
Citation: Wang, K.; Hu, Q.; Liu, J.

Digital Twin-Driven Approach for

Process Management and Traceability

towards Ship Industry. Processes 2022,

10, 1083. https://doi.org/10.3390/

pr10061083

Academic Editor: Ofelia de Queiroz

Fernandes Araujo

Received: 23 April 2022

Accepted: 24 May 2022

Published: 29 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Digital Twin-Driven Approach for Process Management and
Traceability towards Ship Industry
Kan Wang 1,*, Qianqian Hu 2 and Jialin Liu 1

1 College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China;
liujialin001026@163.com

2 Marine Public Safety Research Center, Shanghai Maritime University, Shanghai 201306, China;
guqinghu@126.com

* Correspondence: wangk@shmtu.edu.cn; Tel.: +86-(021)-38282517

Abstract: The digital twin (DT) approach has risen in popularity for applications in many industrial
process managements. By applying the “Shipyard 4.0” digital transformation trend, the ship industry
is developing techniques able to reduce risks by improving operation process management. This
study proposes a combination of a DT approach and practical experiment as part of a five-tier
framework for DT-driven process management in the ship industry. This study focuses on the
characteristic scenarios and crucial parameters within the ship engine system and shipping cargo
container in operation procedures. DT-based models and platforms are established in this study based
on the basic modeling of Maya and scene rendering of Unity 3D. To address the fusion issue of multi-
source heterogeneous data in the ship operation process, a Bayesian neural network (BNN) method
is introduced into DT’s virtual model layer and data support layer. By integrating an improved
BNN-based algorithm into DT-based models, the collected data can be extracted and aggregated
accordingly. In the ship engine room, the operating temperature is selected as a critical parameter,
with the best mean percentage deviation (MPD) between DT-driven predictions and test value of
3.18%. During the shipping cargo container process, the results indicate that DT-based models have
acceptable performances under different conditions, with optimal MPDs of 5.22%.

Keywords: digital twin; process management; BNN; DT-driven prediction; ship industry

1. Introduction

Process management in the ship industry consists of multiple stages (design, con-
struction, operation and maintenance), which should associate multidisciplinary teams
with designers, contractors, engineers and safety managers. For the most part, product
lifecycle management (PLM) is the business activity of managing a shipbuilding enter-
prise’s products across their entire processes [1]. PLM defines product as the core element
of summarizing shipbuilding enterprise information [2], and lifecycle as the new time
dimension of information integration and analysis. PLM has attracted a lot of industrial
and scholarly attentions [3–6], due to its potential to shorten innovation leading time and
reduce costs. However, it can be found that the following remaining gaps exist in the PLM
process [7]:

• Heterogeneous tasks at each stage of the ship industry result in a lack of connection and
fusion between the data generated in the operation process, forming information islands.

• A large amount of data is collected in the processes of the ship industry, but there is
also a lot of repeated and null data. In the general PLM process, these invalid data
cannot be autonomously filtered, which compromises data analysis and sharing.

• The applications of process management rely on data analysis of physical entities; there
is a lack of data analysis of digital models. Real-time data interaction and optimization
between real ship object and its digital model has not been completely realized.
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Digital twin (DT) is regarded as an effective and innovative solution to the above
problems in the process management of the ship industry. One of the earliest creators and
most enduringly iconic virtual scenes was Second Life, which was founded by the former
Linden Lab CEO, P. Rosedale. Second Life and its developer Linden Lab explored notions
of digital identity, virtual goods, digital economies and online multiplayer ecosystems in
the early 2000s [8]. In 2003, M. Greives proposed the DT as a conceptual model of the
lifecycle management process [9], and at the same time, he also redefined process man-
agement by bringing virtual models under PLM. Over the past decade, since DT models
have been introduced, there have been tremendous increases in the amount and richness of
information of both physical and virtual things [10]. Table 1 lists typical DT-driven system
configurations, basic models and application scenarios used for lifecycle management in
different fields. DT provides the fidelity required to realistically predict shipping perfor-
mance with post-event recovery actions under the various possible disruptive events. It
proves that DT-driven management can be extended in several development directions of
marine industrial engineering [11]. DT has been applied to polar supply ships and scientific
research ships (S. A. Agulhas II) [12]. Through long-term measurements of environmental
conditions and ship response, measurement data of polar research present an opportunity
to improve the state-of-the-art. It is recognized that real-time analysis and utilization of
such measurements could benefit the insightful operation and management of vessels.
The measurement, aggregation, analysis, visualization and insight/interpretation of data,
and monitoring of data by means of machine learning or multivariate statistical analyses
benefits the ship in terms of technical operation and risk management. A competent man-
aging approach can not only prevent mismatches between processes and operations in
high quality but also demonstrates how to optimize management, how to track results
and how to evolve based on models’ analysis, to adjust workflows at all levels of process
management in ship industry.

Table 1. Configuration, model and platform of DT applications for process management.

Configuration Model Driving Technology Proposed Application Year

Device layer
User interface layer
Web services layer

Query layer
Data repository layer

Cyber-physical system
model

Web services
AR

Visual management of
offshore platform in
oil/gas exploitation

process [13–15].

2016

Design
Manufacturing

Assembly
Inspection

DT-conceptual model

Paradigm shift in
computer-aided

tolerancing
Geometrical variations

management

Reference model based on
shape concept, skin model

is proposed [16].
2017

Process industry space
Communication system

User space
DT-reference model

IIoTs
Machine learning

AR and VR
Cloud technology

For maintenance process
management, to avoid
high-risk events [17].

2019

Quality prediction
Control system

Data

Quality prediction and
control model

IoTs
XML

Machine learning
BPNN

Models of group products
for assembly and welding

production line of shipyard
management [18].

2020

Monitoring and control
system

Remote interface
Electric power model

Open platform
Co-simulation

functional mock-up
interface-standard

Reduce fuel consumption
and improve overall ships’

performances [19].
2020
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Table 1. Cont.

