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Abstract: Oil–water emulsions are widely generated in industries, which may facilitate some pro-
cesses (e.g., transportation of heavy oil, storage of milk, synthesis of chemicals or materials, etc.) or
lead to serious upgrading or environmental issues (e.g., pipeline plugging, corrosions to equipment,
water pollution, soil pollution, etc.). Herein, the sources, classification, formation, stabilization, and
separation of oil–water emulsions are systematically summarized. The roles of different interfacially
active materials–especially the fine particles–in stabilizing the emulsions have been discussed. The
advanced development of micro force measurement technologies for oil–water emulsion investiga-
tion has also been presented. To provide insights for future industrial application, the separation
of oil–water emulsions by different methods are summarized, as well as the introduction of some
industrial equipment and advanced combined processes. The gaps between some demulsification
processes and industrial applications are also touched upon. Finally, the development perspectives of
oil–water treatment technology are discussed for the purpose of achieving high-efficiency, energy-
saving, and multi-functional treatment. We hope this review could bring forward the challenges and
opportunities for future research in the fields of petroleum production, coal production, iron making,
and environmental protection, etc.

Keywords: oil–water emulsions; emulsification and demulsification; solid-stabilized emulsions;
asphaltenes; demulsifiers; oily waste water

1. Introduction

Oil–water emulsions are widely available in food processing [1], pharmacy or clinical
production [2], material production [3], the cosmetic field [4], petroleum industry [5],
etc. For example, oil–water emulsions could be produced in various processes during oil
production, from oil exploitation to petroleum refineries. During the post-production stage,
the viscosity of heavy oil (API < 20◦) increases sharply, especially in greater depths. Active
water flooding, alkali water flooding, polymer flooding, ASP (Alkali-Surfactant-Polymer)
flooding, and other technologies are used to ensure regular production and improve crude
oil recovery. A large number of chemical additives are used in these flooding technologies,
which makes the oil–water emulsions become more stable, and increases the difficulty
of oil–water separation. These oil–water emulsions could cause some major corrosion or
clogging problems on the pipeline and equipment in downstream plants, which leads to
many safety issues [6].

Waste oil–water emulsions are also one of the components of kitchen waste. In China,
food waste accounts for 30~50% of household waste [7]. These waste emulsions contain
abundant heavy metal ions and pathogenic bacteria [8], which can result in a variety
of hazards if not handled properly [9]. However, they will have great recycling value
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after appropriate disposal due to their high oil content [10]. Additionally, a large num-
ber of wastewaters are generated in the coal chemical industry [11]. Phenol, ammonia,
nitrogen-containing heterocyclic substrates (NHC), cyanide, polycyclic aromatic hydrocar-
bons (PAHs), and long-chain hydrocarbons are commonly present in wastewater [12]. In
the case of gasification wastewater, for example, the gasification of coal under pressure
uses a relatively low gasification temperature and high concentrations of pollutants in
wastewater. It has a complex composition, and the chemical oxygen demand (COD) is
commonly between 3000 mg/L and 5000 mg/L (up to 6000 mg/L) [13]. Due to the misdis-
tribution of oil reservoirs and consumer sites, half of the world’s annual output of oil is
transported by tanker to users, which threatens 71% of the oceans with oil pollution [14].
Statistically, at least 5~10 million tons of oil are discharged into water worldwide every
year. The annual discharge of oil field wastewater in China exceeds 50 million tons, while
the annual discharge of oil processing wastewater in the European Union countries and the
Middle East reaches 2 billion tons [15,16]. In China, the maximum permissible discharge
concentration of oily wastewater is 10 mg/L. In particular, a series of unexpected events,
such as the collision of oil wheels and the leakage of offshore oil fields, has caused incalcu-
lable losses to human society. Annual offshore oil spills represent approximately 0.5% of
total global oil production. Oil pollution from maritime transport reaches two million tons,
of which about 1/3 is caused by oil tanker wrecks. There are more than 500 offshore oil
spillage accidents every year, leading to the oil content of seawater in coastal areas being
six times higher than that of the national water quality standard [17]. Therefore, how to
demulsify oil–water emulsions is an undertaking that is still very relevant to producing oil
and protecting the environment.

Chemical surfactants are commonly referred to as amphiphilic molecules comprising
hydrophilic and hydrophobic groups. These amphiphilic molecules tend to adsorb at the
water/oil interface, with the hydrophilic groups submerged in water and the hydrophobic
groups toward the oil, which effectively reduces the interfacial tension [18]. In many cases,
the combination of theory and experiment enables a much better investigation of the factors
influencing the stability of emulsions. Abbasi A et al. [19] applied the theoretical interaction
energy (XDLVO) to calculate the differential interaction energy between droplets of acid
solutions in a crude oil emulsion. They found that the most important interaction energy
for acids formed in crude oil emulsion is acid–base and the influence of Lifshitz van der
Waals, which experimentally proved that 28 wt% HCl solutions formed an extremely stable
emulsion with crude oil. Jia et al. [20] applied to a water/surfactant/oil system using MD
simulations for determining the behavior of the anionic surfactant sodium dodecyl sulfate
(SDS) in both light and heavy oils. Due to the low Gibbs free energy, SDS molecules tend to
enter heavy oils, but interestingly, the molecules move significantly stronger in light oils
than in heavy oils. Moreover, SDS-water-asphaltic ternary structures can be fabricated in
the heavy oil system through hydrogen bonds.

Several review articles on demulsification have been published to clarify the issues
and advances in oil–water emulsions [21–24]. Jamaly S. et al. [21] focus on a variety of
treatment methods to minimize or avoid the adverse effects of oily wastewater. Recently, Ma
et al. [22] reviewed the stabilization mechanisms of heavy oil–water emulsions, especially
the significant influence of interfacially active substances (e.g., bitumen, resins, naphthenic
acids, etc.) on oil–water interfacial properties. Yongeup et al. [23] reviewed the recent
factors contributing to emulsion formation and stabilization in oil fields, as well as the
types of emulsions, and also studied multiple demulsification techniques. Idowu Adeyemi
et al. [24] analyzed how the use of ultrasound (US) has evolved as a stand-alone, or in
combination with other technologies for enhanced oil recovery (EOR) and dewatering in
petroleum emulsions. The potential feasibility of techniques such as US-assisted green
demulsification and field studies are evaluated.

In this review, the sources of oil–water emulsions from different areas and their
harmfulness to the environment and economy will be discussed. The classification, the
stabilization mechanisms of oil–water emulsions, and the processes of emulsification and
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demulsification will be considered. Particularly, the measurement method and the molecu-
lar interactions of oil–water emulsions from the micro- to macro-scale are systematically
checked. Finally, the methods and techniques for oil–water emulsions separation will
be summarized. The advantages and disadvantages as well as the area of application
of each technique will also be discussed to shed light on the future development of the
demulsification processes for industrial production.

2. Generation of Oil–Water Emulsions in Industry
2.1. Classification of Emulsions

Emulsions can be divided into several categories based on various factors [25]. Three
common types of emulsions are available [26]: water-in-oil (W/O) emulsion, oil-in-water
(O/W) emulsion, and multiple emulsion. The multiple emulsion is also called complex
emulsion. It refers to soft materials composed of dispersed droplets, which are made up of
smaller droplets inside. The common double emulsions are oil-in-water-in-oil (O/W/O)
emulsions and water-in-oil-in-water (W/O/W) emulsions. The definitive composition of
these emulsions is shown in Figure 1 [27].
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Figure 1. Schematic of common types of emulsions and their compositions. (a) Emulsions generated
in crude oil production and transportation (b) Formation of rigid films at the oil–water interface
and (c) surface activity of asphaltene molecules. Reproduced with permission from He et al., 2015
(ref. [27]). Copyright The Royal Society of Chemistry 2015.

Many researchers have classified emulsions according to their different properties,
which is described in Table 1. Winsor [28,29] illustrated the categories of micro-emulsions
according to the phase equilibria, which is shown in Table 2. Basically, the macro-emulsion
differs from the micro-emulsion in several aspects [30]. Firstly, in the macro-emulsion, the
dispersed oil or water droplets contact with each other through an interfacial film (the
interface is a different phase), while in the micro-emulsion, the small dispersed droplets
cannot come into contact with each other. Secondly, the macro-emulsion is opaque and
the micro-emulsion is optically transparent. The differences between macro-emulsion and
micro-emulsion are shown in Table 3.
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Table 1. Various categories of emulsions from different researchers.

Author Basis Categories Description

Bansbach [26] The size of droplets in
the dispersed phase

Tight emulsion
Loose emulsion

Tight emulsions refer to emulsions that contain
very small-sized droplets in the dispersed phase
and that do not completely separate within a few

hours due to their special structure. Loose
emulsions, on the other hand, contain relatively

large droplets in the dispersed phase, which
allows separation within a few minutes.

