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Abstract: Developing a forecasting model for oilfield well production plays a significant role in
managing mature oilfields as it can help to identify production loss earlier. It is very common
that mature fields need more frequent production measurements to detect declining production.
This study proposes a machine learning system based on a hybrid empirical mode decomposition
backpropagation higher-order neural network (EMD-BP-HONN) for oilfields with less frequent
measurement. With the individual well characteristic of stationary and non-stationary data, it creates
a unique challenge. By utilizing historical well production measurement as a time series feature
and then decomposing it using empirical mode decomposition, it generates a simpler pattern to
be learned by the model. In this paper, various algorithms were deployed as a benchmark, and
the proposed method was eventually completed to forecast well production. With proper feature
engineering, it shows that the proposed method can be a potentially effective method to improve
forecasting obtained by the traditional method.

Keywords: oil production forecasting; time series; machine learning; higher-order neural network;
empirical mode decomposition; multi-layer multi-valued neural network

1. Introduction

One important activity in the oil industry is to measure well production. By conducting
measurements of the oil production, it could show how the well performs compared
to the simulation result. Moreover, it plays a significant role in the phase of declining
production. By measuring the declining production earlier, petroleum engineers have the
capability to deliver appropriate action to respond [1,2]. However, such an ideal situation of
providing continuous and periodic measurements is not viable to deploy due to economic
and technical challenges [3,4]. Non-continuous and occasional basis of well production
measurement is very common in oilfield operation [5,6].

Commonly, well production rate is measured using a test separator for some minutes
to hours and then applying certain calculations to represent the whole day production of
the well. In more advanced technology, the rate is measured by multiphase flow meters
(MPFMs) that are equipped with several sensors, such as an ultrasonic meter that is used
for gas rate measurement and a capacitance meter that can measure very high water cut,
which is barely possible to acquire using the conventional method [7,8]. In many oil fields,
a production test is not acquired every day for each well due to the well number limitation
of test stations to conduct the test. Therefore, conducting specific tasks such as well
performance monitoring will rely on a lagged test that leads to late action when something
occurs in the well. Hence, petroleum engineers have difficulty determining declining well
production earlier. For a longer production span, some traditional approaches are common
to forecast production, including decline curve analysis (DCA), exploration interpolation
and the black oil model [9]. Since those forecasting models need to be tuned with proper
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parameters and pick the right slope, its main disadvantage is a subjective judgment by the
expert who is conducting the analysis [3]. For shorter-term prediction, many approaches
have been proposed using data-driven methodology, such as using thermogravimetric
data to predict oil flow rate [4], inferring flow rate from real-time parameters using diverse
neural networks [10] and many data mining methodologies. Another study involves
additional hardware such as extended venturi and the use of a support vector machine
(SVM) for the model [11]. Another experiment was augmented by a lab-scale vertical pipe
to obtain differential pressure signals as the inputs to principal component analysis and
neural network models [12].

In the well production forecasting area, the use of artificial intelligence and data
mining method have been introduced in the last two decades. The research literature is
basically divided into two approaches: non-time series (cross-sectional data) and time
series, either univariate or multivariate approaches. Some efforts were intended to improve
the prediction by exploiting optimization algorithms such as the imperialist competitive
algorithm [13] and aquila optimizer [14]. To capture highly non-linear correlation, the
higher-order neural network (HONN) has been introduced to forecast cumulative oil
production [15]. A more recent experiment utilized a univariate and multivariate time
series approach using a nonlinear autoregressive neural network with exogenous input
(NARX) to forecast oil production in a natural fracture reservoir [16]. Another approach
with a multi-layer multi-valued neural network (MLMVN) was developed for predicting
oil production [17]. This model is based on complex numbers for the input and weight
parameters of neural network nodes. The advantage of MLMVN is a derivative-free
learning approach which benefits from requiring fewer resources and a faster process [18].
Another approach uses an ensemble neural network with adaptive simulated annealing to
optimize the combining strategy [10]. Dongyan et al. [19] proposed ensemble univariate
algorithms, namely autoregressive integrated moving average (ARIMA) and long short-
term memory (LSTM). The most recent one is the approach using deep long-short term
memory (DLSTM) as an extension to the traditional recurrent neural network [20]; however,
this research only focuses on non-stationary time series well production data. An interesting
approach was performed by decomposing the production data before inputting it into the
model [21].