Configuration Model Driving Technology Proposed Application Year

Perception layer
Transport layer

Service layer
Application layer

DT indoor safety model
IoTs
BIM
SVM

Realize on-site display of
operation status, hazards

warning, positioning,
classification and grade

evaluation [20].

2020

Modify parametrization
Cost and decision-making

Hierarchical structure
Modular set-up

Causal dynamic
statistical model

Economic sub-models

Lightweight Java
Monte Carlo method

Identify effective steering
inputs and predict

influence of potential
measures [21].

2021

In-cylinder combustion
Energy terms

Effective expansion ratio

Atkinson cycle engine
model

GT-Power software
vSimulink

Simulation-optimization
platform for developing

process management
strategies for hybrid
electric vessels [22].

2021

Physical scene
IoTs device and service

Cyber scene
Stakeholders

Radio propagation model
Weighted moving

average model
Log-normal shadowing

path loss model

iSafeTrack

DT-enabled tracking
solution framework for

safety management (Hong
Kong cargo terminal) [23].

2021

In this study, a practical DT-enabled platform was presented to manage the potential
risks of the ship operation process for the marine industry. Herein, the novel DT-driven
applications were performed for synchronization and prediction for operating temperature,
products concentration, environment parameters, etc. In order to determine their suitability
and traceability as a DT approach, two examples were investigated in terms of accuracy
by comparing their history, real-time and DT-driven data. Regarding this DT system,
the intelligent mode can enable decision-makers to make advanced response plans for
emergencies in the ship operation process.

2. Materials and Methods
2.1. 3D Modeling in Maya

In this study, Autodesk Maya is applied for basic DT modeling, and Unity 3D is used
as the virtual render engine of DT real-time scenes. As the initial step of DT visualization
in the ship operation scene, basic 3D modeling can set the foundation for data fusion of
the subsequent ship operation process. The basic DT modeling is based on building 3D
models, and in Maya, the modeling methods include the non-uniform rational B-splines
(NURBS), polygons, subdivisions, etc. Among them, the NURBS modeling method [24]
uses mathematical functions to describe the curve and surface of models, and controls the
models’ accuracy by modifying the parameters of curve or surface. In this way, diverse
mixing function shapes can be obtained in different intervals. The purpose is to freely
control the shape of curve to boost greater freedom. The NURBS modeling method can
make the DT models in this work reach the required accuracy. In addition, it allows smooth
curves or surfaces to be controlled with fewer points, resulting in streamlined surfaces. The
mathematical definition of NURBS is as follows:

P(K) =
∑n

i=0 Ni,m(K)RiPi

∑n
i=0 Ni,m(K)Ri

(1)

where P(K) is the position vector of the curve; Ni,m(K) is the cardinal spline by the m time.
The cardinal spline of Equation (1) can be defined by recursive Equation (2).

Ni,0(K) =
{

1, Ki ≤ K ≤ Ki+1
0, Other situations

(2)
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Ni,m(K) =
(K− Ki)Ni,m−1(K)

Ki+m − Ki
+

(Ki+m+1 − K)Ni+1,m−1(K)
Ki+m+1 − Ki+1

, m ≥ 1 (3)

where Pi is the control point; Ri is the weight factor; K is the knot vector.
Based on the polygon modeling method in Maya, the 3D model of the ship can be

created by controlling the position and parameters of point, line and surface. A polygon is a
straight-sided shape (three or more sides) defined by 3D vertices and the edges connecting
them, whose internal areas are called surfaces. Vertices, edges, and surfaces are the basic
components, and the 3D basic model for DT is composed of individual polygons that are
combined to form a polygon mesh. The polygon mesh shares common vertices and edges
between ship-based entities’ surfaces, which are called shared vertices and shared edges.
The polygon modeling method creates polygon surfaces according to some discrete points
contained in the 3D space of the ship and combines polygon surfaces to form polygon
models. Then, the polygon object with a spatial structure is formed by combining several
polygon surfaces together and creating a common edge between two adjacent polygon
surfaces. There are essential differences between the methods of polygon and NURBS,
which have been both used in 3D modeling in our study. A NURBS object is a parameterized
surface with strict UV direction. Only four sides can appear, except the shear surface, when
using NURBS to create 3D models. We can create the polygon by converting existing
NURBS, so that it can be edited and modified easily in the modeling process. In this work,
according to the attributes of all ship elements, the minimum size unit is set as 0.1 m. When
the ship models are refined, the number of planes of individual parts are controlled under
5000 to ensure the smoother operation of Maya. When the combination of each individual
model is completed, it will be imported into the real-time render engine.