Fingas et al. [31]
The stability,

appearance, and rheo-
logical measurements

Stable water-in-oil
emulsion

Meso-stable water-in-oil
emulsion

Entrained water
Unstable

water-in-oil emulsion

Emulsions are considered to be in stable and
meso-stable states [32]. Asphaltenes and resins

trigger off a tough and stable visco-elastic
interfacial film. Meso-stable emulsions are those

emulsions between stable and unstable states
that are not fully stabilized due to insufficient

asphaltene contents, resulting in the possibility
of degradation.

Friberg et al. [33,34] The size of droplets in
the dispersed phase

Macro-emulsion
Micro-emulsion

In general, the majority of emulsions are
macro-emulsions. The size of the dispersed

droplets in macro-emulsions is generally larger
than 0.1 µm. Thermodynamically, they are

unstable as the oil and water phases tend to
coalesce and finally separate over time due to the

decrease in interfacial energy.
The droplet size in micro-emulsions is generally
less than 10 nm. It is formed due to the severe

low interfacial energy of two immiscible liquids.
The micro-emulsion is considered a
thermodynamically stable mixture.

Table 2. Four types of micro-emulsions depend on thermodynamic equilibrium.

Order Phase Equilibria Description

I Oil-in-water (O/W) This type of emulsion contains a water-soluble surfactant, and the surfactant
exists in water when forming monomers (Winsor I).

II Water-in-oil (W/O) This type of emulsion contains an oil-soluble surfactant, and the
surfactant-rich oil phase exists at the same time as the water. (Winsor II).

III Three-phase system It is also called middle-phase micro-emulsion. A middle phase of rich
surfactant coexists with superfluous water and oil (Winsor III).

IV Micellar solution Adding sufficient amounts of surfactant and alcohol can form an isotropic
solution of suspended single-phase micelles.

Table 3. Properties comparison between macro-emulsion and micro-emulsion.

Properties Macro-Emulsion Micro-Emulsion

Transparency Cloudy Optically transparent
Droplet’s size >0.1 nm 0.01~0.1 µm
Drop shape Generally, spherical Spherical

Thermodynamic stability Unstable, stratification
after centrifugation Stable

P. A. Winsor has categorized the micro-emulsions. The three types of Winsor emulsions
are shown and listed in Figure 2 and Table 4 [35].
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Table 4. Winsor I, II and III micro-emulsions.

Type Diagram Description

Winsor I (a)

The single-phase region is occupied by an O/W
micro-emulsion phase, and the two-phase region is

occupied by an O/W micro-emulsion in equilibrium
with the excess oil phase.

Winsor II (c)

The single-phase region in diagram (c) is occupied by a
W/O micro-emulsion, and the two-phase region is

occupied by a W/O micro-emulsion in equilibrium with
the excess water phase.

Winsor III (b)

In the three-phase region, the micro-emulsion is in
equilibrium with the excess water phase and the excess

oil phase at the same time, and the three-phase
composition does not change with the overall

composition (system point).

2.2. Generation and Impacts of Oil–Water Emulsions
2.2.1. Generation of Oil–Water Emulsions in Industry

Oil–water emulsions are generated from many different industrial processes, including
petroleum production (exploitation processing, refining, storage, and transportation of
oil, oil sludge, etc.) [5], iron and steel smelting (steel rolling water and cooling lubricants,
etc.) [3], coal production, food industry, materials manufacturing [1], etc. Table 5 shows the
summary of common types of oil–water emulsions in various industries.

Table 5. Common types of emulsions in various industries.

Industrial Fields Common Types of Emulsions Description

Petroleum W/O, O/W Further exploitation of the oil field causes the produced fluid to
gradually change from W/O to O/W emulsions.

Coal chemical O/W, W/O, sludge
The wastewater is generated from the coal liquification and
gasification process, in which the components are resistant

to degradation.

Metalworking O/W, W/O Used hydraulic oil, used lubricating oil, metal cutting fluid, and
coolant, etc.

Food O/W, W/O, multilayer emulsions,
Pickering emulsion

Various food products, both natural and man-made, exist in
part or whole as emulsions, or in the emulsified form at certain
times during the manufacturing process, including milk, cream,
fruit drinks, infant formula, soups, cake batter, salad dressings,

mayonnaise, creamy condiments, desserts, salad cream, ice
cream, coffee whitening agents, spreads, butter, and margarine

[36,37]. Protein-stabilized Pickering emulsions in the food
industry have three main applications including formulation of
spread-like products, encapsulation of bioactive components,

and protection of lipids [38].
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Table 5. Cont.

Industrial Fields Common Types of Emulsions Description

Cosmetics O/W, W/O, multilayer emulsions,
Pickering emulsion

Cosmetic emulsions are formulated with hydrophilic materials,
hydrophobic materials, surfactants, and often additional
materials are also added to the formulation to enhance its

performance value, improve the sensory, provide fragrance, etc.
[39]. With solid particles, Pickering emulsions are widely used

in color cosmetics products [40].

O/W and W/O emulsions are widespread in the petroleum industry, and O/W
emulsions are generally accompanied by oil recovery. Before downstream refining, water
is often added to crude oil for desalination, resulting in the formation of W/O emulsions.
These emulsions are then demulsified into two phases [41]. There is about 30~50 wt% oil,
10~12 wt% solids, and 30~50 wt% water in these emulsions [42]. The solid particles can
improve the stability of the emulsion by adsorbing onto the interfacial film, making the
separation of the emulsions much more difficult [43].

In the coal chemical industry, oily wastewater is generated from three sources: coal-
gasification wastewater, coking wastewater, and semi-coke production wastewater [44].
Coal-gasification wastewater generally contains tar oil, acid gases (CO2, H2S), acidic sub-
stances (phenol, fatty acid, cyanide), alkaline substances (nitrogen, pyridine, amine), heavy
metal salts, and other pollutants [45]. Coking wastewater is produced during coking gas
purification and the refining of chemical products. It mainly contains phenols, benzene,
and other persistent organic matters. The wastewater formed during retort treatment and
coal gas purification is semi-coke wastewater. The chemical oxygen demand (COD) in
semi-coke wastewater is about 10 times higher than that in coking wastewater.

There are four main sources of wastewater in the metalworking industry, as shown in
Table 6. The oil content of steel rolling wastewater is usually between 10 and 2000 mg/L.
The raffinate (wastewater) of the solvent extraction process is less than 10 mg/L under
normal conditions, and more than 5 g/L under abnormal conditions. The oily wastewater
from machine repairing is usually in the form of oil–water emulsions, which consist of
80~90% of water and 10~20% of oil [46].

Table 6. Sources of metal processing wastewater.

Order Sources

1
Lubricating oil is generated by lubrication, cooling, transmission, and other
systems in the machining process, emulsified oil for cooling and
transmission, etc.

2 Oily wastewater is produced when cleaning machine parts.

3 Oily wastewater is produced by oil leakage when conducting tractors and
other tests, mainly containing diesel oil and gasoline.

4
Oily wastewater is discharged by rinsing the floor, tanks, and other
equipment in the workshop, which is the main source of oily wastewater
from mechanical processing.

In the process of oil and gas refining industries, the fluid produced from oil wells is
usually a mixture of hydrocarbon components with various fractions, water, and other
organic and inorganic compounds. During this unconventional resource process, natural
gas (NG) dissolving in crude oil exists in the form of pure liquid under high pressure
(critical pressure: 4.58 MPa). In this process, oil–water emulsions will be formed. The
sources and the estimated relative volumes of crude oil and natural gas in the Permian
Basin reservoir are shown in Figure 3 [47].
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To release heavy oil ores, some EOR technologies have been proposed. Applying
EOR technologies improves oil yield by 20~40% [48]. However, the process is always
accompanied by various problems, such as the formation of strongly stable emulsions and
excessive formation of silicate deposits when using high concentrations of alkali [49]. The
largest waste streams generated during the extraction of oil and gas occur as the drilling
fluids are delivered to the wellhead, where the crude oil is accompanied by produced
water or oily wastewater containing a variety of organic and inorganic contaminants. The
discharge of this oily water (emulsions) can contaminate both water bodies and soil [50,51].
By adding several chemicals in EOR, such as surfactant-polymer (SP), or ASP, more stable
emulsions which are difficult to separate could be formed [52,53].

According to the composition and presence of oil pollutants, the wastewater can be
divided into the following five categories, as shown in Table 7.

Water-containing waste oil from the transportation industry and industrial waste
oil account for about 55% and 45% of the used lubricating oil, respectively [54]. The oil
properties deteriorate with the degradation process, resulting in a large number of acidic
compounds, polymers, sludge, etc., prompting factories to discharge the used oil [55].
Industrial waste oil mainly comes from large industrial and mining enterprises, including
mines, smelters, non-ferrous metal processing plants, automobile industries, machine
processing industries, etc. The waste oil is of hazardous chemicals and must be treated
strictly before discharge. The oil change cost mainly consists of the new oil purchase fee,
waste oil environmental treatment fee, capacity loss during idle time, and fuel tank cleaning
fee, with the waste oil environmental treatment fee responsible for the majority of costs.

