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Digitalized Automation Engineering

of Industry 4.0 Production Systems

and Their Tight Cooperation with

Digital Twins. Processes 2022, 10, 404.

https://doi.org/10.3390/pr10020404

Academic Editor: José Barbosa

Received: 24 November 2021

Accepted: 10 February 2022

Published: 18 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Digitalized Automation Engineering of Industry 4.0 Production
Systems and Their Tight Cooperation with Digital Twins
Petr Novák * and Jiří Vyskočil
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Abstract: Smart production systems conforming the Industry 4.0 vision are based on subsystems
that are integrated in a way that supports high flexibility and re-configurability. Specific components
and devices, such as industrial and mobile robots or transport systems, now pose full-blown systems,
and the entire Industry 4.0 production system constitutes a system-of-systems. Testing, fine-tuning,
and production planning are important tasks in the entire engineering production system life-cycle.
All these steps can be significantly supported and improved by digital twins, which are digitalized
replicas of physical systems that are synchronized with the real systems at runtime. However, the
design and implementation of digital twins for such integrated, yet partly stand-alone, industrial
sub-systems can represent challenging and significantly time-consuming engineering tasks. In this
article, the problem of the digital twin design for discrete-event production systems is addressed. The
article also proposes to utilize a formal description of production resources and related production
operations that the resources can perform. An executable version of such formalization can be
automatically derived into a form of a digital twin. Such a derived digital twin can be enhanced with
operation duration times that are obtained with process mining methods, leading to more realistic
simulations for the entire production system. The proposed solution was successfully tested and
validated in the Industry 4.0 Testbed, equipped with four robots and a transport system, which is
utilized as a use-case in this article.

Keywords: production system; digital twin; planning; simulation; automation system; flexibility;
robotics; process mining

1. Introduction

Contemporary production systems are typically designed according to a hierarchical
layered architecture known as an automation pyramid, depicted in Figure 1. This well-
proven architecture is focused on solid foundations of robust industrial components such
as robots or other manipulators, sensors, transportation system components, providing
process data inputs and outputs (I/Os). The second level in the automation pyramid is
represented by programmable logic controllers (PLCs), implementing control algorithms
providing basic functionality, handling interfaces between individual shop-floor compo-
nents and guaranteeing safety of the integrated system. A more advanced coordination
and production control is solved on the SCADA (Supervisory Control and Data Acquisi-
tion) system level of the automation pyramid. All these three aforementioned levels of
the automation pyramid are tightly connected to the shop-floor hardware, but they also
execute pre-coded production sequences tightly connected to produced goods/products.
Even if the two upmost levels of the pyramid, that is, a manufacturing execution system
(MES) and enterprise resource planning (ERP) systems are software-intensive and provide
some degree of flexibility in the areas possibility to add, modify, or remove products or
production processes related to producing these products, the bottom-most levels of the
pyramid are not able to meet the flexibility as they are strictly tailored for predefined and
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pre-programmed production processes. This architectural and functional limitation is one
of the most important contribution of paradigm shifts represented by Industry 4.0 and
Smart Manufacturing.

Figure 1. Traditional automation pyramid, preceding architectures of cyber-physical production
system conforming Industry 4.0 principles.

Industry 4.0 (The term “Industrie 4.0” was first publicly introduced in 2011 at the Han-
nover Fair http://www.wolfgang-wahlster.de/wordpress/wp-content/uploads/Industrie_
4_0_Mit_dem_Internet_der_Dinge_auf_dem_Weg_zur_vierten_industriellen_Revolution_
2.pdf (accessed on 14 February 2022)) and Smart manufacturing shifts in their engineering
processes from the bottom-up design approach to top-down approach. As both emerg-
ing areas are rather visions than specific sets of requirements that can be checked-up
when provisioning such a smart production system, the trajectories towards Industry 4.0
cyber-physical production systems [1] may be diverse and variously difficult.

The promising way how to push and adopt Industry 4.0 concepts for smart manufac-
turing is a shift from traditional shop-floor components towards more independent systems
referred as Industry 4.0 components. The Industry 4.0 components [2] are equipped with
well-defined interfaces, they are more inter-operable and stand-alone. In fact, they adopt
basic principles of intelligent agents [3,4] in terms they are typically equipped with a basic
knowledge about the environment where they act. However, on the other hand, they are
not at all coordinating themselves or intentionally communicating with other agents, as
intelligent agents can do. The communication of Industry 4.0 components and their coordi-
nation should be still done on higher levels of the automation system pyramid, however,
neither the traditional SCADA systems nor the contemporary MES systems are capable to
fully comply these required coordination requirements.

To meet the requirements on the runtime coordination of shop-floor devices, it is
needed to plan production execution according to the latest state of the system and ac-
cording to the current availability of resources and materials. Therefore, we are using
production planner utilizing academic standard “Planning Domain Definition Language”
(frequently abbreviated as “PDDL” and introduced in details later in Section 2.3), how-
ever, we need a digital twin [5] keeping the global state of the system as an enabler for
planner-supported production execution.

The digital twin is a digital replica of the real physical system that captures and
is able to provide the up-to-date information about the latest global state of the entire
system, in the context of this article of the real industrial production system. The first
concept of a digital twin was introduced by Dr. Michael Grieves in 2002 (cf. https://www.
researchgate.net/publication/307509727_Origins_of_the_Digital_Twin_Concept (accessed
on 14 February 2022)). In the last two decades, the concept of the digital twin has evolved
and has matured into wide usage within various Industry 4.0 applications. The term
“digital twin” is, however, frequently confused and misused with the term “simulation”, as
it is explained in [5,6] due to the current trend of overall and unclear “digitalization” of
production systems and processes. In the context of this article, simulation is an executable
model for the real system, which however does not need to be synchronized with the
real twin. In other words, the simulation model cannot be easily started without prior
justification and fine-tuning of initial conditions according to the latest state of the real
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system. This fact complicates use of simulations for supporting decision-making at runtime,
analysis of current behavior and other frequently needed tasks.

A clear explanation of the terms digital twins and simulations can be found in
Kritzinger et al. [6]. It provides a classification of those virtualized artifacts into the
following three categories, considering the level of integration: (i) digital models running
either independently on the physical objects or just with a manual data exchange, (ii) digital
shadows equipped within automatic data flow from physical object to the digital object, and
(iii) digital twins featured by bi-directional data flow between physical and digital objects,
see [6] for more details. The paper explains that only a minority of the approaches can be
considered digital twins, equipped with the bi-directional data flows. Since the approach
presented in this article utilizes such bi-directional data flows to and from the digital twin
(especially for the production planning and scheduling purposes), the proposed way of
digital twin usage perfectly fits to the highest category of digital twins that are formulated
in [6]. In other words, the required continuous integration and synchronization of the
digital and real twins conforms to the full-blown digital twin [7], rather than just a digital
shadow [8].

If running systems are not yet available or the values cannot be reused from other
comparable systems of the same class, then data from specialized domain tools have to be
used. Since these domain-specific tools cannot provide data to entire integrated systems,
it makes sense still to use the proposed approach combining the solid foundations of the
formal system description and the estimated time constants from various sources.

In the proposed approach, production plans are planned for each production or-
der/goal on-the-fly, based on the global state of the production system that is obtained
from the digital twin. Such a solution brings higher flexibility in the areas of supporting to
add or remove allowed products as well as available production resources as part of the
production system/active recipes. The proposed solution can also support recovering from
various errors, simply by re-planning current and ongoing production goals and appro-
priate recipes in case of a failure in the production system. The solution was thoroughly
tested and evaluated in the Industry 4.0 Testbed facility, which is utilized as a use-case in
this article. Results of the experiments convincingly prove efficiency and flexibility of the
proposed solution.

2. Related Work

Current industrial production systems are pushed to provide new flexibility and re-
configurability to be more efficient and capable to react on rapidly changing market. The
terms Industry 4.0 and smart manufacturing are gaining importance.

2.1. Industry 4.0 and Smart Manufacturing

The term smart manufacturing is, especially in Europe, frequently related to the term
“Industry 4.0” [1,9]. Industry 4.0 is a vision or strategy on shifting traditional industrial
manufacturing facilities towards modern and flexible systems, benefiting especially from
advances in the domain of Artificial Intelligence (AI). According to Etz et al., “smart
manufacturing is realizing the idea and potential of Industry 4.0 in reality” [10]. Smart
manufacturing is related to a new generation of Cyber-Physical Production Systems (CPPS)
featured with data connectivity and artificial intelligence [11].