2.2. Real-Time Rendering in Unity 3D

This study creates an interactive virtual scene based on Unity 3D, which can con-
tinuously support the testing of DT system. Unity 3D is a render engine that has gained
popularity within research, as virtual 3D environments, objects and their interactions can be
created within [25]. Developed by Unity 3D, it allows one to create integrated virtual scene
render engines for types such as real-time 3D ship-based visualizations and animations. In
this study, Unity 3D is used to realize DT for the process of ship operation, adopting a way
to realize communication between data service and Unity 3D. Basically, the workflow of
the real-time rendering engine is divided into three aspects, including data collection and
processing, scene building and visual output. Data collection and processing contain the
3D ship model, texture, components, etc. Scene construction involved in ship operation is
essentially a processing plant of resources, and the scene elements and editing are covered.
Scene elements are for objects (ships, containers, engine room, etc.), scripts, components,
lights, etc. Scene editing is a further refinement of the scene, such as modifying the parame-
ters of the ship engine room in the properties panel or adding a component to the shipping
container. The specific process can be observed in Figure 1 and the sensors are set in the
ship engine room, container and other positions to collect the data of the environment
parameters (i.e., ambient temperature, wind velocity). The programmable logic controller
(PLC) data can be collected from IoT devices on the ship’s critical components and upload
them in real-time with the JavaScript object notation (JSON) format. It is integrated with
the Mono Developer compilation platform and supports C#, JavaScript and Boo scripting
languages [26]. In our study, C# is used in Unity 3D as the scripting language in the
development of DT’s rendering scenarios. There is a receiving server (a data receiving
back-end service), which is configured to receive the data uploaded by IoTs devices in
the ship industry. Based on Unity 3D’s support for 3D Maya formats, its visualization
mode allows us to change the parameter values in real-time while the scripts are running,
making it convenient to develop DT-based platforms. Unity 3D can be used for real-time
transmission and rendering data of the virtual model, sensors or point-clouds. In Unity 3D,
it can obtain data from the server in real-time via HTTP or Socket. Then, we implement
it to drive the mapped virtual equipment in real-time in Unity 3D through real-time data
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acquisition. After adding physical properties and behavioral logic, the models and data
can be processed into real-time rendering effects. Unity 3D issues commands, the service
receives commands, IoTs and sensors acquire commands and send them to PLC, resulting
in the control relevant equipment in the ship operation process. It can also be interacted
with on multiple platforms in the form of AR, VR, and mix reality (MR), realizing the
DT-driven process management in the ship industry.

Figure 1. Specific process of data communication between the real scene and DT model.

2.3. DT Data Processing Method

Currently, built-in sensors of IoT devices have the function of real-time perception and
interconnection with DT platform. During process management, real-time data of multi-
stage can be collected by data acquisition. Combined with historical data, the prediction
model associated with it can be further obtained. Due to the large amount of multi-source
data, it needs to extract and transform the time and sensor position, respectively, then to
conduct the preliminary filtering of environmental information. The organization of multi-
source data in the process provides the basis for realization of intelligent management. In
this study, the data deduction method adopted is based on the Bayesian neural network
(BNN), which is a mathematical model that relies on probabilistic inference. Probabilistic
inference is the process of obtaining other probabilistic information through the informa-
tion of some variables. BNN has a probability layer in addition to the regular three-layer
structure. BNN’s weight parameter is not a definite value but a random variable, and it is
subject to a certain probability distribution. BNN can not only give the predicted value, but
also provide the uncertainty of forecast, so it is an important tool to deal with uncertain
information. On the basis of the BNN model, an algorithm for multi-source data fusion
in the ship industry is proposed. The analysis method used in the present study is based
on a mathematical model of Bayes’ theorem, which relies on real-time information and
experiment data. As shown in Equation (4), when the child node of variable Xi’s value is
given with µi, Bayes’ theorem can be used to calculate the posterior probability distribution
of variable Xi.

P(Xi|µi) =
P(Xi|µi)·P(Xi)

P(µi)
(4)

where the prior probability P(Xi) of Xi is the state (xi,1, . . . , xi, ri) known as probability
distribution; P(µi|Xi) is the likelihood function, which contains the variate of instantiation
conditional probability.
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When all the instantiation variables µi(j) are obtained, the relationship can be under-
stood using the following equation:

P(µi|Xi) =
p

∏
j=1

P
(

µi(j)

∣∣∣Xi

)
(5)

By marginalizing the observed variables, the relationship between the instantiated
variables and all possible states of Xi is shown in Equation (6).

P(µi) =
ri

∑
k=1

P(Xi = xi,k)
p

∏
j=1

P
(

µi(j)

∣∣∣Xi

)
(6)

where µi(j) is the instantiation value of variate Xi, which is based on all the P child nodes
and the Jth variate.

Xi equals the posterior probability of xi,k, by P(Xi=xi,k|µi) characterization. The
marginal probability, also known as xi,k, represents its confidence as a probability of
occurrence given real-time information. Finally, Xi can be obtained by inference from
Equation (5). For a BNN, the calculation of marginal probability is large. Therefore, by
constructing a BNN inference engine, a more manageable process can be obtained to deal
with the marginal probability calculation. With a more efficient inference engine, the
conditional independence between variables in the system can be identified to simplify the
computation. A significant characteristic of the condition independence is Markov property.
The variable condition of a given parent node is independent of its non-child node.

Pred
(
xj
)
= xj, j = 1, 2, · · · i− 1 (7)

where Pred (xj) is the parent node of xj node.
The abovementioned attribute can simplify the inference procedure. It can be applied

to simplify the structural learning process to obtain an improved K2 algorithm. The
improved algorithm contributes to the identification of data inconsistencies or uncertainties,
so as to more accurately represent the operation process status of the related devices in the
ship industry.