2.2.2. The Impact of Oil–Water Emulsions

The proper treatment of waste oil–water emulsions has always been an essential issue
because of their significant damage and harm to the environment [56]. Statistically, the
total amount of oily wastewater in the world reached 10 to 15 billion m3 in 2013, and this
figure seems to be increasing significantly in recent years [57]. Chen et al. [58] provided a
summary of research on wastewater treatment and emerging pollutants from 1998 to 2021.
They found that the number of published papers showed a gradual upward trend year by
year, and then reached a peak in 2021 with an annual growth rate of 9.55%. The number of
published works can reflect the importance and future development trend of the subject, to
some extent.
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Table 7. Five types of oily wastewater.

Order Type Emulsion Droplet Size Description

1 Floating oil >100 µm
Also called “oil slick”. The oil slick is the present form of
most oily wastewater, which, once at rest, quickly floats

and can float on the water surface as a continuous oil film.

2 Dispersed oil 10~100 µm The dispersed oil is unstable, which aggregates and forms
larger oil droplets that float on the surface.

3 Emulsified oil 0.1~10 µm
The surface of emulsified oil is usually covered with a
negatively charged bilayer that is relatively stable and

hardly floats on the water surface.

4 Dissolved oil <0.1 µm
The dissolved oil is dispersed in water as molecules. The

uniform system formed by oil and water is very stable
and difficult to remove with conventional methods.

5 Oil–solids mixture / The oil adheres to the surface of the small solid particles
in water to form an oil–solids mixture.

Oil–water emulsions from industrial waste have significant impacts on both human
health and the environment. Industrial waste emulsions may contain a high concentration
of heavy metal elements. Figure 4 shows the generation of heavy metals in the environ-
ment [59]. On one hand, heavy metals are harmful to human health. For example, thallium
is a cause of alopecia in humans [60]. High exposures to antimony and chromium (i.e.,
Cr and VI) promote carcinogenicity [61,62]. Lead poisoning could result in intellectual
abnormalities in children [63]. Heavy metals are extremely toxic to human organs (kidneys,
heart, nerves, skin, etc.); for instance, the Minamata disease is caused by mercury poisoning,
and the Itay-Itay disease is caused by excessive exposure to cadmium. Although some
naturally occurring vital heavy metals regulate numerous biological activities [64], people
still need to properly treat waste oil–water emulsions before they are released, and live in
areas that are as far away from heavy metal releases as possible.

On the other hand, heavy metals usually cannot be biodegraded and cause environ-
mental pollution. When untreated wastewater is discharged, most of the heavy metals are
absorbed by various organic and inorganic colloids and particles, followed by accumula-
tion and settling at the bottom of the water. Most toxic heavy metals (e.g., lead, thallium,
cadmium, arsenic, and antimony) have numerous adverse effects on the environment.
For example, mercury is converted to methylmercury in water, resulting in highly toxic
sediments [65]. Cadmium pollution in water is useless for plant growth and metabolic
processes and occurs through absorption, industrial waste, and surface runoff into sedimen-
tary soils and sediments [66]. A large amount of zinc derived from the mineral processing
activities will affect both ecosystems and living organisms [67].

It is estimated that there are roughly 250 million barrels of oilfield-generated water
being generated daily as petro-refinery oil–water emulsions, with over 40% of this being
dumped into the environment [68]. They contain several toxic substances (identified
as potential carcinogens, toxicants, and endocrine disruptors [69]), including benzene,
toluene, ethylbenzene, xylenes (BTEX), polycyclic aromatic hydrocarbons (PAHs, e.g.,
phenanthrene, naphthalene, anthracene, etc.), and bentonite, which can harm humans and
the environment if discharged without being properly treated [70,71]. Contaminants can
have harmful health effects on most organs of mammals. They can lead to skin cancer and
affect mental health [72,73]. Bentonite is a major contaminant that can induce genotoxic
and cytotoxic harm to lung fibroblasts, and is capable of causing coughs, and eye and skin
irritation [74]. BTEX can cause leukemia and tumors. Among all petroleum hydrocarbon
pollutants, benzene is the strongest in terms of toxicity. The serious damage it causes
includes–but is not limited to–cancer, edema, hemorrhage, and bone marrow damage [75],
and xylene can result in hypomnesia, insomnia, and tiredness [76,77]. For example, PAHs
reduce oxygen solubility and soil porosity [78]. The presence of long-chain hydrocarbons
affects the aqueous environment and results in algal blooms [72]. Water pollution (e.g., red



Processes 2022, 10, 738 9 of 34

tides or harmful algal blooms (HABs)) is currently occurring around the world, especially
after extensive use of chemical dispersants and oil spills; for example, the Bohai Sea Spill
(2011) in the Yellow Sea. Phytoplankton species that are harmful to the environment can
produce toxins, and their proliferation has negative effects on the environment [79]. An
oil spill can cause the death of fish and other aquatic animals, and promote the anaerobic
decomposition of organic matter deposited on the bottom, resulting in odor, deterioration
of the water, and pollution of the environment [80]. In addition, the coalescence of oil
on the water’s surface leads to poor penetration of sunlight [81], combustion, or other
disasters [82].
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3. The Stability of Oil–Water Emulsions
3.1. The Roles of Emulsifiers

Emulsifiers are the main reason for the long-term stability of oil–water emulsions.
They can form a stable film at the oil–water interface, reducing interfacial tension (IFT) and
preventing droplet coalescence. Generally, emulsifiers can be classified into three categories:
small molecular emulsifiers, macro molecular emulsifiers, and solids, shown in Figure 5
and Table 8.

3.1.1. Small Molecular Emulsifiers

The emulsifiers most commonly found in practice are small molecular surfactants
containing hydrophilic and hydrophobic groups. Most hydrophobic groups are alkyl
chains. Surfactants can be classified into different types according to the different charges
of the hydrophilic groups, including anionic [83–86], cationic [87,88], zwitterionic [89,90]
and nonionic surfactant [91]. Usually, a surfactant has a low molecular weight (<1000).
It tends to form a monomolecular film at the oil–water interface, which has an oriented
arrangement [92,93], as shown in Figure 5a. The adsorption of a single molecular emulsifier
could be expressed by Gibbs or Langmuir adsorption theorems [94,95].
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3.1.2. Macro Molecular Emulsifiers

The mono-molecule film is the simplest pattern of the aggregation of emulsifiers
at the oil–water interface. However, in practice, the interfacial film usually has a more
complex morphology. Taking the petroleum industry as an example, the emulsifiers are
mainly natural heavy components. Asphaltene is the most typical and most representative
component [96,97]. In 2015, Yang et al. [98] reported that a specific sub-component was
crucial for the stabilization of the W/O emulsion, which was termed interfacially active
asphaltene (IAA). Ma et al. [99] obtained similar results. This phenomenon is directly
related to the formation of the strongly stable multi-layered interfacial film, as illustrated in
Figure 5b.

The supramolecular film is the association of macro-molecular, and the morphology
presents cross-linked multilayers or other supramolecular structures [100]. Asphaltene
consists essentially of polycyclic aromatic hydrocarbons, to which multiple side chains con-
taining electronegative heteroatoms (i.e., oxygen, nitrogen, sulfur) are attached [101,102].
Compared to the remaining asphaltene, IAA has a larger molecular weight and more
polar groups (i.e., sulfoxide) [98,103]. Polar groups can form a strong positive or neg-
ative electrostatic potential. As a result, they facilitate the formation of intermolecular
crosslinks through hydrogen bonds. In addition, due to the hydrophilic property of the
polar groups, they significantly increase the interfacial activity of the multi-molecular
film. The interactions between the multiple layers are Van der Waals forces and π-π
stacking [104]. Thus, multi-molecular film possesses high stability and good mechanical
properties. Kim et al. [105] proposed that multi-layered film exhibited strong viscoelasticity
by the method of mechanical characterizations. Two parameters, including elastic modulus
and bulk modulus, are applied to evaluate this film [106]. Multi-layered film effectively
prevents floating droplets from coalescing.

Besides IAA, other high molecular weight (>1000) macro-molecular emulsifiers such
as resins, biological macromolecules [107–110], polymeric surfactants [111–114], etc., can
also form a multilayer film. The polymeric surfactants are classified into the random, block,
and graft polymers, as shown in Table 8.



Processes 2022, 10, 738 11 of 34

Table 8. The typical examples of each kind of emulsifier.

Large Category Materials Example Systems

Small molecular emulsifier Simple surfactant

Anionic surfactant: sulfate [83],
sulfonate [84], and phosphate [85],

carboxylate derivatives [86], etc.
Cationic surfactant: mainly

ammonium [87,88].
Zwitterionic surfactant: anionic

ammonium [89], sulfobetaine-type
surfactant [90].

Nonionic surfactant: mainly
oxygen-containing surfactant [91].

Widely existing in various
emulsifying systems,

including petroleum, organic
synthesis, materials, biological

medicine, electrochemistry,
food industry, etc.

