu. Rev. Med. 2002, 53, 409–435. [CrossRef]
68. Youssef, J.; Badr, M. Role of Peroxisome Proliferator-Activated Receptors in Inflammation Control. J. Biomed. Biotechnol. 2004,

2004, 156–166. [CrossRef]
69. Devchand, P.R.; Keller, H.; Peters, J.M.; Vazquez, M.; Gonzalez, F.J.; Wahli, W. The PPARalpha-leukotriene B4 pathway to

inflammation control. Nature 1996, 384, 39–43. [CrossRef]
70. Zambon, A.; Gervois, P.; Pauletto, P.; Fruchart, J.C.; Staels, B. Modulation of hepatic inflammatory risk markers of cardiovascular

diseases by PPAR-alpha activators: Clinical and experimental evidence. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 977–986.
[CrossRef]

http://doi.org/10.1016/j.celrep.2017.10.001
http://www.ncbi.nlm.nih.gov/pubmed/29069589
http://doi.org/10.1038/nrg2918
http://www.ncbi.nlm.nih.gov/pubmed/21164525
http://doi.org/10.1038/ng1747
http://www.ncbi.nlm.nih.gov/pubmed/16501559
http://doi.org/10.1136/jmg.2006.041376
http://www.ncbi.nlm.nih.gov/pubmed/16611749
http://doi.org/10.1080/17476348.2020.1778470
http://www.ncbi.nlm.nih.gov/pubmed/32567404
http://doi.org/10.1016/j.biopha.2020.110195
http://doi.org/10.1016/j.immuni.2020.05.002
http://doi.org/10.1038/s41392-020-00243-2
http://doi.org/10.1093/nar/gkw993
http://doi.org/10.1016/j.bbalip.2011.08.002
http://www.ncbi.nlm.nih.gov/pubmed/21855651
http://doi.org/10.1084/jem.176.1.109
http://www.ncbi.nlm.nih.gov/pubmed/1535365
http://doi.org/10.1111/j.1749-6632.1996.tb52680.x
http://www.ncbi.nlm.nih.gov/pubmed/8958942
http://doi.org/10.1101/2020.04.16.044016
http://doi.org/10.1111/1440-1681.13354
http://www.ncbi.nlm.nih.gov/pubmed/32459003
http://doi.org/10.1016/j.mehy.2020.110250
http://doi.org/10.3389/fendo.2018.00235
http://doi.org/10.1038/s41565-020-0752-z
http://doi.org/10.12788/jhm.3497
http://doi.org/10.1093/cid/ciaa601
http://doi.org/10.1001/jamainternmed.2020.0994
http://www.ncbi.nlm.nih.gov/pubmed/32167524
http://doi.org/10.1172/JCI139642
http://www.ncbi.nlm.nih.gov/pubmed/32352407
http://doi.org/10.1038/s41586-018-0774-y
http://www.ncbi.nlm.nih.gov/pubmed/30542164
http://doi.org/10.1101/2020.04.02.20051565
http://doi.org/10.1146/annurev.med.53.082901.104018
http://doi.org/10.1155/S1110724304308065
http://doi.org/10.1038/384039a0
http://doi.org/10.1161/01.ATV.0000204327.96431.9a


Processes 2022, 10, 326 16 of 16

71. Wang, S.; Che, T.; Levit, A.; Shoichet, B.K.; Wacker, D.; Roth, B.L. Structure of the D2 dopamine receptor bound to the atypical
antipsychotic drug risperidone. Nature 2018, 555, 269–273. [CrossRef]

72. Beck, G.; Brinkkoetter, P.; Hanusch, C.; Schulte, J.; van Ackern, K.; van der Woude, F.J.; Yard, B.A. Clinical review: Immunomodu-
latory effects of dopamine in general inflammation. Crit. Care 2004, 8, 485–491. [CrossRef]

73. Torres-Rosas, R.; Yehia, G.; Pena, G.; Mishra, P.; del Rocio Thompson-Bonilla, M.; Moreno-Eutimio, M.A.; Arriaga-Pizano, L.A.;
Isibasi, A.; Ulloa, L. Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nat. Med. 2014, 20,
291–295. [CrossRef]

74. Han, X.; Ni, J.; Wu, Z.; Wu, J.; Li, B.; Ye, X.; Dai, J.; Chen, C.; Xue, J.; Wan, R.; et al. Myeloid-specific dopamine D2 receptor
signalling controls inflammation in acute pancreatitis via inhibiting M1 macrophage. Br. J. Pharmacol. 2020, 177, 2991–3008.
[CrossRef] [PubMed]