Transforming traditional production facilities towards Industry 4.0 and smart manu-
facturing is frequently a long-term process incorporating various process steps. A roadmap
for this transformation is addressed in [12]. It emphasizes six pillars, called six gears: (i)
Strategy, (ii) Connectivity, (iii) Integration, (iv) Data analytics, (v) Artificial Intelligence, and
(vi) Scalability [12]. A review of existing industrial standards, which have the capability for
supporting smart manufacturing and system automation can be found in [13]. One of the
most prominent roles in smart manufacturing is data acquisition and data processing [14].
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2.2. Digital Twins for Production Systems

Traditionally, digital twins are defined in a domain-specific way that relies on a
mathematical–physical description resulting from specific spatial shapes, materials, and
physical phenomena/equations, see for example machining processes for high-tech/aerospace
industry [15,16]. To simplify the design process of digital twins, generation of digital twins
from 2D and 3D CAD plans/models is addressed in [17], by means of generating graphs
from available plans/models that pose a basis for graph matchmaking. This approach
has been slightly improved, generalized, and matured in [18], targeting generation of
digital twins for brown-fields production systems in general, yet considering piping and
instrumentation diagrams still as a use-case. The use of AutomationML can support design
of the digital twin and make their design process more efficient and easier [19].

A clear separation of product, process, and resource aspects in production system
automation and respective digital twin components is addressed in [20]. The utilized
multi-agent paradigm is capable to inherently distinguish among these components of the
production system engineering clearly. Despite the promising divide-and-conquer feature
of multi-agent design paradigm, which could on one hand provide better flexibility, re-
configurability and maintainability, on the other hand, the increased level of communication
across all components and the overall coordination of software agents can be costly from
the perspective of computation and messaging time and resource allocation [21].

The complexity of emerging cyber-physical production systems (CPPS) is significantly
increasing, compared to traditional manufacturing systems. CPPS are systems-of-systems
from the system and control theory point of view. Such a complexity of real systems
implies increasing complexity of digital twins. One possible way out of the digital twin
complexity is introducing a network of digital twins (e.g., corresponding to production
line components), which can be however accessed and queried in a uniform way to get
the entire coherent (global) state of the production system. Such a networked digital twin
is addressed in [22]. Another approach facing the increasing complexity of systems is
provided in [23]. It is focused on a digital twin architecture based on micro-services, whose
communication is facilitated by a message-oriented middle-ware implemented by Apache
Kafka, providing support for streamed data.

In terms of production planning, the application and integration of digital twins goes
rather in the direction of a capacity planning. For example, supply chain planning is
discussed in [24]. The use of a digital twin is not a new idea, but the innovation is to
integrate/apply it for supply chain management, which is not done nowadays.

One of the research trends in the area of digital twins is their enhancement into a
form of “cognitive digital twins”. The goal is to leverage digital twin features to fully
realize Industry 4.0 visions. With Industry 4.0 components, sub-systems, and whole
systems, various digital twins can be provided and available. They can be associated
to individual components (and provided by component vendors) or to integrated (sub-
)systems. Moreover, the very same part of the systems can be modeled with more than one
digital twins, differing for example in their capabilities, precision, or simulation speed. Such
twins are useful in various stages of production system life-cycle, nevertheless, it is useful to
integrate multiple relevant digital twins and data to get all possible results. Cognitive digital
twins are an emerging vision for realizing such integrated complex artifacts combining
multiple digital twins and data. A reference architecture of a cognitive digital twin, based
on the Reference Architectural Model for Industry 4.0 (RAMI 4.0), is proposed in [25].
To fulfill the aforementioned integration and cognitive features, semantic technologies
(including ontologies and knowledge graphs) are utilized in [25] as potential solutions for
realizing augmented cognitive capabilities. Even more advanced are “actionable cognitive
twins”, which are enhanced not only with cognitive capabilities by knowledge models, but
also provide more advanced insights and decision-making support to users [26]. Despite
possible benefits of (actionable) cognitive digital twins, we are not using these paradigms
in this article, because we perceive cognitive digital twins rather as a vision without
open/standardized realization at this moment. The proposed approach in this article is on
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the digital twin level focused on the formalization of fundamental components/resources
and their skills/operations that can be performed, as well as keeping the latest (formal)
state of the real production system. Hence the proposed approach is rather light-weighted
compared to the integrated structure of cognitive digital twins.

A systematic literature review on characteristics of digital twins is presented in
Jones et al. [27]. It provides several notable viewpoints, including a Building Informa-
tion Modelling (BIM) as a promising design paradigm that can cross borders of its origins
in civil engineering (as it combines both physical and virtual entities with their data con-
nections). A more traditional use of digital twin is coming from the area of model-based
predictive control (MPC), inherently incorporating observation, filtering, and prediction
applied for process control. Even though the systematic literature review [27] covers nu-
merous aspects and viewpoints in a detailed way, it provides no formal-specification-based
digital twins, which we have designed and implemented, and we propose it in this article.

2.3. AI Planning and Scheduling Based on PDDL

Artificial intelligence (AI) planning [28] belongs to the broad family of AI methods fo-
cused on a problem of finding a plan, that is, how to reach a specified goal/target state/condition
from a defined initial/starting state. The plan is either a sequence of operations/actions
or a graph of actions (usually describing operations over resources that can be executed
in parallel) for a given domain. A formal specification of such a graph of actions can be
represented according to the German standard VDI/VDE 3682 [29]. Information model
for VDI/VDE 3682 is represented as an ontology in the Web Ontology Language (OWL,
cf. https://www.hsu-hh.de/aut/forschung/forschungsthemen/ontology-engineering-for-
collaborative-embedded-systems/ontology-design-patterns-for-the-manufacturing-domain/
vdi-3682-formalized-process-description (accessed on 14 February 2022)).

In the planning domain, all allowed actions and their related constraints (i.e., precon-
ditions and postconditions/effects) need to be formally specified. In the case of industrial
production systems, the actions are frequently called production operations and sequences
of production operations are called production processes from the perspective of the
product-process-resource (PPR) distinction. In the context of formally specified information
model for digital twins and manufacturing processes, a detailed insight is given in [30].
On the other hand, the paper does not bring automated derivation of production planning
nor automatic control, which is addressed in this article with the use of PDDL problem
formalization and demonstrated in the Industry 4.0 Testbed use-case.

In fully specified environments with complete domain knowledge available, planning
can be pre-calculated off-line prior to the plan execution. In just partially specified or even
dynamic environments (such as industrial production systems conforming Industry 4.0
design principles), the production plans need to be computed or at least revised/refined
(according to the actual conditions) at runtime. The process of planning is usually realized
with advanced path finding/branching algorithms, as it is commonly seen in artificial
intelligence methods. AI planning incorporates various techniques such as path search
algorithms with heuristics (One of the most well-known path search and a graph traversal
AI algorithm that is still partially used by many nowadays AI planners is A* [31].), dynamic
programming, machine learning, and SAT (boolean SATisfiability problem). Although
automated planning itself is not quite new and it has been investigated for more than fifty
years (e.g., a so-called STRIPS problem solver [32]), the continuous advances in mainly
symbolic AI [33–35] and AI planning algorithms [36,37] make the planning approach ready
for industrial-scaled systems [38].

The term planning refers to obtaining a sequence of actions, whereas scheduling (also
known as capacity planning) is less concerned with “what” is being done and “why”, but
more with “when” and “where”. A plan as a sequence of actions may (e.g., temporal
planning) or may not (e.g., classical planning) cover dates and times, whereas a schedule
most certainly will. The scheduling problem can be formulated as an optimization problem
for processing a predefined finite set of actions/jobs in a system with limited/constrained
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resources. In scheduling, the arrival time for each job/action needs to be specified. Within
the scheduling system, each job/action must typically pass several processing phases,
depending on the specific conditions/constraints of the concrete scheduling problem.
For each phase, the current occupancy of resources is given, as well as processing times
depending on the resources used. Constraints on the processing sequence and jobs/actions
are usually described by binary transitive anti-reflexive relations.

Given a formal description of the initial state of the system, a formal description of
the goal state, and a formal specification of a set of possible actions, then the planning
problem is to compute/create a plan that fulfills all constraints in its transition states and
that satisfies all postulated goal conditions in its goal state.

For a formal specification of planning problem, several specialized computer lan-
guages have been developed. The well-known one is PDDL, which is supported by most
of the state-of-the-art planners. We propose to use it also in this contribution. The planning
problem in PDDL is divided into two specification files:

1. Domain description, which specifies all possible actions with their input parameters
(list of parameter identifiers and their related types), preconditions (that must hold
before a specific action begins), effects (specification of changes on state-space im-
mediately after a specific action is finalized), and optionally more version specific
properties like durations or costs.

2. Problem description, which specifies a concrete problem instance that contains de-
scription of the initial state and goal-state conditions.

A solution for a PDDL planning problem is a plan, a sequence of actions that are to be
sequentially processed starting from the initial state of the problem, where, after successful
processing of all actions, all the goal-state conditions of the planning problem are satisfied.