Macro-molecular
emulsifiers

Heavy petroleum
components

Interfacially active asphaltene
[98,103]. Heavy oil, oil sludge.

Biological macromolecules Lipid [107], protein [108],
polysaccharide [109,110].

Biological medicine, food
industry.

Polymeric surfactants
Random polymer [111,112].

Block polymer [113].
Branched polymer [114].

Organic synthesis, materials,
biological medicine.

Solid particles as an
emulsifier

Inorganic solid particles

Silicon dioxide (SiO2), titanium
dioxide (TiO2), ferric oxide (Fe2O3),
montmorillonite (MMT), laponite,
layered bimetallic hydroxide, etc.

Pharmaceutical industry, oil
and gas industry, aerospace

industry, etc.

Organic solid particles

Poly (N-isopropylacrylamide)
micro-gel particles, polyethylene
microspheres, block copolymer

micelles, etc.

Surface modified solid
particles

Amine-modified lithium saponite
particles [115], etc.

Janus particles

Polymeric Janus particles
(PDVB-PNIPAM) [116],

P2VN-PAA/PEO polymeric Janus
particles [117], etc.

3.1.3. Solid Particle Emulsifiers

Pickering emulsion is defined as the emulsion stabilized by solid particles adsorbed
at the oil–water interface. The different wettability is derived from the different orienta-
tion properties on the crystal planes. The particulate emulsifiers include inorganic solid
particles, organic solid particles, surface modified solid particles, and Janus particles.
The surface-modified solid particles are produced by physical adsorption, chemical graft
polymerization, and other methods [118]. The surface of Janus particles has anisotropy.
Pickering emulsions possess a strong designable ability that has been applied in mate-
rials [119] and biosynthesis [120]. Besides, due to the mineral paragenesis, the coupled
structure of the oil–water–solid system can be regarded as a natural Pickering emulsion. It
is widely found in oil sludge [121], causing big problems in separation and purification.

Figure 5c,d show two main factors leading to the high stability of the Pickering
emulsion, namely, the solid particle film at the oil–water interface [122] and the formation
of a three-dimensional net structure [123]. The theory of solid particle interface film is
also known as the mechanical barrier theory. According to this theory, solid particles as
emulsifiers are closely arranged on the surface of emulsion droplets, forming a compact
film at the oil–water interface. Additionally, Lagaly et al. [123] found that there was
a three-dimensional net structure in Pickering emulsions stabilized by bentonite and
montmorillonite soil. These barriers enhanced the repulsion effect between droplets and
thus improved the stability of the Pickering emulsions.
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3.2. Interactions between Different Molecules at the Interface: From Macro- to Micro-Scale

Figure 6 shows the different stages in the investigation of emulsion stability. As we all
know, the stability of emulsions is determined by interactions between phases.
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3.2.1. Thermodynamics of Colloidal Dispersion Stability: DLVO Theory

The DLVO theory (named after Derjaguin, Landau, Verwey, and Overbek) is one of
the most classical interpretations for the quantitative analysis of the thermodynamics of
emulsions. In this theory, Van der Waals attraction and electrostatic repulsion are considered
to be critical to the stability of suspended colloidal particles, shown in Equation (1) [127],
where VT is the total potential energy between colloidal particles, VA refers to the potential
energy produced by Van der Waals force, and VR denotes the potential energy produced
by electrostatic repulsion. The two types of interactions are collectively referred to as
DLVO forces. VA and VR are affected by many factors, such as the particle shape, solvent
environment, etc.

VT = VA + VR (1)

This traditional DLVO theory shows good interpretability for simple O/W emulsions
since the electrostatic double-layer mainly contributes to the stability of water droplets.
However, when applied to other emulsions, the prediction accuracy would be limited. The
DLVO theory has been further developed by researchers. For example, Salou [128] adopted
the extended DLVO theory, which includes hydrophilic and hydrophobic interactions, and
accurately predicted the stability of emulsions formed by bitumen. Vleeschauwer et al. [129]
combined DLVO theory with the equation of Ottewill and Walker for the steric repulsion
contribution, which has been well used to predict the stability of a mixed phospholipid-
non-ionic surfactant stabilized O/W emulsion. Bizmark et al. [130] applied the extended
DLVO theory to the calculation of Pickering emulsion that is stabilized by ethyl cellulose
nanoparticles. So far, the DLVO theory has been developed in many fields.

3.2.2. Measurements of Interactions between Phases: AFM

The limitation of the DLVO theory is the nature of interactions. The theory was de-
veloped as studies dipped to the micro-scale. Petkov et al. [131] confirmed the important
effect of non-DLVO forces (i.e., structural, hydration, thermal fluctuations forces) on emul-
sions by observing the influence of salt concentration on the phenomenon of multiple
phases. Atomic force microscopy (AFM) is a very high-resolution technology for the micro-
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interaction measurement between molecules. The resolution can reach the nanometer level.
Although operations aiming at multiphase liquids are difficult, AFM still plays a crucial
role in the study of emulsions, which is reflected in the following aspects:

1. Firstly, AFM can quantify the interactions between phases. In 2004, Gunning et al. [132]
attached oil droplets to the end of an AFM cantilever, and they monitored the in-
teractions between droplets as a function of inter-droplet separation. In the same
year, Dagastine et al. [133] measured the interaction forces between alkane droplets
in an aqueous solution. In 2017, Shi et al. [125] applied this method to W/O systems
and explored the role of adsorbed asphaltene in interfacial adhesion. These studies
provide quantitative insights into the stability of emulsions.

2. Furthermore, AFM improves the theoretical system of colloid science. Liu et al. [134]
combined AFM with extended DLVO theory to reveal the stability mechanisms of
bitumen droplets. The measured parameters are in excellent agreement with the
calculated ones. Wang et al. [135] reviewed the effect of AFM in the theories of
deformable droplet interactions, including DLVO forces, non-DLVO forces, and the
dynamic film evolution process.

3. Additionally, AFM promotes the rational design of functional emulsions. This is
mainly reflected in nano-emulsion in the food industry [136,137], and is better ab-
sorbed by the digestive system. Food emulsions can be better understood, predicted,
and controlled through the bulk phase interactions, and are better absorbed by the
digestive system [36].

3.2.3. Visualizing Molecular Interactions: Molecular Dynamics Simulation

Molecular simulation is the technology that examines science at the molecular level in
detail, which most instruments cannot realize. The methods include molecular dynamics
(MD) [138], quantum mechanics [139], and Monte Carlo [140] simulation, of which MD is
the best-studied. The basic idea is to write the inter-molecular interaction potentials into
the force field files, and use them to analyze the molecular systems.

The simulation results follow qualitative or quantitative principles. The qualitative
analysis focuses on the visualization of the molecular process in the form of simulation
snapshots and interfacial molecular orientation [141]. Evaluation parameters are the keys
to quantitative analysis and can be divided into two types. Some of the types of the pa-
rameters are predictions from macroscopic data (i.e., interfacial tension, interfacial film
thickness [142–144]. Other types provide clear recognition of the specific features at the
molecular level, and an important function of them is the measurement of molecular inter-
actions. Herein, this section concludes several important micro-parameters in this respect.

1. Radial distribution function (RDF, or g (r)). RDF describes how density varies as a
function of distance from a reference atom, which may reflect the interactions between
reference atoms with statistical atoms. This is calculated by Equation (2) [142]. na(r)
is the number of particles within a spherical container at distance r from a reference
point b. ∆r and ρa denote the container thickness and density of atoms in the space,
respectively. g (r)~r functional diagrams are applied for analysis [142,144,145]. Usually,
sharp peaks exist in the interval of 0.1~1 nm, which are generated by the interactions
between emulsifiers and the bulk phase. The strength is reflected by the peak value of
g (r), which directly dominates the stability of the emulsion.

gab(r) =
na(r)

4πr2∆rρa
(2)

2. Non-covalent interactions. Non-covalent interactions are general designations of inter-
molecular interactions other than covalent bonds, including electrostatic interactions
(i.e., hydrogen bonds), van der Waals interactions, steric interactions, etc. [36]. The
evolving force fields have fitted appropriate molecular potentials that most correctly
express them. In addition, several studies discussed the details of non-covalent interac-
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tions. Chen et al. studied the wetting mechanism of amphiphilic collagen fibers by MD
simulation. It was found that electrostatic interactions and van der Waals interactions
are the driving forces of regional wetting in the hydrophilic and hydrophobic regions,
respectively [146]. Lv et al. [145] calculated that the hydrogen bonding networks be-
tween the carboxyl group and the water molecules stabilized the petroleum emulsion.
Ma et al. [124] illustrated the important role of the reconstruction of non-covalent
interactions in demulsification by dissipative particle dynamics simulation.

The ideal results are directly related to the accuracy of the models being built, the force
field, and the environment. Thus, the difficulty is to target the span-scale analysis of the
virtual simulation and the real experiment.