Even though the univariate forecasting method is very popular in other topics, such
as crude oil price forecasting [22] and electrical load forecasting [23], only a few studies
focused on the univariate time series prediction of oil flow rate. In a previous study, the
multivariate model in certain cases showed better results than the univariate one [16]; how-
ever, multivariate has its own limitation, such as requiring more dependent variables to be
collected. All of the literature confirms that oil production is non-linear and needs a special
approach to capture such complex behavior [24]. One of the complex behaviors came from
the disturbance factor of oil flow rate measurement noise. According to previous literature,
noise reduction is a contributing factor to achieving an excellent univariate forecasting
method [15]. Another gap in previous univariate time series forecasting for oil production
is the focus on non-stationary data [20], which may not cover all the characteristics of
well production.

In this study, we propose a novel hybrid model for time series well production fore-
casting data using a back propagation higher-order neural network (BP-HONN) with first,
second and third-order synaptic operation and the decomposition method. The decomposi-
tion method utilizes simplifying the trend of input data (signal); thus, the neural network
could learn it more accurately. Based on a recent study, as the effect of decomposition,
increasing the linearity of time series data could improve accuracy performance [9]. For the
decomposition, empirical mode decomposition (EMD) is being proposed, as it is proven
for a non-linear dataset in other research areas [24,25]. To evaluate the robustness of the
model, the stationary and non-stationary time series data are being used. The actual field
dataset was taken from previous literature [15] and production data from the Sumatra Basin
field, Indonesia, a total of 30 wells of production data. In addition, another novel hybrid
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model is also being introduced as the benchmark. The same dataset will be evaluated with
EMD-BP-MLMVN to show the performance comparison of the proposed model.

The contributions of this research are:

1. The introduction of a novel hybrid method incorporating EMD and BP-HONN as the
main proposed framework for forecasting short term oil production.

2. The introduction of a secondary novel hybrid framework utilizing EMD and BP-MLMVN
for the same objective.

3. Providing a 25-well dataset from an actual oilfield consisting of stationary and non-
stationary datasets, which is a real representation of business challenges. This dataset
will be available for future work by other researchers.

4. The experiment shows that the proposed method EMD-BP-HONN are significantly
better than other benchmark models.

The remainder of this paper explains the oilfield/reservoir description where the
dataset is retrieved, the algorithms that are used, the selected performance evaluation and
eventually, the framework proposed. The final result will be discussed in the result section
alongside the statistical test to evaluate the significant difference among models.

2. Materials and Methods
2.1. The Reservoir under Study

The experiment data are carried out from two sources. The first one is from previous
literature [18], which provides real production data from 5 (five) wells in Cambay Basin
(CB), India. The top depth of the reservoir is between 1380–1413 m, with initial reservoir
pressure observed at around 144 kg/cm3. The reservoir reserved oil in place was estimated
at around 2.47 MMt. This oilfield started production in February 2000 with CB1 (first well).
In September 2009, the cumulative oil produced for the CB1 well was 0.156 MMt. Other
wells were drilled in subsequent years. Each well has 63 data points which were taken for
each month from the year 2004 to 2009.

The descriptive statistics of those datasets are listed in Table 1. In addition to common
statistic measurement, to test the stationarity of the data, the augmented Dickey–Fuller
(ADF) test was used as per [26,27]. The null hypothesis of stationarity is rejected whenever
the ADF statistic value is above critical values. Hence, all CB well’s production data are
categorized as non-stationer.

Table 1. Descriptive statistic of Cambay Basin dataset.