3. Results and Discussion
3.1. Holistic DT-Driven Framework for Process Management

According to the basic characteristics and processes of each stage in process man-
agement, this study proposes a five-tier framework integrated with DT models and tech-
nologies, including physical entity layer (PEL), virtual model layer (VML), data support
layer (DSL), analytical computing layer (ACL) and system application layer (SAL), which
can be observed in Figure 2. PEL is the “digital twin” of the physical entities involved in
process management of the ship industry. With the increase in the scale and professional
degree of the ship industry, the ship and its related operating personnel, manufacturing
equipment, processing materials, environment and other factors have become more di-
verse and complex. Physical entity reflects the collection of real objects in real scenario of
ship operation process. It should include the environmental objects in the ship operation
process, such as site layout of ship construction, operation environment, equipment in
ship, and storage state of goods, etc. PEL, which is the fundamental element in the DT
system, embodies the cooperation of various elements to complete process management. A
virtual model of the ship industry is the core to create and operate a DT model, in order to
ensure the effective closed-loop between DT and physical entity. A DT-based model is not
only the replica of the physical entity in the ship industry, but also collects the real-time
information for driving process management synchronously and predictively. Testing,
operation and maintenance of process management based on DT are strongly dependent
on data support and integration. Driven by data, the DT model can realize design preview,
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visual monitoring, operation preview, fault diagnosis, historical state backtracking and
in-depth mining of process management. DT of a ship is a key enabler for end-to-end digital
workflows in ship certification and inspection. As a critical support of the entire upper
system, DSL is composed of data acquisition, data transmission and data management.
The data types involve the geometric model data (e.g., size of data, data structure, the
location data, style), physical model data (e.g., materials, equipment data, process data,
material data), response model data (e.g., operating data, data, load data), and logical data
model (e.g., operating characteristics and historical records). ACL addresses the needs
of data access, field equipment and monitoring in the process management of the ship
industry. “Cloud-Fog-Edge” three-end collaborative work has become a new approach
for DT data analysis. Taking the ship engine room as an example, the initial step is to
extract the large data of the host system operation, combine the original DT model and
resource requirements. It provides the edge AI model intelligent deployment function, and
realizes the state detection of the host. The second step is to update the DT model of the
ship engine room by the “Cloud-Fog-Edge” collaboration and lightweight deep learning of
the mainframe big data. The third step is to use DT model splitting technology to mitigate
the intelligent balance communication delay and computing delay, and minimize the AI
service delay. The final step is to conduct model training and feedback correction through
scenarios such as internal equipment inspection. SAL includes the description of running
equipment, diagnosis of running status, prediction of faults and risks, and decision of
emergency treatment in process management. SAL provides intelligent manufacturing,
real-time monitoring, optimized management, reliable operation, guidance and prediction
by DT-drive platform.

Figure 2. Five-tier framework of process management based on DT-enabled system.
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3.2. DT-Drive Process Management in Ship Engine Room

The ship engine room is the heart of the whole ship during navigation, integrating
a large number of important marine equipment. The diesel engine system is the core
device in the ship engine room, which provides the power source for ship sailing. The
ship cannot survive without the control support of the ship power when carrying out
transportation activities. As the power control core of the ship navigation propulsion
system, the diesel engine is also the power device with the most failures. The diesel engine
system has always been an important guarantee to ensure safe and stable ship operation.
The stability of the safe ship operation state is not only related to the temperature of the
main engine, the consumption rate of fuel, the power of ship shaft, but also directly affects
the safety and reliability of the operation process. The process management of the diesel
engine system by DT can ensure proper state monitoring and fault prejudgment. This
study focuses on a large container ship, which can carry 19,000 TEU of hazardous cargo
containers. The DT modeling object is the diesel engine system in this ship engine room,
which includes 15 cylinders, each with a diameter of 0.9 m and a rated power of 56,800 kW.
The diesel engine system consists of an air cooler, cylinder, scavenge box, exhaust pipe,
exhaust turbocharger and governor modules. The ship engine room includes the entire
cabin, engine room floor, ventilation system and surrounding enclosures. On top of that,
Maya is applied to build the basic DT model, as shown in Figure 3. The DT technology is
integrated into the condition monitoring and fault diagnosis system by means of a mapping
model. The DT platform of the ship engine room consists of the physical entity of the diesel
engine, virtual model of the engine room, sensor and data acquisition system, optimization
algorithm and DT display. In this study, the physical entities focus on the engine system and
environment. In the process management of ship operation, it is a prerequisite to ensure
that the DT mapping model can monitor the operating state and environmental factors
of the engine room. By means of data acquisition, the actual operation data of the ship
engine room is collected, which lays a foundation for the mapping between virtual and real
models. According to the physical entity of the diesel engine system and environment, the
modeling function is used to realize the DT model of real entity mapping. Figure 3 shows
that the virtual model constructed is consistent with the real engine room interior in terms
of geometric size, shape, material, position and color. In addition, it is necessary to analyze
the operation data to ensure that the evolution process of the devices and environment is
consistent with the virtual model.

According to the PEL of the real scene, the task of constructing the DT model in VML
can be completed. Then, the data support system needs to be built for the DT model.
Previous studies have shown that the turbocharger of the diesel engine system is one of
the main accidental sources. The reason for turbocharger failure is that the temperature of
the internal vessel lubricating oil exceeds the rated range, or the temperature of cooling
water in turbocharger is too high. These reasons will induce abnormal operation of the
turbocharger, which then increase the accident risks in the ship engine room. Based on this,
the internal temperature of the turbocharger is selected as important data from the source
of accident prevention. Meanwhile, the environmental parameters of the ship engine room,
such as ventilation condition, cabin temperature and cabin pressure, will also be displayed
on the DT platform in real-time. Figure 4 presents the interface of the DT platform designed
for the ship engine room. By clicking the button above the interface, users can query the
operating status of the devices in the ship engine room. At present, this interface can view
the running status of the components related to the diesel engine system. The second
button above the interface can query the parameters related to the environment, such as
wind speed, temperature inside engine room, etc. The last two buttons at the top of the
interface can query real-time data and historical data, respectively, and can also access the
database through links to extract the relevant data within the time range. Data visualization
on the left side of the DT platform is designed in this study. The idea for the column design
was inspired by Grafana, which allows DT data to be presented to users as an open source
analytics and monitoring solution. In this work, DT-driven platform can be used as a
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visualized tool with a dashboard, which provides graphs to understand the performance of
ship operation with historical data and predicted results. The database can be connected
to the DT platform, and the decision-maker can use these data to build dashboards in it
to analyze the behaviors of process management metrics that use the DT platform. As
shown in Figure 4, the lower right corner of the interface is the surveillance video box,
and the images in this box are collected by the surveillance camera connected to the ship
engine room. When using the DT platform, users can observe both the DT model and
actual entities. In addition, the DT platform provides wireless connection and Bluetooth
connection. By logging in to the DT system interface through authorization, the users can
conduct management through the mobile devices.

Figure 3. DT modeling for ship engine room.