3.3. Recent Progress on Molecular Oriented Recognition

Nowadays, with the development of precise instruments, research on interfacial
molecules is not limited to virtual simulation. Traditional optical characterizations (i.e., in-
frared, Raman spectroscopy) are not limited by interface selectivity. The signals generated
by molecules in bulk phases are much stronger than those at the interface, causing great
disturbance for characterization. Recently, nonlinear optics facilitate the research at the
interface. The interfacial molecules present directional arrangement, and therefore they
could be recognized due to special nonlinear optical properties [147]. The most typical spec-
troscopic technology is Sum-Frequency Generation (SFG) [148] and its derivatives, such
as two-dimensional SFG [149], phase-sensitive SFG [126], heterodyne-detected SFG [150],
etc. It is difficult to extend the system from a single liquid phase to a liquid–liquid multi-
phase. Therefore, isotope labeling has often been adopted as an auxiliary method to
enhance characteristic peaks to obtain critical parameters. In 2014, Roy et al. studied the
one-dimensional [151] and two-dimensional SFG of lipid/water interface and proposed
the constraints of hydrogen bonds on interfacial water conformations. In 2021, Pullanch-
ery et al. [152] studied that surfactant increased the ordering degree of the interfacial oil
molecules, thus stabilizing the emulsions. They found that strong charge-transfer interac-
tions arose from interfacial C-H···O hydrogen bonds, enhancing the stability of oil droplets
in water. Both two types of research adopted the method of phase-sensitive SFG and
isotope labeling.

4. Separation of Oil–Water Emulsions
4.1. Common Processes and Mechanisms of Demulsification

Emulsions are thermodynamically unstable systems that change slowly. Various phe-
nomena are involved in changing emulsion properties, including sedimentation, creaming,
flocculation, Ostwald ripening, coalescence, aggregation, and phase separation. These
phenomena can occur together or individually [153]. Flocculation means that droplets in an
emulsion collect through attractive interactions to form flocs of droplets [154]. Coalescence
occurs when the film ruptures between two droplets, and refers to the combination of
droplets [155]. The process of gradual growth from coalesced droplets into large droplets is
defined as Ostwald ripening. Table 9 shows the different phenomena during the demulsifi-
cation process. Figure 7 clearly shows the thermodynamic demulsification phenomenon in
nano-emulsions [156].
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Table 9. Demulsification processes observed in W/O and O/W emulsions.

Demulsification Process Definition Details

Sedimentation
The difference between water and oil density

causes the fall of water droplets due to gravity, and
the gravity is greater than buoyancy. It depends on the difference between oil

and water density.
Creaming The separation of emulsions into denser parts

(cream) and other parts without actually breaking.

Flocculation

It refers to the agglomeration of suspended
droplets in an emulsion, or the formation of

floccules, which can accelerate the coagulation of
droplets and achieve the purpose of separation.

(a) It is the essential premise of
emulsion towards further aging
and coalescence.

(b) It depends on the surfactant
structure and the difference
between oil and water density.

(c) It occurs frequently in the
separation of O/W emulsions.

Coalescence
Two or more separate groups pull each other to

reach the slightest contact, and the process acts on
miscible particles.

The influencing factors of the interfacial
film include viscosity, elasticity, and the

dynamics of drainage.

Aggregation It corresponds to accumulating the
suspended droplets.

It is the most common process, resulting
in the instability of colloidal systems.

Ostwald ripening

At the later stage of the precipitation phase
precipitated by supersaturated solid solution, the

size of precipitated phase particles is different.
Due to the dissolution of smaller particles, larger

particles continue to grow, thus increasing the
average size of particles.

It is generally experienced in water/oil
emulsions, and other liquid or

solid solutions.

Phase separation Oil and water completely separate into two
distinct phases. It relies on time and types of emulsifier.
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Efficient separation of W/O emulsions can be achieved through four steps [157]:
(1) droplets aggregation, (2) interfacial membrane drainage, (3) interfacial membrane
rupture, and (4) droplets coalescence and sedimentation [158], as shown in Figure 8.
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There are many parameters influencing the process of chemical demulsification, chang-
ing which can either increase or decrease the emulsion stability. For example, tempera-
ture [159–161], salinity [162–165], water and oil content [166–168], etc. Numerous chemical
demulsification mechanisms have been reported up to now. However, there is still no
universal conclusion that is attributed to the complexity of the destabilization processes
involved (diverse knowledge of colloid chemistry, surfactants science, and interface phe-
nomena). The four popular theories of demulsification mechanisms are summarized in
Table 10.

Table 10. The four common theories of chemical demulsification.

Order Theory Description

1 Replacement or displacement [169,170]

The surfactivity of the demulsifier is higher than that of the natural
surfactants in crude oil, thus demulsifier can replace or displace the
surfactants at the oil–water interface to disrupt the stability of the

interfacial film.

2 Reverse acting [171]

The demulsifier can change the type of emulsion. Depending on the
properties of the demulsifiers, the O/W emulsion and W/O emulsion

convert to each other. The oil droplets and water droplets are
separated by gravity.

3 Electrostatic adsorption [172]

The demulsifier having an opposite charge to the interfacial film of
the emulsion neutralizes the repulsive force between the interfacial

films to demulsify the emulsion. This mechanism is generally applied
to ionic demulsifiers.

4 Dispersion-Solubilization [173] Some types of demulsifiers have a solubilizing effect. The demulsifier
in the emulsion forms micelles and dissolves the surfactants.

5 Coalescence-Flocculation [174]

The molecular chain of demulsifiers can be adsorbed on the
interfacial film of the droplets and form a loose pellet centered on the

demulsifier, which increases the contact area between the droplets
and the probability of collision.

Generally, the action mode of demulsifiers is reducing the strength of the interfacial
film, aimed at crude oil emulsion. Therefore, it is necessary to reveal the interfacial
behaviors of materials at the interface [175]. Figure 9 shows the role of the film drainage
process in demulsification. Under gravity force, agitation, and thermal convection, two
droplets approach each other, and the thickness of the oil phase film shrinks. Firstly,
the concentration of natural surfactant molecules reduces within the film, because they
accumulate outside the film due to shear stress. The IFT gradient is developed with low IFT
outside the film and high IFT inside the film. Thus, the void left by surfactant in the film
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provides sites for demulsifiers to be adsorbed. Their adsorption eliminates the produced
IFT gradient and improves film drainage. Eventually, the film becomes very thin and the
droplets merge due to the proximity of the dispersed droplets [176].

Processes 2022, 10, x FOR PEER REVIEW 17 of 35 
 

 

approach each other, and the thickness of the oil phase film shrinks. Firstly, the concen-
tration of natural surfactant molecules reduces within the film, because they accumulate 
outside the film due to shear stress. The IFT gradient is developed with low IFT outside 
the film and high IFT inside the film. Thus, the void left by surfactant in the film provides 
sites for demulsifiers to be adsorbed. Their adsorption eliminates the produced IFT gradi-
ent and improves film drainage. Eventually, the film becomes very thin and the droplets 
merge due to the proximity of the dispersed droplets [176]. 

 
Figure 9. (a) The film drainage in the presence of demulsifier; (b) Influence of concentration of nat-
ural surfactant and demulsifier on crude oil and water interfacial tension. Reproduced with permis-
sion from A. Bhardwaj et al., 1994 (ref. [176]). Copyright 1994 American Chemical Society. 

For O/W emulsions, the demulsification mechanism by ionic demulsifiers has not 
been explained in detail. One hypothesis is that cationic demulsifiers can demulsify O/W 
emulsions stabilized by anionic surfactants by neutralizing them with charged heads to 
form ion pairs [163,177–178]. It has also been reported that cationic surfactants adsorb into 
the cavity between anionic surfactants and then form ion pairs at the interface itself [179]. 
The electrostatic repulsive force between the dispersed oil droplets is weakened, allowing 
the droplets to fuse together, and eventually phase separation occurs. 

4.2. Technologies for Oil–Water Emulsions Separation 
Oil–water emulsion separation technologies can be classified into four categories: 

physical method, chemical method, physicochemical method, and biochemical method. 
The physical method is based on the differences in physical properties such as phase den-
sity, conductivity, and sound velocity. The main methods are gravity sinking, centrifugal 
cyclone, high-voltage electrostatic, high-frequency impulse, microwave irradiation, ultra-
sonic wave, membrane, in situ extraction, gas flotation [180–187], etc. In chemical demul-
sification processes, an appropriate dosage of chemical agents (e.g., demulsifiers, 
polymerization agents) should be added into the oil–water emulsions to break the stable 
interfacial film and change the emulsification state into a free state, thereby achieving the 
phase separation of the oil–water emulsion. Physicochemical demulsification processes 
are a combination of the physical and chemical separation processes. In addition, in bio-
chemical demulsification, biological demulsifiers produced by cell bodies of micro-organ-
isms are used to break emulsions. Each separation method has its own specialty and ap-
plicable conditions. Therefore, factors such as oil properties, water content, the intensity 
of the emulsion, and the dispersibility and stability of the emulsion should be considered 
comprehensively when selecting the separation methods. Table 11 illustrates the common 

Figure 9. (a) The film drainage in the presence of demulsifier; (b) Influence of concentration of natural
surfactant and demulsifier on crude oil and water interfacial tension. Reproduced with permission
from A. Bhardwaj et al., 1994 (ref. [176]). Copyright 1994 American Chemical Society.