The language PDDL has been several times extended to support additional features
enabling more advanced planning and scheduling. Explanations of such PDDL extensions
including description of utilized techniques in solvers is summarized in [39]. The latest
version of the language is PDDL 3.1 [40], but there exist numerous variants/extensions that
support various features like ontologies, probabilistic effects, numbers and goal-achieved
fluents, durative actions (temporal/parallel planning), explicit problem decomposition
(multi-agent planning) and many others.

2.4. Production Planning for Industrial Production Systems Enabled by Digital Twins

Production processes in automated production systems are required to be changed,
updated, and evolved during the entire production system life-cycle, which implies that the
software components and codes have to evolve accordingly [41]. Automated generation of
simulation models for control code tests is addressed in [42], nevertheless, this poses just
a small piece in the overall design process activities mosaic. In this article, the proposed
approach is focused on utilization of production planning and execution of production
plans on hardware components with implemented minimalistic set of production opera-
tions (such as robotic operations pick and place, or transportation system operation move)
that are generic, parameterizable, and re-usable across various production scenarios (and
thoroughly tested just once and not separately for pre-coded scenarios as it has to be done
in traditional approaches).

An application of PDDL for industrial problems including their formalization is
addressed in [43]. It provides a collection of simple prototypical cases. In comparison to [43],
the solution discussed in this article is more focused on industrial-scaled systems (The
industrial-scaled system is considered a system that contains enough typical components
running in real production environments, in our case (see Section 4) the system includes
four robots and five workstations of a transport system with six autonomous shuttles,
inter-connected by OPC UA communication). Furthermore, we are utilizing PDDL not
only for isolated/off-line planning, but in the tight integration with the digital twin, that is,
the resulting solution poses just one smart production planning and execution system.
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The solution presented in this article is built on top of our long-term research in the
areas of an advanced planning utilizing PDDL, combined together with a new generation
of MES systems. The first proposal for goal-oriented MES based on PDDL planning is
addressed in [44]. It already includes a concept of integrating a digital twin, however, this
initial concept is not described there in details. In addition, the contribution presented in the
original paper has not utilized (i) the data format AutomationML to support specification of
engineering artifacts description nor (ii) assignment of durations to production operations
in order to utilize the digital twin as a simulation model. Last but not least, the original
paper [44] did not apply process mining to analyze and reconstruct production processes
especially in the context of mining time-durations of production operations as we discuss
later on in this article.

A tight coupling of production system models and the language PDDL is addressed in
one of our previous works presented in [38]. A set of rules for the conversion of production
system feature model into planning domain and planning problem specifications was
proposed. Experiments conducted in [38] proved that even fully automated planning and
re-planning is feasible, if available models provide enough pieces of information. The
scientific backbone of the approach was based on the set of methods, tools, and formal
abstractions referred as model-driven software engineering. It enables complex transforma-
tions of data among various data models by introducing abstract description models for
all data or engineering artifacts. This approach was subsequently enhanced in [45] with
more advanced features of PDDL, namely with “durative actions”. They support assigning
virtual time-durations to PDDL actions/production operations. This ability shifted pro-
duction planning more towards the area of production scheduling. The solutions for the
planning problems had a very high quality in sense of their total duration time because
parallelisms of concurrent production operations with their individual durations across
multiple resources were considered directly inside the specialized PDDL planner. On the
other hand, the computational complexity was extremely increasing with the size of the
domain and problem. In fact, this extension was suitable rather for small-size (Details about
concrete sizes of problems and domains and corresponding computation time required for
finding a solution are evaluated and discussed in [45]). In other words, the durative action
extension was computationally over-costly for industrial problems even of the size of the
Industry 4.0 Testbed. Based on this experience, we are no longer using the durative action
extensions anymore.

Modeling and incorporating inaccuracy and uncertainty in production planning and
control is addressed in [46]. The information uncertainty is modeled and tackled with fuzzy
logic. Uncertain information does not need to be excluded from further decision-making
and planning/control processes, but it can still be utilized (even if the specification does
not meet requirements on fully specified environments expected by PDDL, the fuzzy-logic-
based approach can mitigate such uncertainty). Efficiency of the utilization of the digital
twin for reconfiguration processes is described in [47], demonstrating that the use of digital
twins is beneficial. Complexity of production systems together with increasing dynamics
in some cases leads to use of decentralized system architectures [48]. A graph-based
process planning and multi-agent orchestration based on multi-agent system paradigm is
addressed in [49].

Various roles of digital twins are discussed in [50]. On the market exist domain-specific
simulation models, such as robot vendor-specific simulation tools. An example of rather a
vendor-neutral simulation tool is Siemens/Tecnomatix Process Simulate. A more generic
and shifted towards a factory point of view is for example Siemens/Tecnomatix Plant
Simulation. Both these tools belong to the family of Siemens PLM (Product Lifecycle
Management) Software. Typically, such simulations are created manually, with the use
of existing plans of production plans and other engineering documents or specifications.
In some state-of-the-art cases, the simulation can be created automatically, cf. [51], where
genetic algorithms are used.
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To represent taxonomies and systems, numerous paradigms can be utilized. A promi-
nent way plays a neutral and vendor-agnostic data format AutomationML. This data
format is highly suitable for the purpose of the Asset Administration Shell [52,53], but
it is not limited for this area. AutomationML provides standardized ways for repre-
senting system structures and together with semi-standardized recommendations and
best-practices maintained by the AutomationML Office it is a very powerful “tool” for
supporting system engineering and data exchange among engineering tools. It is an en-
abler for digitalized engineering of systems as well as their simulations and digital twins.
However, the data format does not provide explicit support or recommendations for for-
mal specification of the system behavior. Therefore, the data included in AutomationML
cannot be directly utilized for the design of the formal digital twin that is required in
this article, but the information contained in AutomationML can be efficiently utilized for
translating PDDL actions and OPC UA (OPC Unified Architecture (UA) overview is online:
https://opcfoundation.org/about/opc-technologies/opc-ua/ (accessed on 14 February
2022) and discussed in detail in [54]), and the translation of PDDL actions to OPC UA
variables is shown in [55].

The AI is mainly used on the level of planning and scheduling algorithms in this article.
The problem is the size of the state space, resulting from branching the problem. The AI
techniques reduce the search space significantly and can optimize the search trajectories
to avoid unwanted stuck in local subproblems. In a broader sense, the entire approach
of automated AI planning based on the current (observed) state of the real system can be
considered an AI-supported approach for industrial automation.

2.5. Synopsis

Although production planning and re-planning should be integral parts of Indus-
try 4.0 and smart manufacturing production systems, support from industrial tool ven-
dors is still quite limited. One of the most advanced company in this area is considered
Siemens and its MES system called Opcenter (supporting also OPC UA communication with
shopfloor machinery, cf. https://www.plm.automation.siemens.com/global/en/products/
manufacturing-operations-center/ (accessed on 14 February 2022)), Preactor/Opcenter
APS for manual/semi-automated capacity/strategic planning and scheduling (without
any advanced AI support yet, cf. https://www.plm.automation.siemens.com/global/
en/products/manufacturing-operations-center/preactor-aps.html (accessed on 14 Febru-
ary 2022)), and Process Simulate (cf. https://www.plm.automation.siemens.com/en_gb/
Images/7457_tcm642-80351.pdf (accessed on 14 February 2022)) prepared partially for
digital twinning of pre-defined supported components, especially in conjunction with
SIMATIC S7-PLCSIM Advanced (cf. https://support.industry.siemens.com/cs/document/
109795016/simatic-s7-plcsim-advanced-v4-0-trial-download?dti=0&lc=en-WW (accessed
on 14 February 2022)). However, this solution strongly relies on company-specific compo-
nents (vendor lock-in), support of open standards is limited (i.e., declared, but significantly
constrained to subparts of standards or limited sets of data, such as AutomationML im-
port/export in TIA portal). An exception is OPC UA, whose support is on a high level
compared to other industrial-automation companies. On the other hand, OPC UA support
is strong on a software stack level that are available in various maturity levels and under
corresponding licenses from various software-oriented companies. There are numerous
industrial standards, such as AutomationML, which are helpful, but their available tool
support is still limited.