75. Rejdak, K.; Grieb, P. Adamantanes might be protective from COVID-19 in patients with neurological diseases: Multiple sclerosis,
parkinsonism and cognitive impairment. Mult. Scler. Relat. Disord. 2020, 42, 102163. [CrossRef] [PubMed]

76. Cimolai, N. Potentially repurposing adamantanes for COVID-19. J. Med. Virol. 2020, 92, 531–532. [CrossRef] [PubMed]
77. Hasanagic, S.; Serdarevic, F. Potential role of memantine in the prevention and treatment of COVID-19: Its antagonism of nicotinic

acetylcholine receptors and beyond. Eur. Respir. J. 2020, 56, 2001610. [CrossRef]
78. Chen, C.; Qi, F.; Shi, K.; Li, Y.; Li, J.; Chen, Y.; Pan, J.; Zhou, T.; Lin, X.; Zhang, J.; et al. Thalidomide combined with low-dose

short-term glucocorticoid in the treatment of critical Coronavirus Disease 2019. Clin. Transl. Med. 2020, 10, e35. [CrossRef]
[PubMed]

79. Alimova, M.; Sidhom, E.-H.; Satyam, A.; Dvela-Levitt, M.; Melanson, M.; Chamberlain, B.T.; Alper, S.L.; Santos, J.; Gutierrez, J.;
Subramanian, A.; et al. A High Content Screen for Mucin-1-Reducing Compounds Identifies Fostamatinib as a Candidate for
Rapid Repurposing for Acute Lung Injury during the COVID-19 pandemic. bioRxiv 2020. [CrossRef]

80. Pantos, C.; Tseti, I.; Mourouzis, I. Use of triiodothyronine to treat critically ill COVID-19 patients: A new clinical trial. Crit. Care
2020, 24, 209. [CrossRef] [PubMed]

81. Dotolo, S.; Marabotti, A.; Facchiano, A.; Tagliaferri, R. A review on drug repurposing applicable to COVID-19. Brief. Bioinform.
2021, 22, 726–741. [CrossRef] [PubMed]

82. Morselli Gysi, D.; do Valle, I.; Zitnik, M.; Ameli, A.; Gan, X.; Varol, O.; Ghiassian, S.D.; Patten, J.J.; Davey, R.A.; Loscalzo, J.; et al.
Network medicine framework for identifying drug-repurposing opportunities for COVID-19. Proc. Natl. Acad. Sci. USA 2021,
118, e2025581118. [CrossRef]

http://doi.org/10.1038/nature25758
http://doi.org/10.1186/cc2879
http://doi.org/10.1038/nm.3479
http://doi.org/10.1111/bph.15026
http://www.ncbi.nlm.nih.gov/pubmed/32060901
http://doi.org/10.1016/j.msard.2020.102163
http://www.ncbi.nlm.nih.gov/pubmed/32388458
http://doi.org/10.1002/jmv.25752
http://www.ncbi.nlm.nih.gov/pubmed/32176361
http://doi.org/10.1183/13993003.01610-2020
http://doi.org/10.1002/ctm2.35
http://www.ncbi.nlm.nih.gov/pubmed/32508009
http://doi.org/10.2139/ssrn.3650600
http://doi.org/10.1186/s13054-020-02934-2
http://www.ncbi.nlm.nih.gov/pubmed/32384906
http://doi.org/10.1093/bib/bbaa288
http://www.ncbi.nlm.nih.gov/pubmed/33147623
http://doi.org/10.1073/pnas.2025581118

	Introduction 
	Materials and Methods 
	Overview of the Computational Procedure 
	Identification of COVID-19-Associated Genes 
	Construction of Lung-Specific Background Molecular Network 
	Screening of Drug Information 
	Identification of COVID-19-Related Gene Modules and Drug-Related Gene Modules 
	Evaluation of the Potential Effects of Drug Candidates on COVID-19 

	Results 
	Identification of Genes Associated with COVID-19 
	Lung-Specific COVID-19-Related Gene Modules 
	Drug Repurposing 

	Discussion 
	Retinoids 
	Glucocorticoids (GCs) 
	Alpha-1A Adrenergic Receptor Antagonists 
	Peroxisome Proliferator-Activated Receptor Alpha (PPAR)-Related Drugs 
	Dopamine Receptor D2 (DRD2)-Related Drugs 

	References