Figure 4. DT-driven platform for process management in ship engine room.
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In this study, the data for the DT model of the ship engine room provides the support
for effective operation of the whole DT system. The protection of DT data consists of data
acquisition, transmission, processing, management and optimization. During the process
management, DT data is generated in the engine room, as well as in VML, ACL and SAL.
The DT platform is updated with real-time data with front-end data collected by sensors,
while the predictive data generated by ACL and historical data stored in the database
are driving engines. At present, relying on advanced data transmission technology, the
information island in the ship engine room has been gradually eliminated, which provides
a strong guarantee for the comprehensive realization of intelligent process management.
In this study, an AMETEK 2101 sensor is pre-installed in the turbochargers of the diesel
engine system. The sensors are widely used to measure the real-time temperature data of
diesel engines, turbochargers, compressors and other equipment of large offshore ships. A
temperature sensor consists of the thermocouple, resistive thermometer assemblies classed
to be suitable for installation in ships to monitor engines, bearings, cooling systems and
cargo with a maximum temperature of 1380 K. It is designed to meet the requirements of
IEC68-2-6 with high vibration resistance and is certified by Lloyd’s Register and Norske
Veritas. The parameters of the data acquisition device contain sensor parameter information
and data acquisition frequency. For the various types of data, the storage methods are
diversified. The MBD model is used as the information carrier for the parameters of sensors,
and different MBD models are established for diverse sensors. In this work, a distributed
remote National Instruments (NI) data acquisition module is used to convert signals into
digital quantities in the ship engine room and transmit data to a computer through a
wireless network. The computer database is selected with MySQL, which can be used to
manage the data of ship engine room and realize data storage, query, backup, security
guarantee. The turbocharger is set with sensors, and connected with the data transfer unit
(DTU) communication. DTU and the server are communicated through wireless network
communication and protocol communication. The server has built a relational database and
in-memory database, and uses multi-thread concurrent server framework. The relational
database is used to store DTU and sensor data of the turbocharger, and the in-memory
database is used to cache temporary data. The environment data of the ship engine room
is collected by the monitoring system, including the temperature, humidity, pressure and
ventilation conditions.

Based on the real-time and historical data of the turbocharger operating temperature
of an actual ship engine system, data fusion and deep learning are carried out by BNN.
BNN’s unique probability layer enables the network to express uncertainty, with different
possible outcomes of output under a given input. BNN can be considered a fusion of infinite
subnetworks, similar to BPNN. However, the difference is that in the training process, BNN
can optimize all the subnetworks in each training round. During the prediction process,
BNN can propagate forward multiple times on the same test set, so that the predicted
results come from multiple different subnetworks. Based on this, the BNN model has good
regularization effects and better suppression of overfitting than traditional ANNs. In this
study, the operating temperature data of the turbocharger have been specifically collected
in DSL, which is used as the special input characteristic data of process management.
Therefore, the characteristic data can be preprocessed to remove invalid data, before the
BNN is embedded to temperature data feature mining. The purpose is to fully extract the
associated information of series data, and learn the operation trend of the turbocharger. The
previous record of turbocharger operation history data is input into the BNN probability
layer. Thus, the characteristic data input of the turbocharger operation prediction of the DT
model is summarized and connected to the BNN probability layer, and the BNN structure
can also be optimized. This study takes hour as the time scale for data sampling. Figure 5
shows the variation trend of the turbocharger operating temperature obtained at four
sampling points. Among them, the condition 1 represents the temperatures of the sampling
point at the turbine inlet, the condition 2 and condition 3 represent the temperatures inside
the turbine, and the condition 4 represents the temperatures at the turbine outlet. The black
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data points represent historical data, the blue data points represent real-time data, and the
red data points represent the DT-driven predictions. The turbocharger in the ship engine
room is connected to the cylinder of the diesel engine, and the exhaust gas step is carried
out first after starting up for a period of time. The cooling air is introduced for testing and
exhaust. Since this process lasts for a long time, it can be observed from Figure 5 that the
temperature curve displays a stable change and a trend of decline in a period of time. When
the diesel engine starts running, it quickly generates hot gas, which passes through the
turbocharger and turns its turbines, and the temperature curve begins to rise. Moreover, the
rotation of the turbine generates heat, and the air is compressed by a compressor impeller to
raise the temperature, causing the temperature to rise rapidly in a short time. In this study,
the mean percentage deviation (MPD) and coefficient of determination R2 are applied for
evaluating the accuracy of DT model prediction. The equations for MPD and R2 can be
calculated in Equations (8) and (9), respectively.

MPD =
100%

n

n

∑
i=1

∣∣∣Dpred − Dreal

∣∣∣
|Dreal |

, n = 1, 2, · · · (8)

R2 = 1−
∑
(

Dreal − Dpred

)2

∑(Dreal − Dmean)
2 (9)

where Dpred is the predicted data obtained by the DT-driven model; Dreal is actual value of
real-time data or historical data; Dmean is mean value of the actual data; n is the data number.

Figure 5. Comparison between DT’s prediction, real-time data and historical data. (a) Condition 1.
(b) Condition 2. (c) Condition 3. (d) Condition 4.
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The MPD and R2 of the DT-driven predictions and testing real-time data and historical
for the turbocharger operating temperature of different sampling points are shown in
Table 2. It can be concluded from the comparative results that the fitting degrees between the
DT predictions and real-time data are obviously better that the results with historical data.
In condition 1, which is located at the turbine inlet, the MPD between DT predictions and
real-time data is 4.49%, and goodness of fit R2 of the DT-driven model is 0.925. Relatively,
the deviation between the DT predictions and historical data is higher, with a MPD of
6.28%, and theR2 worsens with the value of 0.872. Condition 2 and condition 3 highlight
the good performances of the DT predicted results; the MDPs are 3.61% and 3.18% when
compared with real-time data, respectively. More importantly, the effect of the DT model
and historical results are relatively perfect with a high goodness of fit R2 and with the values
of 0.933 and 0.947, respectively. The temperature distribution of exhaust gas at the turbine
outlet is uneven, which aggravates the fluctuations in operating temperature collected by
the sensors. Therefore, in condition 4, a slightly higher deviation occurs between the DT
predictions and tests, with a MDP of 4.91%.