The situation is slightly better in academic/research world, providing better support
especially for virtualization and digital twins. As well, open languages and solvers are
available for planning (such as PDDL and respective solvers such as Fast Downward).
Nevertheless, the state-of-the-art approaches still resemble rather isolated islands in the
whole mosaic. The approach proposed in this article tries to provide one coherent view on
the integrated system, which is successfully applied in the Industry 4.0 Testbed and which
can be leveraged to industrial-scale level.

https://opcfoundation.org/about/opc-technologies/opc-ua/
https://www.plm.automation.siemens.com/global/en/products/manufacturing-operations-center/
https://www.plm.automation.siemens.com/global/en/products/manufacturing-operations-center/
https://www.plm.automation.siemens.com/global/en/products/manufacturing-operations-center/preactor-aps.html
https://www.plm.automation.siemens.com/global/en/products/manufacturing-operations-center/preactor-aps.html
https://www.plm.automation.siemens.com/en_gb/Images/7457_tcm642-80351.pdf
https://www.plm.automation.siemens.com/en_gb/Images/7457_tcm642-80351.pdf
https://support.industry.siemens.com/cs/document/109795016/simatic-s7-plcsim-advanced-v4-0-trial-download?dti=0&lc=en-WW
https://support.industry.siemens.com/cs/document/109795016/simatic-s7-plcsim-advanced-v4-0-trial-download?dti=0&lc=en-WW
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The proposed method is an attempt to utilize and to support open standards, such
as OPC UA for shop-floor machinery communication, PDDL for planning domain and
problem specifications, AutomationML/XML for system configuration and last but not
least OpenXES for production logging and production process analysis by means of process
mining [56,57] (XES is an open standard for storing and managing event log data, cf. https:
//www.xes-standard.org/openxes/start (accessed on 14 February 2022)). Digital twins are
frequently perceived just as digital shadows or not-synchronized/offline simulations for the
real system in other applications. To fulfill the vision of Industry 4.0, the proposed approach
emphasizes to close the automation/production planning loop via a fully synchronized
digital twin, which is also an integral part of the production system runtime.

Last but not least, the proposed approach, on the contrary to related works, poses
a light-weight solution based on a relatively simple formal specification, whose creation
is significantly less demanding (compared to traditional methods starting at complex
CAD/CAM models) in terms of needed development time and effort.

3. Methods and Results

Currently, production systems are decomposed into smaller/atomic parts that are
individually addressed and programmed by engineers of specific engineering domains,
such as PLC programmers, robot programmers, mechanical engineers, and so forth.

The significant part of the description of a production system is only implicit, included
in the artifacts of domain engineers. Only the minor part of the system description is
explicitly represented in informal/human-readable documents such as CAD (Computer-
Aided Design) plans, requirement specifications, ladder-logic diagrams, UML (The Unified
Modeling Language) schemas, or high-level data flows/pipelines. Thanks to the setup, a
large variety of technical details have to be discussed and resolved during the design-time
as well as runtime. This process is frequently called round-trip engineering and it is focused
on iterative improving of technical and implementation details until the entire system is
reliable enough to meet the customer/production standards. Furthermore, it is very difficult
to keep up-to-date global state of the entire production line. Due to this fact, any change or
deviation in the production needs the complete re-initialization of the production line into
the well-known initial state. Despite the fact that the majority of components do not need
such a time-demanding re-initialization, current industrial processes are strictly relying on
the full initialization because it reduces number of unintended system states, otherwise,
the entire system design would be too complicated and difficult to test and debug.

To avoid numerous misunderstandings and inefficiencies in the current round-trip
engineering during production system engineering, this article proposes a new approach
for industrial production system automation engineering that is based on the formal
description of the system and its components, which is subsequently used as a basis for
the digital twin utilized at runtime. The proposed engineering/design process follows the
further method steps:

1. Creation of the formal description of the entire production line from the system com-
ponent perspective. Such a formal description is computer-understandable. It has to
include description of all relevant system components, from which the production line
consists. As well, all relevant connections of these components have to be annotated
according to the real topology of the production system.
In the Industry 4.0 Testbed use-case, we created several domains and their correspond-
ing problem descriptions, namely a robotic domain (including used types of robots,
source place and precise position, target place and precise position, item description
that is manipulated) robotic operations pick and place, and Montrac transportation
system domain (including initial and target positions of shuttles, commands for lock-
ing positioning units, etc.), as it is illustrated in Figure 2. Then we merged (shared
predicates needs to be manually resolved) both of them together to obtain one final
description of the entire production line.

https://www.xes-standard.org/openxes/start
https://www.xes-standard.org/openxes/start


Processes 2022, 10, 404 10 of 27

2. Specification of feasible, referential transparent (in sense, that descriptions of opera-
tions do not contain any unspecified functional side effects) operations of all compo-
nents. Each such generic parameterizable action/operation includes pre-conditions
that have to be satisfied when starting to perform the operation and also effects/post-
conditions that change the global state after performing the operation.
In the PDDL notation, the following specifications have to be defined: actions includ-
ing their parameters, as well as their preconditions and effects. To do so, declarations
and instantiations of types, constants, and predicates is needed as well.
In the Industry 4.0 Testbed use-case, all preconditions were specified and the manual
check of feasibility and referential transparency in effects over the entire production
line description was done.

3. Specification of initial state of the entire system. On the contrary to the current
interpretation of the initial state, which is required during/after each production
batch, the initial state in this process step is rather the very first state when making
the system up-and-running for the first time. All the necessary changes for the next
run are contained implicitly in the global state of the system represented in the digital
twin, and thus it is not needed to reach initial/home positions of all components
regularly during the production anymore. Information about material warehouses
and buffers in terms of quantities and locations of specific pieces of material is a part
of the initial state specification.
In the Industry 4.0 Testbed use-case, this specification was encoded into the entire
problem description in a spirit of Figure 2 example on the right-hand side of the figure.

4. Specification of various sensors and pattern-recognition systems attached. In the
Industry 4.0 Testbed use-case, we are not using any specific sensor or an advanced
vision/pattern recognition system so far. The only feedback used was a OPC UA
operation-completion boolean flag, returned from components such as robots and
transportation system shuttles. If the operation is not finalized successfully, then
the execution of a plan is stopped and user intervention is expected. In specific
cases (like mechanically blocked shuttle in a station or communication error with a
specific robot arm), our system could automatically replan a new plan even without
human supervision.

5. Mapping the aforementioned specifications to an AutomationML configuration file.
The AutomationML file is utilized as a single unique system setup. It has to include
information about all communication endpoints (i.e., URL of each endpoint, ways
of authentication), data structures accessible via those endpoints. In addition, the
AutomationML configuration file has to include mappings between PDDL actions
and communication interfaces such as OPC UA.
In our case of Industry 4.0 Testbed, we encoded these formal specifications with the
use of PyAML that is described later in Section 3.1.3.

The formal-centric approach, which is based on the aforementioned process steps,
significantly supports the following tasks that are automatically or semi-automatically
derived from the formal specification:

• Design of a (basic) digital twin
From our perspective, the entire system is formalized, production operations are
specified and therefore, we can virtually test, whether the operation can be performed
and how the global state will change after performing the operation. Since such a
generated digital twin based on the encapsulated formalization only provides just
basic temporal responses, we call this a “basic digital twin” in the further text. Neither
OPC UA interface nor physical CAD model is implemented in this digital twin.

• Design of an (enhanced) digital twin for simulation purposes
The first software prototype of the production line can be tested (automatically, semi-
automatically, or manually) against the digital twin. Such a digital twin can be seen as
an automated simulation environment that is automatically derived from the formal
component specifications already contained in the digital twin. However, for the
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more realistic responses, especially in terms of operation duration times, it is useful
to enhance the basic digital twin with a set of parameters, specifying further detailed
timing characteristics. For testing against a real hardware and software of Industry 4.0
components equipped with OPC UA interfaces, the digital twin needs to implement
the OPC UA interface as well. Further in this article, such a more advanced digital
twin is called “enhanced digital twin” and it can be used for more realistic simulation
purposes easily.

• An enabler for automated AI production planning
On the contrary to the contemporary industrial systems, where shop-floor devices
(such as PLCs, robots, etc.) are pre-programmed for a limited set of expected tasks, the
emerging generation of Industry 4.0 production systems has to provide required rate of
flexibility of supported products, production processes, and production resources (fre-
quently referred as PPR assets). Therefore, the proposed solution is highly adaptable
and flexible thanks to the possibility of using AI production planning and scheduling,
built on top of the digital twin. Only the high-level declarative specification of the
target production goal (such as a final product placement at the output position of the
production line) needs to be formed. As the digital twin keeps the up-to-date global
state of the production system, production planners and schedulers can solve a task of
transforming the latest global state to a new intended one (reaching the production
goal), with respect to constraints in terms of available resources and operations. The
production planning is also capable to address redundancy of resources, respectively
balancing production processes across different resources.

To avoid multi-scale modeling issues, which are typical for digital twins [50], we are
proposing to utilize minimalistic twins (basic twins), focused primarily on the formalized
behavior of systems, their components and synchronization. Therefore, the formal specifi-
cation of the production systems is one of the most important tasks in our view on Industry
4.0 production system engineering and it is described in the following subsection.