For O/W emulsions, the demulsification mechanism by ionic demulsifiers has not
been explained in detail. One hypothesis is that cationic demulsifiers can demulsify O/W
emulsions stabilized by anionic surfactants by neutralizing them with charged heads to
form ion pairs [163,177,178]. It has also been reported that cationic surfactants adsorb into
the cavity between anionic surfactants and then form ion pairs at the interface itself [179].
The electrostatic repulsive force between the dispersed oil droplets is weakened, allowing
the droplets to fuse together, and eventually phase separation occurs.

4.2. Technologies for Oil–Water Emulsions Separation

Oil–water emulsion separation technologies can be classified into four categories:
physical method, chemical method, physicochemical method, and biochemical method.
The physical method is based on the differences in physical properties such as phase density,
conductivity, and sound velocity. The main methods are gravity sinking, centrifugal cy-
clone, high-voltage electrostatic, high-frequency impulse, microwave irradiation, ultrasonic
wave, membrane, in situ extraction, gas flotation [180–187], etc. In chemical demulsification
processes, an appropriate dosage of chemical agents (e.g., demulsifiers, polymerization
agents) should be added into the oil–water emulsions to break the stable interfacial film
and change the emulsification state into a free state, thereby achieving the phase separation
of the oil–water emulsion. Physicochemical demulsification processes are a combination
of the physical and chemical separation processes. In addition, in biochemical demulsi-
fication, biological demulsifiers produced by cell bodies of micro-organisms are used to
break emulsions. Each separation method has its own specialty and applicable conditions.
Therefore, factors such as oil properties, water content, the intensity of the emulsion, and
the dispersibility and stability of the emulsion should be considered comprehensively
when selecting the separation methods. Table 11 illustrates the common technologies for
separating oil–water emulsions in industry and their advantages and disadvantages.
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Table 11. Summary of oil–water emulsions separation technologies.

Treatment Advantages Disadvantages

Centrifugation High efficiency, lesser operational time. High cost of maintenance and energy
for rotating.

Hydrocyclone High efficiency, compact modules, output
for smaller oil particles.

High cost of maintenance and
energy, fouling.

Bio-demulsification Better adaptability, strong versatility,
non-toxic, eco-friendly, degradable. High cost.

Heating

These techniques are widely used, easy
operating and efficient while being used

in combination with other methods.

Low efficiency, longer time aimed at
O/W emulsion with higher water

content, often used in conjunction with
other methods.

Electric dehydration
The possibility of short circuiting, will
consume lots of energy and increase

investment costs.

Gravity Unsatisfactory demulsification effect,
huge equipment demand.

Microwave Fast-speeding, no hysteresis effect. Low dehydration rate, long settling time.

Ultrasonic No pollution, no emission, low energy
consumption, strong universality.

Difficulties in industrial scale-up, high
cost of equipment.

Magnetic More suitable for sewage treatment. Currently in the preliminary stage
of research.

Membrane High efficiency, low energy consumption,
wide application range.

Low membrane flux, small processing
capacity, membrane fouling.

In situ extraction Floating oil can be continuously collected
from the water surface. High cost.

Gas flotation Higher efficiency, fixed parts, robust and
durable, easy operation.

Large quantity of skim volume, lateness
in separation time, high amount of

air generated.

The chemical demulsification, as introduced in Sections 3 and 4.1, is mainly achieved
by adding chemical demulsifiers with strong interfacial activity to the emulsion to achieve
the separation. It exerts the merits of excellent demulsification performance, high efficiency,
simplicity of equipment, cost-effectiveness, and a wide range of applications. In the physical
demulsification method, both sedimentation and centrifugation use the difference in density
and immiscibility of oil and water to break the emulsion. In a gravity separator, NaCl can
be added to water to increase the density difference between the oil and water phases to
improve the floating speed of oil droplets [180]. However, the separation equipment is
large and expensive, and the separation efficiency is relatively low. Therefore, it is generally
used in conjunction with other separation techniques.

In electric dehydration, it is considered that water in the emulsion is a polar elec-
trolyte, which becomes polarized under the electric field. Under the electric field, the
rupture of interfacial film is derived from the collision of polarized droplets. The neighbor-
ing droplets are attracted to each other, forming large droplets and promoting oil–water
separation [170,179,181].

The ultrasonic method mainly relies on ultrasonic waves, which are elastic mechanical
waves with the function of mechanical vibration and thermodynamic interaction. In the
process of vibrating the crude oil and water droplets together, the water droplets collide
and bond with each other, resulting in an increase in the particle size. Meanwhile, the
vibration decreases the strength of the oil–water interfacial film, which is conducive to
emulsion breaking. In addition, the thermodynamic interaction of ultrasonic waves can
also reduce the viscosity of crude oil. The ultrasonic method can lower the demulsification
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temperature and reduce energy consumption. However, there is still a lack of large-scale
industrialized equipment [182].

The heating method is intended to accelerate the collision and coalescence between
droplets. Generally speaking, the heating method is applicable to W/O emulsions with
lower water content. Nevertheless, this method has the disadvantages of high production
expense, unstable performance, and the process is hardly confined.

The microwave is a type of electromagnetic wave with a frequency of about 300 MHz
to 300 GHz, which can generate alternating electric field with frequencies up to hundreds of
millions of times per second, and polar molecules under the action of electromagnetic field
produce a dipole to polarization resulting in the transformation of internal energy into heat
energy, rapidly increasing the system temperature. The microwave method is essentially an
indirect heating method, but has the advantages of high speed, uniformity, no temperature
gradient, and no hysteresis effect in comparison with the traditional heating method [183].

Gas flotation is used to introduce microbubbles into the water (sometimes it is also
necessary to add a flotation agent or coagulant), with which the oil droplets (0.25 to 25 µm)
are attached to the bubbles to form aggregates. These aggregates rise to the surface by
buoyancy. Finally, oil–water separation is accomplished by scraping off the surface foam.
The separation efficiency of the air flotation is determined by the probability of collision
between the bubbles and the oil slick. Hence, increasing the specific surface area of bubbles
can enhance separation efficiency. Membranes can effectively remove small chemical-free
oil droplets (<40 µm) with low energy requirements, low maintenance costs, and low
requirements for reliability and space [15,184–186]. However, the major drawback of mem-
brane separation technology is the undesirable deposition of contaminants on the surface
of the membrane, which decreases the processing rate and increases energy consumption.

The biological method uses microorganisms to consume surfactants that could break
the oil–water interface film. It has the advantages of low concentration, rapid dehydra-
tion, high efficiency of dehydration, degradability, and is harmless to the environment.
However, the research on the biological method at present is immature and expensive to
use. Further research may focus on high efficiency, adaptable, and affordable biological
demulsifiers [187].

4.3. Oil–Water Emulsions Separation Process
4.3.1. Combined Demulsification Process

To improve the separation efficiency of the single demulsification method, different
methods could be combined in practical applications. Figure 10 illustrates a schematic
diagram of the crude oil emulsion separator combining thermal and electrical demulsifica-
tion methods [188]. The device contains the heating chamber, the degassing chamber, and
the electrical chamber. Fire tubes are equipped in the heating chamber and are immersed
in emulsion [189]. Heating is favorable for decreasing the viscosity of crude oil emulsion
and reducing the resistance of water movement. Demulsification is achieved at around
80–85 ◦C. Then, the fluids flow into the degassing chamber where the gas escapes. Next,
the heated emulsion enters the electrical chamber, where small water droplets could be
coalesced under the high-voltage electrical field.