Table 2. Comparison of DT-driven predictions and actual data of ship engine system.

Compared to Real-Time Data Compared to Historical Data

MPD R2 MPD R2

Condition 1 4.49% 0.925 6.28% 0.872

Condition 2 3.61% 0.964 4.52% 0.933

Condition 3 3.18% 0.969 3.55% 0.947

Condition 4 4.91% 0.903 7.71% 0.811

Figure 5 indicates that the DT-driven predictions have a high degree of coincidence
with the real-time data, and the maximum value of MPD between them is 4.91%, within an
acceptable range in practice of the ship industry. It shows that the DT model can effectively
predict the parameters of the diesel engine system. Figure 5 shows that the historical
data of the turbocharger is higher than the predictions and real-time data, which indicates
that continuous improvement for the BNN model is necessary. Overall, the results show
that DT-driven process management can provide support for monitoring the abnormal
operation of turbochargers. Relying on the DT-driven system, the safety engineer with
more professional knowledge can check the interaction between the virtual models and
physical entities in front of the virtual models. Then, it can be selected as the most scientific
emergency measures, and such decision-making adds a deeper safety guarantee to ship
engine room operations.

3.3. DT-Driven Process Management for Ship Operation in Port

The ship operation process covers the new risks, liabilities and developments in
the maritime sector associated with updated technologies. In the ship operation and
transportation stage, the real-time monitoring and simulation function of the ship running
state can be realized by combining design and construction with real-time operation data
acquired by sensors, so as to provide real-time feedback, real-time evaluation and optimal
decisions. As a company dedicated to making smart shipping a reality, Eniram collects
historical and real-time data of ships in Finland and its surrounding environment. Eniram
establishes DT-based models of ship navigation based on statistical data, uses real-time
data and prediction models to realize context awareness and energy efficiency management,
and reduces fuel consumption and pollution emissions of the ships [27,28]. In addition,
Wartsila uses advanced 3D modeling, sensing and simulation technology to build DT-based
models to optimize and manage health risks of ship engines from design and construction
to operation, significantly improving the level of equipment maintenance and management.
More providers and their DT applications can be observed in Table 3.
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Table 3. Main providers and DT applications in the ship industry.

Provider Country Proposed Application Refs.

Eniram/Wartsila Finland

DT models to realize energy
efficiency management,

reduce fuel consumption and
pollution emissions of ships.

[27,28]

Shandong Shipping
Corporation (SDSC) China

DT models to shaft torsional
vibration, hull fatigue

deformation, ship navigation
state, structural health and
equipment fault warning
anytime and anywhere.

[29]

Ericsson Sweden

DT applications to handle
ship cargo types, such as
containers, roll-on cargo,
general cargo and more.

[30]

AVEVA UK

DT platform to promote ship
operational awareness and

improve crisis response,
integration and collaboration

across functional
departments, sharing of

information and
coordination of daily ship
activities and processes.

[31]

Siemens Germany

DT models of marine depot
to monitor the status during
the ship maintenance cycles

of their assets.

[32]

China Classification
Society (CCS) China

DT applications to verify
health assessment and

condition, evaluation of
functions related to ships and

offshore installations.

[33]

Navantia Spain

DT models to support the
identification of deficiencies

when comparing the ship
physical system with its DT

model, predictive
maintenance based on state

and conditions,
decision-making.

[34]

In another aspect, a DT model is used to monitor and forecast large container ships
in the port operation process. DT acts as a bridge between the digital scene and physical
ship/port scene. It is an ideal approach to fuse the two scenes and provide virtual represen-
tation of physical objects and processes. In this study, in order to build a DT model for the
ship operation scene, the first step is to obtain and process data, collect ship profile data,
ship length and width, structural dimensions and related materials of various components
on ship. Then, these parameters are used to create a virtual model in Maya for building
the geometric model of the container ship and port. In order to reduce the time for the
computer to load the geometric model and reduce the occupation of CPU and GPU, it is
also necessary to optimize the model. A fpx file is generated from the built white model,
and imported into Unity 3D for subsequent processing of material addition. The model
is read directly in Unity 3D, as shown in Figure 6. Shaders are made by adding texture
pictures and maps of the real equipment, and corresponding materials are added to the read
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in model after completion, which can improve the virtual simulation effect of the model.
After the 3D numerical model is built, it is necessary to receive real-time information and
data to simulate the behavior and dynamics of the ship and form a real-time interactive
model based on the DT. Different types of sensors (temperature sensor, humidity sensor,
wind speed sensor, gas concentration sensor, etc.) can be arranged around the hull and
container for data acquisition and processing. The data testing process is undertaken
in the experiment site of the port area. Compared with the real scene, the layout of the
experiment site has a high degree of scene reduction, which belongs to the experiment site
of equal proportion scene reduction. In addition to ships and container yards, large cranes,
forklifts and other equipment used in ports are built. It aims to research the accident risk of
containers carrying hazardous goods in the process management of large container ships.
Therefore, when constructing the DT model, the container model is refined accordingly.
In the experimental site, a real container is selected and loaded with marine diesel oil
(MDO) and n-heptane. They are placed in the container, in order to simulate the dangerous
goods in the actual container. Herein, the volatile gas concentration sensor (see Figure 6) is
installed inside the container, which is used to collect concentration data of the dangerous
goods inside the container. The data is associated with the DT-based model and displayed
on the visual interface of the DT platform in real-time. It can intuitively understand the
state change in the hazardous goods in the container. On the other hand, it can also predict
the change trend through the DT model. As a result, it can judge whether the hazardous
goods in the container have the possibility of accident risk.

Figure 6. Integrated ship and cargo container with DT modeling combing multilayers.