3.1. Formal Specification of the Production System

The formal specification/description of the production line is the most significant
change in comparison to the current architecture of production systems. On one hand, if
the expressivity of the formalism is strong enough, then the the formal specification can be
used for automated generation of control programs for each component, automated gen-
eration of test scenarios including automated searching for counter examples, automated
generation of virtual testing/debugging environments, and so forth. On the other hand,
if the expressivity of the formalism is too strong (e.g., Turing complete) then the above
automated generation can be computationally too hard (e.g., halting problem) or unfeasible
(e.g., NP-hard). If the expressivity of the formalism is too weak, then some conditions or
relations cannot be expressed at all. We decided to split our production system specification
into two well established formalisms that can be interconnected using our recent result
called PyAML [55]. The first one is the data format AutomationML (AML), which supports
expressing and representing relevant knowledge from various industrial and engineer-
ing source domains. The second one is the aforementioned planning domain definition
language (PDDL), originally used for AI planning. However, we will use PDDL also as a
suitable formalism to specify a process logic across the production line components.

3.1.1. AML Specification

To meet the flexibility requirements and the digital-twin-based production execution,
the following engineering artifacts of the production system have to be represented in the
AML document:

• Topology of the production system, containing a transport system, industrial and
mobile robots, as well as warehouses with their unique identifiers. To have the
topology, annotations of all these artifacts have to be accompanied by their physical
and logical interconnections;
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• List of supported production operations/actions for each production resource;
• Configuration of the ERP system, represented by an access point to the ERP server

and links to product specifications;
• Configuration of the MES system, represented by an access point to the MES server;
• Configuration of the digital twin, represented by an access point to the digital twin server;
• Configuration of the production planner and scheduler, represented by an access point

to the production planner and scheduler server based on PDDL; and
• Communication links specifications in terms of how all artifacts are connected together

from the communication point of view, including OPC UA endpoints of the production
line devices, and so forth.

Representing these pieces of knowledge in a single AML or PyAML file brings an
opportunity to keep the system setup consistent and coherent, to change the setup easily
when it is needed (e.g., during re-deployment or system re-configuration), and last but not
least to easily exchange the knowledge across various tools and engineering roles that are
involved in the automation engineering process. Nevertheless, these pieces of knowledge
pose rather traditional specification of sub-system configuration, but for the Industry 4.0
planning, we further need the PDDL specification as well.

3.1.2. PDDL Domain Specification

The following components of the production line are represented in PDDL domain
specification of actions:

• Transport system, containing specification of action for moving of a shuttle from one
station to another with several constraints (e.g., stations are connected, the starting
station contains the shuttle and the target station is free, etc.);

• Robotic actions/operations, containing specification of action for robotic pick and
place of a specific item with several constraints (e.g., a robot can do pick if its griper is
free and picking source (like station or table) is occupied with some expected items
and is locked (for ability for precise robotic movements)).

3.1.3. PDDL Problem Description

The problem description in PDDL consists of two parts:

• Initial production system state specification that contains the current topology of the
transport system, a list of enabled shuttles with their positions and contents, and a list
of enabled robots and their positions, and so forth;

• The production goal, containing a logic formula that must hold when the production
goal/objective is fulfilled (validity of such formula needs to be reached at the end of
the production plan).

PyAML (cf. https://github.com/CIIRC-ISI/PyAML (accessed on 14 February 2022))
has been successfully applied for translation between PDDL and OPC UA (in both ways).
This type of structure is not possible with standard AML at all. Thanks to this approach, our
MES implementation does not require any additional module that needs to be reconfigured
after any change in OPC UA or PDDL structure.

An example of the PDDL specification is depicted in Figure 2. On the left-hand side, a
domain specification is illustrated, specifically for the use-case of the transportation system
Montrac. On the right-hand side of the figure, the problem specification is demonstrated.
The representation of planning tasks in PDDL itself is not new, but the utilization of the
the continuously updated problem specification, which shifts from the very initial state of
the system towards in-process states is new and innovative. This PDDL specification was
created manually according to the domain knowledge expertise and the given entire task
requirements. The PDDL parts, such as individual domain specifications, including, for
example, a robotic domain or a transportation system domain, and non-PDDL parts related
to physical properties of components and systems are encoded in PyAML document [55].

https://github.com/CIIRC-ISI/PyAML
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(DEFINE
(PROBLEM MONTRAC_PROBLEM)
(:DOMAIN MONTRAC_DOMAIN)
(:OBJECTS
S100 - STATION  S23  - STATION  S12  - STATION
S110 - STATION  S200 - STATION 
SHUTTLE1 - RESOURCE  SHUTTLE2 - RESOURCE
SHUTTLE3 - RESOURCE  SHUTTLE4 - RESOURCE
SHUTTLE5 - RESOURCE  SHUTTLE6 – RESOURCE

)
(:INIT
(RESOURCE_IN_STATION SHUTTLE3 S100)
(RESOURCE_IN_STATION SHUTTLE4 S200)
(RESOURCE_IN_STATION SHUTTLE5 S110)
(CONNECTION S100 S100)  (CONNECTION S100 S23)
(CONNECTION S100 S12)   (CONNECTION S100 S110)
(CONNECTION S100 S200)  (CONNECTION S23 S23)   
(CONNECTION S23 S12)    (CONNECTION S23 S110)
(CONNECTION S23 S200)   (CONNECTION S23 S100)  
(CONNECTION S12 S23)    (CONNECTION S12 S12)
(CONNECTION S12 S110)   (CONNECTION S12 S200)
(CONNECTION S12 S100)   (CONNECTION S110 S23)  
(CONNECTION S110 S12)   (CONNECTION S110 S110) 
(CONNECTION S110 S200)  (CONNECTION S200 S100)
(CONNECTION S200 S23)   (CONNECTION S200 S12)
(CONNECTION S200 S110)  (CONNECTION S200 S200)
(IS_SHUTTLE SHUTTLE3)   (IS_SHUTTLE SHUTTLE4)
(IS_SHUTTLE SHUTTLE5)
(RESOURCE_LOCKED SHUTTLE3)
(RESOURCE_LOCKED SHUTTLE4)
(RESOURCE_LOCKED SHUTTLE5)

)
(:GOAL 
(AND 
(EXISTS (?S - RESOURCE) 
(AND (IS_SHUTTLE ?S) 

(RESOURCE_IN_STATION ?S S12)
)

)
)

)
(:METRIC MINIMIZE (TOTAL-COST))

)

(define (domain MONTRAC_DOMAIN)
(:requirements :adl :typing :equality :action-costs)
(:types STATION RESOURCE)
(:predicates
(CONNECTION ?S - STATION ?D - STATION)
(RESOURCE_IN_STATION ?V - RESOURCE ?S - STATION)
(IS_SHUTTLE ?V - RESOURCE)
(RESOURCE_LOCKED ?V - RESOURCE)

)

(:action SHUTTLE_MOVE_AND_LOCK
:parameters
(
?V – RESOURCE
?S – STATION
?D – STATION

)
:precondition
(and
(IS_SHUTTLE ?V)
(CONNECTION ?S ?D)
(forall (?R - RESOURCE)
(imply
(IS_SHUTTLE ?R)
(not (RESOURCE_IN_STATION ?R ?D))

)
)
(RESOURCE_IN_STATION ?V ?S)

)
:effect
(and
(increase (total-cost) 9)
(RESOURCE_LOCKED ?V)
(not (RESOURCE_IN_STATION ?V ?S))
(RESOURCE_IN_STATION ?V ?D)

)
)

)

Domain specification
Problem / current state 

specification

Figure 2. An example of a domain specification (on the left-hand side) and a problem specification
(on the right-hand side) in PDDL. The problem specification is utilized and updated in the digital
twin to keep the current global state of the production system. The topology of connections that
is described in the problem specification directly corresponds to the topology of the Industry 4.0
Testbed production line depicted later on in Section 4 in Figure 7.

3.2. Synchronization of Digital Twin and the Real Production System

The digital twin has to be synchronized with the real twin during every operation.
This can be done in various ways, we propose that the synchronization should be provided
by a new generation of MES. At the very beginning, the digital twin is started with a
problem specification that exactly corresponds to the initial state of the real production
system. After having the digital twin and the real production system up-and-running, the
digital twin keeps, based on the communication with MES, the current global state of the
real production system.

The proposed architecture is depicted in Figure 3. All control actions required via
OPC UA as well as feedback from the real twin has to be mirrored to the digital twin as
PDDL actions. Based on this dataflow, the digital twin updates its internal state so that
the state of the digital twin is the global state of the real physical system. In the figure
and also in our experiments, we are relying on the OPC UA as a corner-stone technology
for Industry 4.0, but other communication protocols can be used as well. The difference
between the enhanced digital twin and the basic digital twin is not only the type of the
interface, but also the fact that the enhanced digital twin contains precise timings/durations
of all actions collected using process mining techniques (see the next subsection).



Processes 2022, 10, 404 14 of 27

Manufacturing 
Execution System

(MES)

OPC UA

Enhanced Digital Twin

Basic Digital Twin PDDL 
action

Production Planner & Scheduler
The current production line state
as an initial state for planning.