Peng at al. [190] proposed a heat-strengthening double-field (i.e., centrifugation and
electrical field) demulsification process to realize efficient demulsification of a waste oil
emulsion. As shown in Figure 11, the dewatering-type hydrocyclone which contains high-
voltage electrode is applied as a unit body. The W/O emulsion is firstly pumped into the
heating tank, where a heating control system is used to rapidly increase the oil temperature.
The emulsion quickly flows through the screw pump and enters into the double-field
coupling demulsification unit, where the heat-strengthening separation of W/O emulsion
is achieved. The separated oil with a small amount of water enters into the overflow tank,
while separated water enters into the underflow tank. As the heating temperature raising
from 65 to 70 ◦C, the demulsification efficiency improved by about 6.7%.
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Membrane demulsification is usually combined with other technologies to teat oil–water
emulsions [191]. Zhang et al. [192] reported the combination of demulsification as well
as reverse osmosis (RO) to treat filature wastewater, which is a type of highly stable
O/W emulsion produced by Shen Ma Industrial Co. Ltd. of China. The treatment
device is displayed in Figure 12. The filature O/W emulsion was firstly pumped from
the underground store tank into the demulsification container. Then, a specific amount
of demulsifier was added into the container from the top inlet. Steam was subsequently
introduced to the demulsification container from the bottom inlet. The steam was used
for heating the emulsion and blending with the demulsifier. When the upper separated
oil lifted to the midline of the upper peephole, the steam valve was shut and the inside
cooling coil pipe or cooling spray was opened. When the inside temperature was decreased
to ambient, the aqueous phase entered into a bag filter and a transfer container, owing to
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hydraulic pressure. The bag filter was employed to remove suspended solid. The top oil
was dis-charged to the follow up section for further treatment or reuse, thus realizing the
separation process. The RO system contained a transfer container, a cleaning container, a
pre-filter, and a RO equipment. To achieve the designed treatment capacity of 0.1 m3/h,
two spirally wound membrane elements were applied. The high-pressure pump equipped
with a frequency converter was used to provide steady driving pressure. Condensate
water was flowed through to keep the feed temperature below 40 ◦C, thus preventing the
membrane from being damaged. The concentrate was returned to the underground store
tank when the recovery rate of water reached 80%. The pilot-scale experiments results
show that the removal rate of COD for the waste filature O/W emulsion could reach 99.96%
within 30–50 min at 80–90 ◦C with the dosage of 0.1% (w/v), and with a driving pressure of
3.6 MPa at 35–40 ◦C and a flow rate of 1.5–1.6 m3/h for RO treatment. After treated by this
combined process, the water quality of the permeate could meet the first grade discharge
standard set in the Chinese National Standards for Integrated Wastewater (GB 8978-1996).
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Pintarič et al. [193] developed a novel MILP (mixed integer linear programming) model
to select optimal demulsification methods with maximum profit. Based on this model, an
integrated separation process is reported. As shown in Figure 13, the process consists of
chemical pretreatment, mechanical process, evaporation unit, membrane treatment section
(re-verse osmosis system), and eventual adsorption treatment by activated carbon. The
combination of these methods in sequence presents a flexible design, which could treat
various O/W emulsions with COD values as high as 145,000 mg/L. The effluent COD could
be reduced to below 120 mg/L. The treated effluent water could be directly discharged
into sewage.

Recently, Abidli et al. [194] reported the concept, design, assembly, and testing of a
novel pilot-scale skimmer prototype module for oil–water separators. As illustrated in
Figure 14, the system is made up of a hydrophilic-hydrophobic porous sorbents-based
separation bed and a vacuum-assisted oil collection system. The collection system allows
continuous and effective removal of oily contaminants (chemical or oil spills, industrial
oily wastewater, etc.) from the water surface. To optimize the separation–recovery process
according to the operational needs, the system is designed to provide a suitable oil residence
time and flow rate inside the separation column. The prototype is manufactured at the
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facilities. Operational tests showed remarkable oil–water separation performance during
and after the assembly.
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4.3.2. Demulsification Process in Different Industrial Field

In this section, the oil–water emulsion separation processes that are involved in
different industrial fields will be reviewed. Ex situ soil washing is a frequently applied
technology in the remediation of contaminated soils. During soil washing, the surfactants
are used to liberate the oil from the soil. However, stable O/W emulsions form when
surfactants are added. Ceschia et al. [195] proposed a protocol for separating oil–water
emulsions after soil washing using CO2 switchable anionic surfactants. As shown in
Figure 15a, after the soil washing, the soil had been separated, while the washing effluent
was brought into a separator. CO2 was subsequently introduced, allowing the surfactant
to be “turned off” and leading to the separation of the emulsified oil and surfactant from
the wash solution. The oil could then be reclaimed and recycled, while the carbonated
water would be decarbonated, recombined with the surfactant, and re-introduced into
the washer. The removal rate of the oil contaminants from the sands reached 97% at the
optimum condition, while the residual oil in the washing fluid was about 5%. Remaining
surfactants in the aqueous phase and on the sand surface were approximately 0.48% and
0.45%, respectively, indicating negligible accumulation of surfactants during cycling.
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In addition to soil remediation, demulsification is also involved in the treatment of oil
sludge. For example, Long et al. [196] applied the biosurfactant rhamnolipid for dewatering
of oily sludge at pilot scale. The experiment was performed at the wastewater treatment
section in the Shengli refinery of Sinopec Qilu Petrochemical Corporation. As displayed in
Figure 15b, 1000 L of the oily sludge with temperature of 30~40 ◦C was subjected to the
dewatering tank for rhamnolipid treatment. A control tank without rhamnolipid was used
as a parallel. The oily sludge was settled at ambient temperature (5~10 ◦C) after mixing for
3 min. The aqueous phase then entered into the reception tank after settling for 2 h. After
the pilot treatment, the oil sludge with decreased volume of 60–80% could be pumped into
coking tower. Water with soluble COD of about 800 mg/L and residual oil of 10 mg/L
could be discharged into the follow-up biotreatment system, thus realizing completely
harmless treatment.

Dudek et al. [197] described a typical process for offshore petroleum production at
the Norwegian Continental Shelf. The process could be conducted on a FPSO (Floating
Production, Storage, and Offloading) unit or on a platform. A ship was designed for
production and transportation of natural gas and crude oil. Oil wells are usually connected
to a production manifold in an off-shore facility. The fluids flow from the topside of oil
wells for further processing (Figure 16). Firstly, the fluids flow into the gravity separator,
where the three-phase (water, oil, and gas) separation occur. Owing to the turbulent flow,
the existence of resins and asphaltenes and obvious pressure drops in chokes or manifolds,
emulsions and foams may be generated, which can impact the separation. Most free gas is
separated in the gravity separator. The water and oil are separated after the sedimentation
and creaming of dispersed phases. During the three-phase separation, fine solids will follow
the fluid streams, whereas larger solid particles settle down in the separator. Afterwards,
crude oil is further treated in a second- or even third-stage separator, where the water
content in oil is reduced to below 0.5% and meets the export quality. Eventually, the
produced water flows into the hydro cyclone and gas flotation in series to achieve the
re-injection or discharge quality.
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During the treatment of hydrocarbon fuels (e.g., naphtha, fuel gas, or jet fuel), amine
and caustic solutions and water are usually used to remove or scrub contaminants such as
H2S, CO2, sulfur alcohols, or naphthenic acids, forming tight emulsions that are difficult
to separate. Salgado et al. [198] has reported an emulsion treatment process by applying
membrane coalescence to overcome the tight emulsion problems in a jet fuel treatment unit.
As shown in Figure 17, jet fuel from the crude unit entered the caustic and water washing
unit, during which stable emulsions were generated. The pre-filter and the membrane
coalescer vessel were integrated in a typical process mounted in a single skid. In this
case, a horizontal coalescer was selected according to the amount of aqueous phase in
the emulsion (48 vol%), as well as an estimated interfacial tension (0.5–1.0 d/cm). The
emulsion was fed to the pre-filter and thereafter to the membrane module. The recovered
jet fuel flowed upwards and the aqueous phase settled down, caused by their difference
in density. The water content in the recovered jet fuel from the coalescence skid varied
between 200 and 250 ppmwt, which corresponds to water saturation of the hydrocarbon
and indicates acceptable water and caustic entrainment in the recovered jet fuel.

Enzyme-assisted aqueous extraction is considered to be a green oil production technol-
ogy [199]. In the extraction process, proteins, oils, phospholipids, and other macromolecular
sub-stances such as starch and cellulose, are released at the same time. These substances
combine with each other to encapsulate the oil, thus forming a stable emulsification sys-
tem [200]. Cheng et al. [201] investigated the economic feasibility of the enzyme-assisted
aqueous extraction process for soybean oil production. As illustrated in Figure 18, there
are four steps involved in soybean oil extraction, including: (i) mechanical processing
(dehulling and extrusion of soybean flaking), (ii) enzyme-assisted aqueous extraction, (iii)
separation of coproducts and cream by three-way centrifugation, and (iv) separation of the
cream fraction to release the free oil. Proteases (Protex 6L) was used to degrade olesion and
facilitate the phase separation.
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In brief, various demulsification technologies are involved in different industrial
processes, both as standalone methods or in combination with other methods. Gravity
settling is frequently applied in industry, owing to the convenient operation compared with
other methods such as centrifugation, pressure filtration, and vacuum filtration. Gravity
separation is also quite suitable for the treatment of large amounts of emulsions. However,
the demulsification efficiency of gravity separation is not high enough, thus it is usually
combined with other technologies Moreover, some mechanical separation methods, such
as centrifugation, hydrocyclone, and filtration, are usually employed in industry for the
pre-treatment of complex emulsions. Additionally, chemical demulsification is also one
of the most commonly used method in industry, due to its convenient operation and high
efficiency. To overcome the disadvantages of high operation temperature and high energy
consumption during chemical demulsification, other methods such as adsorption and
membrane separation have been applied for treatment of oil–water emulsions and showed
potential application prospect.
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5. Discussions

Studies on the stability of oil–water emulsions have been widely reported, and
oil–water separation techniques have been maturely applied in industry. However, there
are still many critical issues that need further investigation. The challenges and future
developments of oil–water emulsion separation technology are discussed in detail below.