A DT-driven system mainly includes driving equipment, extension equipment, host
computer and other related system equipment. Among them, the driving equipment
drives and charges the expansion equipment after receiving the information collection
instruction of the host computer, and performs the collection task of the relevant parameters.
Meanwhile, the acquired data are transmitted to the host computer for the support and
simulation of the DT-based models. The core component of the driving equipment is the
controller, which also includes different circuit interfaces. In this study, the controller is
connected with the expansion equipment through the RS-485 interface circuit, and the
USB interface and network interface of the expansion equipment are connected with the
host computer through the circuit. As a standard interface of the PEL’s communication,
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RS-485 can be the main signal transmission and output interface of the digital twinning data
acquisition [35,36]. Through RS-485 communication, the DSL transmits the temperature,
humidity, wind speed, gas concentration and other parameters in the ship operation stages
collected by the sensors in the PEL to DT-driven models and screen in the VML. This data
sensor is connected to the adjacent test station, and the serial server summarizes the data,
which is then connected to the Ethernet switch. After the data are transmitted to the local
server by wired and wireless networks, the OPC server can be used to save the data from the
sensors to the database. Then, C# is chosen as the programming language for driving the
VML (towards the DT-based virtual models) based on the data of the actual physical models.
The further step is to verify, analyze and optimize. Using the existing collected data and
accumulated historical data to analyze the running ship, one can establish a mathematical
prediction model based on machine learning and predict the next state, which is helpful
to prevent wrong decision-making, carry out preventive maintenance and reduce adverse
accidents. Figure 7 is the process of building a ship safety management platform to realize
the functions of monitoring and early warning. A DT-based management platform is
related to the functional details, including real-time and secure network communication,
data governance, twin model simulation, human-computer interaction dynamic display,
intelligent algorithm expansion interface and other functions. As for the overall technical
architecture of the DT-driven platform, the languages involved in the platform development
are mainly C++, Python, and Java Script, supplemented by other scripting languages
to support the distributed deployment and corresponding high concurrency and high
availability requirements. In order to ensure the safety and reliability of operation, the
platform adopts the Linux operating system. In terms of platform governance, the docker
is selected as the application container engine, Prometheus is mobilized to build the service
monitoring system and time series database, and the Grafana data visualization tool is
used to count, monitor and alarm the platform performance indicators, so as to guarantee
the safe operation of the system [37,38]. Combined with the DT framework diagram of the
ship industry in Figure 2, it can be observed that the platform realizes the optimization
of the ship operation path and health management by integrating all the data of the PEL
and VML.

Figure 7. DT-driven platform for shipping cargo container in the operation process.
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In this study, the hazardous goods container carried by ships is selected as the char-
acteristic object of ship operation. Different from the data acquisition for the DT model,
the data acquisition type for the ship operation process in port is more complex. This
is because the container is affected by a variety of complex factors when operating in
a port, and these factors will have a great impact on dangerous goods in the container.
The port environment is the most important factor. For example, the rise of the ambient
temperature will directly lead to the spontaneous combustion of hazardous goods inside a
confined container. Based on this, this study improves the original BNN from the input side
considering the complexity of ship operating environment. Depth auto encoders are used
to represent more complex features, that is, key feature quantities are extracted according to
environment factors. The purpose is to reduce the dimension of the feature factor, so as to
reduce the input of invalid data, and then achieve the goal of highlighting the key features.
Since the concentration of hazardous goods is the data type of time series, one-dimensional
convolutional NN can be used to mine the data features, so as to extract the associated infor-
mation of time series data and deeply learn the change trend of concentration of dangerous
goods. In this context, the preprocessing process of the characteristic data of the whole
ship operation process is constituted. With the probability layer of BNN, the structure
is improved based on the original BNN. It can realize more effective input of hazardous
cargo container characteristic data in the complex process of ship operation. The DT-based
model is applied as the optimal prediction model for management optimization of the
shipping cargo container. The concentrations of MDO and n-heptane of the 19,000 TEU
hazardous cargo container ship in a certain state are predicted, and the comparative results
are presented in Table 4. The DT model is used to predict the concentration for each of
the two hazardous cargo materials in the shipping containers at the experiment site. The
comparison between DT-driven and real-time data indicate that the MPD of n-heptane
concentration is slightly higher than the value of MDO. In the n-heptane case, it can be
found that the goodness of fit R2 between DT-driven prediction and real-time data is 0832.
Relatively, the goodness of fit R2 obtained in MDO case is better, with a MDP of 0.881.

Table 4. Comparison of DT-driven predictions and actual data of shipping cargo container.

Compared to Real-Time Data Compared to Historical Data

MPD R2 MPD R2

n-Heptane (%vol) 7.61% 0.832 9.37% 0.708

Ship diesel (%vol) 5.22% 0.881 8.91% 0.754

Figure 8a shows the comparative results of the n-heptane concentration obtained by
actual data collection, which highlights the differences in the performance of the DT-driven
model. The black curve represents historical data, the red curve represents predictions
by DT model, and the blue curve represents real-time data. The predictions of the DT
model are obtained based on real-time data and historical data, so the trend of the three
curves is basically consistent on the whole. Among them, the historical data of the n-
heptane concentration change on board is obtained from our previous experiment. The
historical data is slightly higher than the data collected in real-time and the predictions
of DT model. It may be caused by the difference in environmental factors in the previous
experiment. It results in a MPD of 9.37% between the historical data and DT-driven
predicted data. Relatively, the MPD between the real-time data and DT-driven predictions
is 7.61%. Figure 8b presents the temporal characteristic curve of the concentration of MDO
loaded in a shipping container. It shows that the three curves representing historical data,
real-time data and the DT-driven predicted data are approximately in good agreement.
The MPD between the DT-driven data and historical data is 8.91%, while that between DT-
driven data and real-time data is 5.22%. The results show that the DT-based model proposed
in this study has good performance in predicting the trend of characteristic parameters.
Moreover, it can be used as the basis to distinguish whether the dangerous cargo forms
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an initial ignition state inside the container during the ship operation process. In terms
of prediction accuracy, further improvement and optimization of the DT-based model are
still needed. Generally, based on DT-driven visualization, the platform of operational
monitoring is constructed, which can effectually realize the process management of ship
operation, data sharing, prediction optimization and port sustainable environment. With
the change in the real-time data of DT, the marine personnel can improve the ability of
troubleshooting, risk prediction, guidance and regulation of problems that may occur in
the port operation stage of the ship industry.