Production 
Plan

supporting 
parallelizationInvoking

plan/replan

PDDL 
Solver

Problem
Generator

Scheduler
Domain

Problem
Sequence

of actions

Enterprise 
Resource Planning

(ERP)

OPC UA

Real Production Line

Synchronization

WWW 
visualization and 
control interface

HTTP

RESTful web API

1

2

3

4

6

7A

7B

5

Figure 3. Proposed architecture of the automation system conforming Industry 4.0 design principles
and filling the gap between Industry 4.0 components on the shop-floor level and the traditional
ERP system level, managing production/customers’ orders. The numbered circles denote a basic
operation workflow of the system in terms of the invocation order.

In more details, Figure 3 also depicts an operation workflow, see the numbers in red
circles assigned to individual system parts and tools. Production orders are managed by the
ERP system, labeled as “1” in Figure 3. When the MES system (labeled as “2”) together with
the real production line are ready, the MES system queries the ERP system for prioritized
orders, selects the next one and invokes planning of the production process. In the step “3”,
the Problem Generator as an entry part of the Production Planner and Scheduler specifies
the PDDL problem. It means that it queries the latest state of the production system from
the digital twin and it stores it as an initial state of the PDDL problem specification. This
information is merged with the production order that is represented/transformed as a
needed goal of the PDDL problem specification. Such a new PDDL problem specification is
utilized by the PDDL solver, in our case Fast Downward. The domain specification, which
specifies feasible actions and which is also necessary for production planning, is shared
unchanged across various production lots. An output of the PDDL solver is a plan in a
form of a sequence of actions. This sequence of actions is processed by the scheduler that
parallelizes those actions/operations that can be executed in parallel. The result of such a
complex step “3” of the operation workflow is a production plan (labeled as “4”) in a form
of a directed acyclic graph that is executable in the MES system. In the step “5”, the MES
system loads the production plan and orchestrates the production process by executing
the operation per operation from the obtained production plan. In the real production
line, production operations are invoked via OPC UA (see circled “6” in Figure 3). The
same production operations are sent to the digital twin and here are two possibilities of
the invocation. If the enhanced digital twin is used, the communication between the MES
system and the enhanced digital twin is the very same as with the real production line,
realized by OPC UA (see element “7A” in Figure 3). If just the basic digital twin is used,
then the communication with it is done by sending PDDL actions (corresponding to current
production operations) directly. An important benefit of this architecture is the flexibility
and reactivity in terms that the production plans/recipes are no longer hard-coded in
the shop-floor devices nor digital twins, but they are inferred in the production planner
and scheduler on-the-fly under the current circumstances, enabling the re-planning of the
production when needed.

Levels of maturity of the technical solution conforming the proposed approach are
depicted in Figure 4. The first level is the formal description based on the PDDL notation.
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The second level is a digital twin, that is an encapsulated version of the formal description
that is capable to be run in the continuous mode. The third level is the enhanced digital
twin, which behaves as a synchronized simulation model. The enhanced digital twin is
equipped with more detailed operation parameters, describing behavioral parameters of
production operations. In the Industry 4.0 Testbed use-case, these operation parameters
are mainly focused on operation time-durations. They can also include energy and power
characteristics related to all types of operations, or other domain-specific parameters
relevant for the engineering project.

The shift from the basic digital twin towards the enhanced digital twin applicable as a
simulation model for the real production system is discussed in the subsequent subsection.

Basic digital twin

Formal system description

1

2

3
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Initial state 
specification

Domain 
specification

Current state 
specification
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Enhanced digital twin
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Current state 
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Domain 
specification

Operation 
parameters

Mining processes and parameters

Figure 4. Levels of formalization and maturity of digital twin artifacts. The enhanced digital twin on
the third level differs from the basic digital twin on the second level with (i) the interface of the twin
and (ii) operation parameters, whose values are mined out of event logs from system operation with
process mining methods. The detailed view on the process mining model depicted on the right side
is depicted later on in Figure 5.

3.3. Assignment of Durations to Production Operations to Get More Realistic Digital Twins
Applicable as Simulations

To enable more realistic simulations by means of the digital twin, it is necessary to
assign approximate durations into the digital twin for all available operations.

There are two possible approaches to how to assign durations to production operation
in order to transform the digital twin to provide simulation capabilities. The first approach
is a bottom-up approach. The corner-stones of this approach are simplified models of
atomic components, frequently called surrogate models [58] for individual components.
An example of this bottom-up approach is the method AML2SIM, which is intended for
assembling simulation models from atomic components [59] in the object-oriented manner
within the signal-oriented environment of MATLAB-Simulink.

Another possibility is a top-down approach. We propose to utilize process mining to
make the operation duration analysis. Process mining is a set of data science techniques for
reconstructing operational processes from event logs. Process mining has been successfully
used in various domains, such as medical. In the proposed approach, we recommend
to capture performed production operations into logs of events, corresponding to these
operations. Having timestamps assigned to the events, it is quite easy to reconstruct
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durations of individual actions. This calculation can be done either automatically, but then
we most likely get time constants representing average durations of specific operations. Or
we can mine more precise approximation of the expected durations according to various
factors (that are usually modeled using probabilistic finite-state machines or dependency
graphs), but then typically a basic human guidance is needed, and thus in case of more
complicated dependencies the process is only semi-automatic (and not fully automatic).

Traditional (i.e., non-industrial) AI is focused on statistically significant observations
(based on a high number of positive and negative samples). It is useful to find typical
behavioral patterns and scenarios. On the contrary to the traditional AI, a so-called “indus-
trial AI” (frequently related to industrial production systems and production processes)
is more focused on identification of anomaly and rare events (e.g., deviations from typi-
cal production processes, unexpected/untested conditions, coincidences of signals, etc.).
Contrary to the traditional AI, which is typically focused on the most probable/frequent
patterns, industrial AI is focused on rare events or even events/conditions that have not
occurred yet and that have to be identified early. One of the applications of industrial
AI is zero-defect manufacturing [60,61], preventing/identifying failures and defects at a
very early production stage, trying not to produce defected products. The process mining
approach can be utilized for both types of AI, for the traditional one and for the industrial
one. In the context of this article, we are focused on the traditional AI that is focused on
statistically significant cases. Process mining is used to identify the typical time character-
istics of production processes, especially typical time-durations of production operations
corresponding to PDDL actions.

In a case where the event/operation logs do not include identifiers of discretized
production operations, then the operations have to be recognized in time-series data. This
procedure can differ according to a variety of communication patterns and communication
protocols. The most frequent Industry 4.0 communication protocol OPC UA has quite
complex information and address model, but the triggers for starting and ending production
operations are typically straightforward.

Several data formats for representing event logs exist. We have achieved good results
with the “IEEE Standard for eXtensible Event Stream”, frequently abbreviated as “XES”
(XES format is standardized as IEEE 1849–2016 and it is available online: http://www.xes-
standard.org/ (accessed on 14 February 2022). This standard supports interoperability of
event logs and event streams that can be utilized/imported by diverse process mining tools
and algorithms. In the frame of the proposed approach, we utilized a tool called ProM
(i.e., Process Mining Framework, cf. http://www.promtools.org/doku.php (accessed on
14 February 2022)). An example of the result of process mining in the tool ProM is depicted
in Figure 5. This example shows a sequence of operations pickup, putdown and shuttle
move, captured in a single log trace.

Figure 5. An example of a result of process mining in the tool ProM. The source event log/data was
acquired in the Industry 4.0 Testbed use-case and serialized into the standard format XES.

http://www.xes-standard.org/
http://www.xes-standard.org/
http://www.promtools.org/doku.php
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The process graph that has been depicted in Figure 5 (which is the same as the small
diagram in Figure 4) is an example of a mined process from the operation of the Industry 4.0
Testbed use-case. It includes three types of operations (represented as boxes in the figure),
which are several times repeated (denoted by numbers assigned to arrows). All of the
operations have their start-time and end-time in the system event logs. The time-durations
for all instances of operations are calculated as time differences between the corresponding
end-time and start-time of the operation. These values are aggregated for each operation
type. For example, there are three operation types in the Industry 4.0 Testbed use-case,
namely pickup, putdown and shuttle move. We get a set of duration time values for
each operation type and for each run of the production process. All available values are
aggregated from all logs and operation instances by calculating mean values or medians,
and standard deviations. The standard deviations are relevant for identification of outliers
in the data/logs and operation defects/delays, which can be further utilized for example
for predictive maintenance.

When setting up constants or dependencies as results of the process mining, it is useful
to mitigate impact of outliers (e.g., longer operation duration) and to considered trends
(useful for predictive maintenance [62], changes in production recipes, etc.).

In large-scale industrial problems, it is in theory possible to combine both bottom-up
(i.e., holistic assembling of simulations) and top-down approaches (e.g., process mining).