Chemical demulsification is widely used in W/O emulsion separation. The greatest
challenge for the demulsification of heavy oil–water emulsions currently arises from the
pressing need for novel and efficient demulsifiers. Commercial or conventional demulsifiers
are generally characterized by some drawbacks (e.g., low efficiency, high temperature,
and use of high concentrations). To achieve industrial applications, the development
of complex chemical demulsifiers with easy recycling and high breaking efficiency is
urgently needed. The demulsification mechanism at the molecular level is still unclear.
Biodemulsifiers seem to be considered promising alternatives to chemical demulsifiers, as
they have many excellent properties (good biodegradability, high selectivity, resistance
to acids and bases, etc.). However, the manufacturing process of biodemulsifiers would
be very expensive (mainly for the purification process as well as for the raw material
and fermentation process) [202], and the screening of microorganisms suitable for the
fermentative manufacturing would be difficult. The manufacturing cost of the same
amount of biodemulsifiers is about 10 to 12 times higher than that of synthetic chemical
demulsifiers [203]. In the future, biodemulsifiers will be developed towards lower cost and
higher yield.

Physical demulsification methods encompass a variety of techniques, as discussed
in the previous section. Each technique has unique strengths and weaknesses. Many
researchers have devoted themselves to combining two or more techniques to overcome
the shortcomings and enhance the oil–water separation efficiency. In thick oil extraction,
downstream separation, and deep-sea operations, the size of the separators and the enor-
mous energy consumption are also some of the existing challenges. Techniques such as
gravity or centrifugation, electrostatic precipitation, cyclones, gas flotation, thermal treat-
ment, and adsorption are widely used in many industries. However, these techniques
have obvious drawbacks, such as high cost and operational complexity. In particular, the
separation efficiency is relatively low (for emulsions where the dispersed phase is very fine
droplets) [204–206]. Membrane separation is effective for separating oil-in-water emulsions
with fine droplets. Membranes are generally fabricated from polymers and inorganic
materials, but are prone to the fouling phenomenon. Ceramic and metal inorganic mem-
branes are capable of performing better separations, but these membranes can be costly to
manufacture and difficult to scale up commercially. New materials are being developed
to solve these problems, and combining membranes with other technologies will achieve
higher oil–water separation efficiency, lower energy consumption, more environmental
protection, and a broadening of the range of industrial applications.

6. Conclusions

The sources, effects, stabilization mechanisms, and various separation technologies
and processes of oil–water emulsions have been comprehensively reviewed herein. The
increasing output of oil–water emulsions poses a major challenge to industrial practice
and environmental protection. The contribution of fine solid particles and surfactant-
active agents to the formation of oil–water emulsions and the difficulties of separation
are analyzed. In order to eliminate the influence of solid particles on emulsion stability,
the import of unnecessary solid particles, such as sludge and certain metal salts, can
be avoided in the process of crude oil recovery. Some natural surfactants in crude oil,
especially IAA, play the most important role in stabilizing emulsion produced in oilfield.
This provides ideas for the formation of stable emulsions and selection of appropriate
chemical demulsifiers. The techniques used to measure oil and water phases interactions
of emulsions from micro- to macro-scale are reviewed. AFM can be used to measure
the non-DLVO forces, which helps to reveal the molecular interaction mechanisms for
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emulsions, etc. It is believed that the cognition of the stability of emulsions would rationally
promote the design of agent, technological process, and equipment; whether emulsification,
demulsification, or other related fields.

The present oil–water separation methods applied in different fields are roundly sum-
marized. The mechanism, advantages, and disadvantages of each method are discussed.
The traditional separation methods (heating method, chemical method, electric dehydra-
tion method, ultrasonic method, etc.) have been successfully applied in industrial fields.
Up to now, microwave, hydrocyclone, and magnetic methods have been studied, which
perform better when combined with other methods. Novel oil–water separation methods,
such as membrane, in-situ extraction, etc., have broad application prospects. These novel
methods have already shown great application potential in the fields of soil restoration,
oil sludge treatment, marine oil spills, and other industrial emulsion separation. Electric
dehydrators are currently the most commonly used equipment for crude oil dehydration
and desalting. However, their high-power requirement means high energy consumption.
Metal electrodes also contribute to the deposition of more pollutants.

Oily wastewater consists of oil droplets in the range of 1 to 600 mg/L, with oil droplets
less than 40 µm accounting for a significant proportion of it. Nevertheless, the practical
situation in industry is that technologies such as flotation, coagulation, hydrocyclones,
and API gravity separators are limited in separating oil droplets less than 40 µm. In some
novel oil–water separation technologies (such as membranes), high separation efficiency
can be achieved and the purpose of separating ultra-fine oil droplets can be accomplished,
yet the recyclability of membranes and highly fouling-resistant materials still need to be
improved, and easy recovery needs to be further developed in the future. In addition,
offshore oil and gas development is increasingly progressing into the deep sea, and the
need to develop small, efficient, and integrated pipe-based separators suitable for different
conditions appears to be a new way to replace the previous giant tank-based systems,
and to solve problems like space constraints on marine platforms. In the future, oil–water
emulsion separation equipment will be developed in the direction of short separation time,
simple processing process, low energy consumption, green, low-cost, simple operation,
and compact structure, and will achieve the goal of high efficiency, energy saving, and
multi-functionalization.
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73. Nowak, P.; Kucharska, K.; Kamiński, M. Ecological and health effects of lubricant oils emitted into the environment. Int. J. Environ.
Res. Public Health 2019, 16, 3002. [CrossRef]

74. Huang, Y.; Zhang, M.; Zou, H.; Li, X.; Xing, M.; Fang, X.; He, J. Genetic damage and lipid peroxidation in workers occupationally
exposed to organic bentonite particles. Mutat. Res. Toxicol. Environ. Mutagen. 2013, 751, 40–44. [CrossRef]

75. Singh, P.; Ojha, A.; Borthakur, A.; Singh, R.; Lahiry, D.; Tiwary, D.; Mishra, P.K. Emerging trends in photodegradation of
petrochemical wastes: A review. Environ. Sci. Pollut. Res. 2016, 23, 22340–22364. [CrossRef]

76. Ishak, S.; Malakahmad, A.; Isa, M.H. Refinery wastewater biological treatment: A short review. J. Sci. Ind. Res. 2012, 71, 251–256.
77. Ramirez, M.I.; Arevalo, A.P.; Sotomayor, S.; Bailon-Moscoso, N. Contamination by oil crude extraction-refinement and their

effects on human health. Environ. Pollut. 2017, 231, 415–425. [CrossRef]
78. Sima, N.A.K.; Ebadi, A.; Reiahisamani, N.; Rasekh, B. Bio-based remediation of petroleum-contaminated saline soils: Challenges,

the current state-of-the-art and future prospects. J. Environ. Manag. 2019, 250, 109476. [CrossRef]
79. Almeda, R.; Cosgrove, S.; Buskey, E.J. Oil Spills and Dispersants Can Cause the Initiation of Potentially Harmful Dinoflagellate

Blooms (“Red Tides”). Environ. Sci. Technol. 2018, 52, 5718–5724. [CrossRef] [PubMed]
80. Asatekin, A.; Mayes, A.M. Oil Industry Wastewater Treatment with Fouling Resistant Membranes Containing Amphiphilic Comb

Copolymers. Environ. Sci. Technol. 2009, 43, 4487–4492. [CrossRef] [PubMed]
81. Karthick, A.; Roy, B.; Chattopadhyay, P. A review on the application of chemical surfactant and surfactant foam for remediation

of petroleum oil contaminated soil. J. Environ. Manag. 2019, 243, 187–205. [CrossRef] [PubMed]
82. Wang, D.; Yang, D.; Huang, C.; Huang, Y.; Yang, D.; Zhang, H.; Liu, Q.; Tang, T.; El-Din, M.G.; Kemppi, T.; et al. Stabilization

mechanism and chemical demulsification of water-in-oil and oil-in-water emulsions in petroleum industry: A review. Fuel 2021,
286, 119390–119419. [CrossRef]

83. Azad, A.R.M.; Ugelstad, J.; Fitch, R.M.; Hansen, F.K. Emulsification and Emulsion Polymerization of Styrene Using Mixtures
of Cationic Surfactant and Long Chain Fatty Alcohols or Alkanes as Emulsifiers. In Emulsion Polymerization; ACS Publications:
Washington, DC, USA, 1976; pp. 1–23.

84. Asselah, A.; Pinazo, A.; Mezei, A.; Pérez, L.; Tazerouti, A. Self-Aggregation and Emulsifying Properties of Methyl Ester Sulfonate
Surfactants. J. Surfactants Deterg. 2017, 20, 1453–1465. [CrossRef]
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