Figure 8. Comparison of concentrations with DT’s prediction, real-time data and historical data.
(a) Time-varying characteristic of n-heptane concentration. (b) Time-varying characteristic of ship
diesel concentration.

3.4. Challenges of DT Applications in Ship Industry Process

DT technologies have been embedded in the process management in the ship industry
at the initial period of application, yet mature DT-drive models and platforms need to
be further practiced. To improve DT applications in the process management of the ship
industry, the following challenges are likely to be encountered.

• DT-based models of process management in the ship industry are built on certain
computer-aided software, while 3D modeling focuses on restoring structural strength,
geometric dimension and other information. The difficulties of multi-source informa-
tion (e.g., ship design, process, quality inspec-tion) integration and sharing trigger a
big challenge to the enhanced restoration degree of computer-aided software to real
entities in the whole process management of the ship industry.

• Once a DT-based model is applied to process management, a large amount of data will
be generated. It is a thorny issue to properly and safely deal with these data. Although
traditional data storage methods can store and retrieve the data generated in the ship
industry, it cannot meet the demand of real-time query and rapid response to the data.
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For the ship product test or operation stage, it may increase large amounts of real-time
data latency. With regard to the aspect of data collection and sharing, data collected
from different dimensions need various transmission interfaces. In order to facilitate
data transmission and sharing, it is necessary to establish a unified interface protocol
and standardized data format. At present, digital data service systems in models are
not perfect, and sharing between different subjects’ entails great security risks and
conflicts of interest. These increase the difficulty to meet the related needs for the
development and sharing of DT data.

• In the DT modeling process, an understanding of how to map the real-time data to
virtual model and realize “virtual to real” linkage deserve further exploration. It
requires the fusion of entity data and virtual data. Data stream of DT in process
management is highly complex and characterized by data instability, high coupling
and strong correlation. Due to the influence of acquisition environment, technology,
equipment and other factors, in most cases, the collected data have various problems,
including low quality, incomplete data, noisy data and redundant data. DT models in
virtual space are updated according to real-time information to realize the possibility
of “virtual to real” linkage and monitoring. If real-time data is not processed effectively,
it undoubtedly has a significant impact on management, optimization, diagnosis, or
decision making.

• After the establishment of DT-driven platforms, shipbuilding design, construction,
ship navigation, cargo loading, ship maintenance and scrapping processes are grad-
ually opening up. In the period of accelerating integration with IoTs and 6G, they
are also facing a series of network security challenges. Big data security of the DT
models is mainly reflected in data loss and network attacks in data transmission of
process management in the ship industry. At the same time, a virtual system itself
may be subject to a variety of unknown security vulnerabilities and is particularly
vulnerable to external attacks. DT data used in process management rely heavily on
the types of sensors connected via IoT devices, which are typically built without much
consideration for network security. A data acquisition system configured with sensors
generally has user login information and product information, and it has not paid
enough attention to security protection. Once these things are related to the equipment
and sensor network malicious attacks, it will lead to the tampering of the navigation
guidance or monitoring data of the ship engine room. As a result, DT-based models
will lead to errors in simulation and mapping and then the predictions and decisions
will have corresponding deviations. The above-mentioned results are for large man-
ufactures involved in the ship industry, causing extremely serious accidents. With
regard to another important aspect, DT promotes the development of connectivity
in process management in the ship industry, which is based on the results of twin-
ning data sharing. However, in order to greatly improve the management efficiency
of shipbuilding plants or enterprises, it will also increase the risks for data thieves.
Protecting DT-driven data is as significant as protecting actual information during
the process management. If the sharing platform of DT data is maliciously hacked,
it directly leads to the disclosure of commercial information relating to the design
or construction processes of new-type ships (such as nuclear-powered ship, liquid
hydrogen carrier ship, etc.). A potential confusion in the DT-driven management
system may give wrong instructions for ship operation and lead to different types of
accidental risks.

• DT-based models need to design the applicable algorithm to realize the process man-
agement function of different ship industry periods. They include signal processing,
machine learning, data fusion and mining, closed-loop control and other algorithms
to achieve ship industry processing quality analyses, fault diagnosis and prediction,
equipment health management, resource optimization, job shop scheduling and en-
ergy consumption. Therefore, an understanding of how to better develop the relevant
prediction algorithm will be a future focus of technical challenges.
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4. Conclusions

In this study, a digitally-enabled approach is developed for the process management of
navigation and operation in the ship industry. By elaborating the specific characteristics of
the ship operation process and extended DT method, a holistic framework of the DT-driven
management mode with a five-tier framework is proposed. The benefits of Maya and Unity
3D in establishing DT models with platforms are leveraged to present a visualization of
synchronization scenarios for the ship engine system and shipping cargo container. By
integrating the parameters for the ship operation process into DT-based models, a living
database that enables the DT platform to monitor and simulate is provided. An improved
BNN algorithm is applied to optimize the statistical values of the critical parameters in the
ship operation process to realize the dynamic prediction of failure and risk. The results
show that the optimal MPD when comparing DT-driven predictions with real-time data at
different scenes is 3.18% and the maximum MPD is 7.61%, respectively. This DT system
can be applied in the ship industry to promote the traceability of equipment parameters
and the adjustment of process management. Considering practicality, an understanding of
how to balance DT accuracy and information security of the process management in the
ship industry should be considered in future works.
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