4. Implementation, Evaluation and Discussion

The proposed approach was motivated by the Industry 4.0 Testbed use-case. It is
an industrial-grade system for research and innovation, hosted at the Czech Technical
University (CTU) in Prague, Czech Institute for Informatics, Robotics and Cybernetics—
CIIRC (cf. https://www.ciirc.cvut.cz/ (accessed on 14 February 2022)). The ultimate
goal of the Industry 4.0 Testbed is bridging the gap between scientific research using
novel approaches (e.g., artificial intelligence, machine learning, planning and scheduling),
and industrial practice with solid-founded techniques (e.g., ladder-logic-based control
algorithms suitable for large production lots). Among other research topic, one of the most
fundamental task is to find robust ways for supporting production flexibility and a high
level of automation in highly robotized production systems. Examples of achievements
include digital-twin-based production planning [63], reactive production planning [64], or
an automated non-tactile method for robot calibration and control.

The core part of the production line of the Industry 4.0 Testbed is illustrated in Figure 6.
The line is generic and capable to perform various types of production processes. The
system is mainly designed for final assembling of products, that is, sequences of pick and
place operations, realized by robots as manipulators, as well as transport system shuttles,
moving around materials and products.

The current layout (depicted in Figure 7) of our Testbed includes three traditional
industrial robots KUKA Agilus (R1, R2, and R3) and one cooperative robot KUKA iiwa
(R10). Transport of goods among these robotic workstations is done by a mono-rail trans-
portation system (Montrac), which consists of tracks assembled from straight segments,
curves, and switches. Production material is transported by several shuttles that move
on these tracks among so-called positioning units (S100, S200, S12, S23, and S110), re-
sponsible for precise, repeatable, and firm stopping and positioning of shuttles in exactly
mechanically-specified locations. In addition, this system can be easily integrated with
other systems within the Industry 4.0 Testbed via automated guided vehicles (AGVs), more
specifically, by autonomous mobile robot (AMR) KUKA KMR.

https://www.ciirc.cvut.cz/
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Figure 6. Main part of the Industry 4.0 Testbed hosted at CTU in Prague—CIIRC.

Figure 7. Topology of the Industry 4.0 Testbed production line. It is equipped with 4 KUKA robots,
a transportation system Montrac with 5 work-stations and 6 shuttles moving around the Montrac
mono-rail (shuttles are not depicted on the figure). Stations S23, S12, and S110 are reachable by
corresponding robots from both sides.

The Industry 4.0 Testbed is orchestrated by our prototypical implementation of MES
having integrated the planner & scheduler as it was described in the previous section.
Domains and problems are specified in PDDL in LISP syntax (cf. https://lisp-lang.org/
(accessed on 14 February 2022)), similarly as resulting production plans. These production
plans are interpreted by MES at runtime by translating planned actions to and from the
OPC UA protocol that is used for communication with all of the shop-floor devices. In both
cases, the dynamically computed production process obtained by the AI planner usually
comprises a sequence of production operations, similar to the following:

• Picking material from given coordinates (by a robot);
• Placing material to given coordinates (by a robot);
• Moving material (by a shuttle);
• Picking material from a shuttle (by another robot); and
• Placing it in order to achieve assembly progress towards a finished good.

https://lisp-lang.org/
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The Industry 4.0 Testbed is capable to perform various production scenarios/domains,
which are especially focused on product assembling (currently, there are no available tools
for, for example, drilling or welding). Among other assembling domains, the Testbed is
capable to assemble small 3-D printed trucks, consisting of a chassis, a cabin (of one of
the four available colors) and a body (a scraper, an open-top, a tank, and stake-bed of
four colors). Each production order originates in the ERP system and each order queried
from the ERP system is executed by the MES system. The MES system calls the planner
and scheduler according to the diagram in Figure 3 and afterwards executes the obtained
on-the-fly planned production process. Both the planning and execution is done with
the tight integration of the digital twin, providing the global updated state of the real
production system and required products.

In more details, one of the automatically generated production plans for assembling
one truck model (depending on the latest state of the production line and ordered truck) is
as an example depicted in Figure 8. This particular plan consists of 5 tasks (i.e., tasks 1–5),
realizing production operations. Each production task is assigned to a specific resource,
denoted by “location” (such as the robot R2 or the transportation system Montrac). The
action of the task specifies the production operation, including its parameters (such as
robotic_pick operation parameterized with formal names of source locations and source
x, y, z coordinates and a rotation R of the gripper, and manipulated component like white
cabin). Among production tasks are arrows denoting dependencies, specifying in which
order the production operations can be executed.

Figure 8. An exemplary executed plan of the production in Industry 4.0 Testbed in the form of a
dependency graph that was produced automatically by Production Planner & Scheduler. Our MES
is currently executing this plan where white color represents already finished tasks, green color
represents currently processed tasks, and grey color represents still pending tasks.
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The production plan is a graph resulting from parallelization of the sequential plan
(resulting from the AI planning with PDDL) by the scheduler (parallelization of the se-
quential plan is done by analysis of shared/blocking resources inside each action used in a
specific sequential plan). In other words, the example of the production plan depicted in
Figure 8 is a result of planning based on PDDL and parallelization by the scheduler into
the form of a dependency directed acyclic graph. The MES system subsequently executes
this plan with the real machinery, communicating with it via OPC UA.

During the design and implementation of the prototype, we followed the method steps
proposed in the previous section. In the first method step, we formalized the domain de-
scription of the Testbed production line in terms of types of resources and their connections
(i.e., specified physical and logic topology of the system). We defined products and their
structure. In the second method step, we defined available/feasible production operations
and assigned them to production resources. The result of these two steps is depicted on
the left-hand side of Figure 2, which is the specification of the domain for Montrac. In
addition, we defined a robotic domain, defining production operation pick and place (it
exceeds the size of the figure and the detailed domain description is not the core part of
this contribution). You can see in the Montrac domain specification definitions of utilized
predicates and the action/operation Shuttle_move_and_lock that formalizes preconditions
and effects of shuttle movement operations. In the third method step, we specified the
initial state of the entire system, see the right-hand side specification in Figure 2. It is the
very initial state, and not the traditional “home state”, as the production line is not required
to return to such an initial or home state after finishing each production (because the digital
twin continuously keeps the latest state of the production line that is consequently reused
for further production planning). We skipped the fourth method step, because we do
not currently have any advanced vision/pattern recognition systems attached. Last but
not least, we finished the design process with creating the technical configuration file in
AutomationML in the fifth method step, specifying URLs for all relevant endpoints and
specified mappings between PDDL actions and respective OPC UA information models.
Based on these created specifications, the tool set depicted in Figure 3 is configured and
started and it is capable to continuously plan and execute/produce orders coming from the
ERP system.

In this Industry 4.0 Testbed research and testing environment/setup, we tested and
validated the proposed approach in practice. We tested on numerous cases and real
production runs that one can easily add and remove/disable production resources to the
system by just simple modifications of the problem specification. One can also easily add
and remove (or temporarily disable) products that can be produced on the production
system. Together with the dynamically planned production recipes/plans, we gained
the full flexibility in terms of the product-process-resource notation. It means that we
fulfilled flexibility requirements of Industry 4.0 vision (which are however not the only
requirements for having Industry 4.0 system for sure). On the other hand, we realized that
creation of the formal specification of the system behavior with PDDL formalization can
be quite tricky and complicated for industrial practitioners. Therefore, we would like to
specify recommendations how to specify required knowledge in a data format that is better
recognized in industry (such as AutomationML) and to introduce ways for semi-automated
generation of PDDL formal specifications with the use of this data format in future work.

Overall, we found the proposed approach to be flexible and efficient for production in
small lots (for which the traditional approaches are not feasible). Based on the set of experi-
ments performed in the Industry 4.0 Testbed, we proved that this approach can significantly
contribute to the higher flexibility and production efficiency in industrial facilities.

4.1. Measured Results

We have conducted long-term testing of the proposed solution in the Industry 4.0
Testbed facility for a time period of more than one year, including more than 1000 continu-
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ous production processes. All these performed production processes were logged into the
standardized XES format.

We analyzed the performed production processes captured in the XES event logs.
The overall production durations are depicted in a histogram in Figure 9. It shows that
typical production processes take approximately 2–3 min (cf. 120–180 s in Figure 9). The
histogram also depicts approximately 50 performed production processes, which took very
short time (and they seem to be outliers of the normal-like distribution in the histogram).
This is not an error, but it represents two situations: (i) we order a product that had been
already produced and was just available, therefore, no production process was needed at all.
Second, (ii) Production ended up with an error and ordered product could not be produced
without restarting the production process. On the opposite side of the histogram (cf. right-
hand side of Figure 9) is an outlier, representing a production process that took more than
500 s. This was caused by a delayed Montrac shuttle that got stuck on a Montrac switch.

The time needed for querying a particular production order from the ERP system,
grabbing the global state of the production system from the digital twin, calculating
a production plan and schedule by the AI planner and scheduler up to beginning the
physical production process via MES does not exceed 10 s. As part of this time period, the
AI planning process utilizing the global system state represented in the digital twin itself
needed less than 8 s.

Production processes planned to produce the ordered products included in the most
of the cases four production operations, as it is depicted in a histogram in Figure 10.
Nevertheless, the longest production plans (in terms of operation count, not from the need
production time point of view) needed 28 operations.

For all the testing, tuning and experiments in the Industry 4.0 Testbed, we utilized
one computation node of the self-hosted high performance computing cluster, which is
orchestrated by Intel® Xeon® (Intel and the Intel logo are trademarks of Intel Corporation
or its subsidiaries, Santa Clara, USA) CPU E5-2630 v2 @ 2.6 GHz, 4 cores, 16 GB RAM,
100 GB SSD storage, and Ubuntu Linux 18.04.2 LTS.
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Figure 9. Histogram of production process lengths.
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Figure 10. Histogram of a number of performed production operations (corresponding to PDDL
actions) during each production process, planned for production of one product order (i.e., one
truck model).

As a result of the performed sets of experiments, we concluded that the proposed
solution offers satisfactory reliability and performance for continuous operation of the
system size corresponding to the Industry 4.0 Testbed. We have not faced any problems
related to the digital twin, production planning system, nor MES. On the contrary, we had
to fix hardware related issues related to industrial-grade hardware devices several times.
Namely we had to fix issues with industrial robots and robotic grippers. An important
benefit of the proposed approach is the possibility to easily break and resume/re-plan
the production process utilizing only those production resources, that are not broken.
For sure, with limited set of resources, the needed production time per each product is
typically higher. On the other hand, it is much better to operate the production line in a sub-
optimal/slower mode (with the proposed solution), than to entirely stop the production
of all products and have the line in standstill until the system is completely repaired, as is
typical in current industrial production systems.

4.2. Lessons-Learned during System Ramp-Up

During the ramp-up process of the proposed approach for the Industry 4.0 Testbed, we en-
countered numerous problems/issues and unexpected points as well as some positive surprises.

On the one hand, one of the positive surprises was that the AI planning algorithm
frequently found a solution even for cases where its existence was unexpected by humans.
When testing, some plans were surprisingly significantly more efficient than those proposed
by humans, especially in terms of number of production operations needed to be performed
as well as length of the production plan execution (which is frequently the effect of lower
number of operations).

On the other hand, an encountered issue was a low absolute accuracy of industrial
robots together with a needed proper calibration of their coordinate systems (namely lo-
cal coordinate systems of the tool center point of the gripper/end-effector mounted to
the robot flange, as well as the base frames, that is, the local coordinate systems of shut-
tles/positioning units and warehouse positions). Although robot accuracy and calibration
are typical issues known from industrial robotics, in the proposed planner-centric approach,
robot trajectories and working points are not taught manually and thus cannot be manually
fine-tuned, as it is frequently done in traditional hard-coded robot codes and fixed produc-
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tion recipes. As a result of the encountered calibration issue, we have started a new research
thread focused on automated robot calibration with the use of a laser tracking system.

At the first versions of the Industry 4.0 Testbed solution, we were not using any
digital twin at system runtime. This first solution was however not efficient, because it
required restarting of the whole system to the initial state (requiring some manual inter-
ventions/manipulation with material and semi-products as well) in any case of hardware
or software errors (a discalibrated/broken gripper of a robot, a collision of a robot, a bad
content on a shuttle, unresponsive Montrac system, etc.). The frequent need for restarting
of almost everything was a crucial motivation to incorporate the digital twin as the integral
part of the automation/control system loop and to utilize it continuously at runtime. Since
the digital twin keeps the latest state of the entire production system, it brings the oppor-
tunity to simply re-plan the production from the last safe state when some error occurs
without the need for restarting the entire production line. In some cases, it can require to
disable some specific resource (such as, due to broken gripper fingers, of a specific robot),
but despite the limited system setup, it allows us to continue with the production. In
numerous cases, it enables to continue even in unlimited mode.

Another benefit coming from the digital twin utilization is a possibility to decrease
a number of sensors or cameras, because numerous pieces of information do not need to
be measured directly, but the information is memorized and kept in the digital twin (e.g.,
which component is located on a specific warehouse position or whether this position is
free). Such a reduction of directly measured process variables is important not only from
the cost of investment required to buy those pieces of machinery, but also from the regular
maintenance point of view, because each hardware part of the industrial system has to be
regularly checked, calibrated, tested, and replaced if it is broken. All these maintenance
steps introduce delays and outages of the production, which can be prevented by using
soft-sensors as parts of the digital twins.

We have also tried to integrate and utilize industrial-graded solutions (namely by
Siemens), but the status quo (during the years 2020 and 2021) did not allow us to replicate
the full research-prototype functionality with industry-oriented tools. We have started
the process of comparing the proposed approach with other research-oriented approaches,
especially multi-agent ones, however, it requires further significant effort and development
time and resources, meaning that we have not found any off-the-shelf solution that could
be easily applied for comparison with the proposed approach.

Despite local technical issues, we overall found the proposed approach very efficient
compared to the “classical” approach. For comparison, we tried to implement a PLC-based
control system in the early stage of the Industry 4.0 Testbed production line development.
Even if we tried to implement it for a reduced number of components (2 robots and 3
workstations of Montrac) controlled by PLCs (Siemens 1518 and Siemens 1512), program-
ming, testing, and debugging became nearly not feasible (due to high program complexity
and heterogeneity, delays due to recompilation/redeployment of the project, as well as
inability of repeatability/reproducibility of runtime errors). Based on our experience,
shifting towards more dynamic environments, utilizing the aforementioned methodology
(digital twin, AI planning and scheduling, interpretation of dynamically created production
plans, etc.), is a very promising way to tackle increasing complexity and higher demanding
requirements of industrial production systems.

5. Conclusions and Future Work

Conditions in the global market together with advances in Industry 4.0 and smart
manufacturing technologies bring strict requirements on flexibility and a higher degree
of versatility of industrial production systems. Ability to be able to react on quickly and
heavily changing market conditions are one of the most important requirements to be
satisfied in production system engineering.

This article proposes a production system design paradigm that is significantly fo-
cused on a formal description of system components/resources and their supported opera-
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tions/skills. The term digital twin is in this context understood as an executable/simulable
tool implementing this formal system description. The proposed digital-twin-centric ap-
proach supports flexible production planning and re-planning.

Simulation modeling is, in the proposed context, understood as an assignment of
time constants to the formal digital twin. Such an assignment can be done traditionally
in the bottom-up manner, starting at device datasheets and domain-specific emulations
and simulations. Or the time constants or time dependencies can be inferred from running
systems or their components by means of process mining methods. In this case, values of
production operation duration are inferred from event/operation logs of running systems
logged by a new generation of MES systems capable to perform such detailed event logging.

This article thus presents an innovative approach for automation and control of
Industry 4.0 production systems. The digital twin, as the fundamental corner-stone of the
proposed solution, keeps the up-to-date global state of the entire production system. Due
to the tight integration of the digital twin and the automated AI planning, the solution
offers the high degree of flexibility. The proposed integration approach contributes to more
effective, efficient, flexible, and goal-oriented manufacturing execution processes.

The proposed solution was successfully validated with the use of the Industry 4.0
Testbed. The long-term testing and demonstrating of this system to researchers and prac-
titioners as well as to wide public audience together with detailed logging of the system
operation to the XES format, which was subsequently processed and checked by process
mining tools, proved that this approach is suitable for long-term robust operation. The
approach brings not only the required flexibility in products and production resources, but
it also significantly strengthens reliability and resilience of the entire production system,
because if some resource is broken, then the production processes can be easily re-planned
to the remaining production resources.

Future Work

In future work, we would like to deploy this solution into a real factory and test
it under large-scale conditions. We have already explained that in large-scale industrial
problems, it is theoretically possible to combine both bottom-up and top-down approaches
for converting digital twins into more detailed synchronized simulation models, however,
we have not utilized this combination in practice yet. Therefore, we would like to investigate
the possibilities for obtaining simulation parameter values in more details, including
combination of available domain-specific specifications or specialized simulations, together
with inferred values at runtime with process mining methods.

We would also like to investigate an “online supervision” with the digital twin. Since
all of the components have to be synchronized with the digital twin, the online super-
vision (an overview of the global state, an opportunity to allow or block selected opera-
tion) can be performed over the digital twin instead of multiple components with their
specific interfaces.

Last but not least, an automated error recovery on top of the planning system combined
with the digital twin is a topic that we have already opened but we would like to finish it
in future work. When some component is broken down, then some special case needs to
be activated in the contemporary industrial systems. Due to digital twin and AI planning,
the broken component can be easily disabled inside the digital twin global state and then
the production goal can be recomputed. If a solution exists, then the production line can
continue with a new found plan. Otherwise, the broken component is the so-called key
component and maintenance/service needs to be made as soon as possible.
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