Well Count Min Mean Max Std Dev Skew Kurtosis ADF Statistic 1

CB1 63 28.5 494.4 1054.5 223.5 0.86 0.36 −1.929
CB2 63 161.5 546.9 1786.0 470.2 1.55 1.10 −1.820
CB3 63 2650.5 4094.5 5928.0 1091.2 0.24 −1.59 −1.870
CB4 63 247.0 531.2 950.0 182.0 0.36 −0.86 −0.942
CB5 63 161.5 1016.0 2251.5 633.0 0.41 −1.15 −0.866

1 Critical value (5%) at −2.92.

The second source of experiment data comes from an actual oilfield in the Central
Sumatra Basin (CS), Indonesia. The field was discovered in 1952, and it has been producing
since 1971. The field area is around 19,905 acres, and currently, it is produced by 220 oil
producer wells in either single or commingles production. The reservoir consists of multiple
productive sands with depths between 4200–4400 ft and thicknesses around 0.13–158 ft.
Regarding rock properties, the sand has permeability between 10 to 1200 mD and porosity
around 10–34%. The oil is considered a light oil type with a value of gravity of 0.8◦. In
this experiment, 25 (twenty-five) wells were selected that consist of stationary and non-
stationary characteristics to evaluate the model prediction robustness. Descriptive statistics
of those datasets are listed in Table 2. Those well datasets with higher ADF statistics belong
to the non-stationary category. Another statistical characteristic being measured is the
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Hurst exponent value, indicating volatility, roughness and smoothness time-series data [16].
The completed dataset is provided in Supplementary Material.

Table 2. Descriptive statistic of Central Sumatra Basin dataset.

Well Count Min Mean Max Std Dev Skew Kurtosis ADF Statistic 1 Hurst

CS1 113 722.7 1515.8 4111.3 764.2 2.18 4.62 2.49 0.63
CS2 192 774.4 4778.1 5861.4 1317.3 −1.41 1.55 2.38 0.50
CS3 215 849.6 1988.3 6249.6 1407.8 1.63 1.76 2.18 0.68
CS4 143 737.8 2907.3 4440.2 692.1 −1.00 3.32 2.10 0.69
CS5 215 13397 13887 14718 305.7 0.98 −0.01 1.44 0.51
CS6 151 839.2 3120.5 6851.2 1525.6 1.27 1.02 −3.49 0.45
CS7 106 450.8 590.8 693.6 49.5 −0.64 0.41 −3.52 0.44
CS8 215 169.5 523.5 1042.8 199.0 0.37 −0.54 −2.28 0.31
CS9 212 1974.5 7294.8 8745.4 1879.4 −1.96 2.45 −3.60 0.63

CS10 121 1470.6 5817.7 7646.2 1949.2 −1.03 −0.09 −3.60 0.80
CS11 112 2.35 649.0 1392.0 362.1 −0.20 −1.22 −2.10 0.30
CS12 117 288.0 949.6 1822.2 310.2 −0.04 −0.43 −2.14 0.37
CS13 115 255.0 1968.4 3304.0 670.3 −0.27 −0.25 −2.08 0.43
CS14 106 510.0 1401.2 2028.0 450.4 −0.46 −1.34 −1.04 0.57
CS15 112 1332.0 1991.5 2508.0 229.0 −0.10 −0.39 −2.03 0.38
CS16 115 36.0 311.5 660.0 147.8 0.12 −1.00 −1.36 0.25
CS17 116 2.8 192.4 464.0 83.5 0.51 0.54 −3.74 0.21
CS18 114 180.0 575.3 890.4 155.7 −0.45 −0.05 −1.85 0.36
CS19 117 330.0 1215.9 1864.8 470.4 −0.33 −1.25 −1.44 0.46
CS20 107 558.0 1614.0 1215.8 283.2 −0.69 −0.77 −1.76 0.52
CS21 111 2535.7 2727.2 3044.6 118.4 0.47 −0.55 −1.75 0.28
CS22 108 668.0 1037.6 1444.9 190.4 −0.19 −1.31 −1.08 0.57
CS23 112 872.4 1298.2 1557.8 171.5 −0.89 −0.17 −3.59 0.39
CS24 117 753.0 3523.0 5616.0 904.5 0.15 −0.67 −0.82 0.60
CS25 103 672.0 1074.9 1567.7 198.0 −0.19 −0.65 −1.71 0.52

1 Critical value (5%) at −2.89.

2.2. Higher-Order Neural Networks (HONN)

Most artificial neural networks (ANN) use linear neurons, where the linear connec-
tion exists between the input vector and synaptic-weight vector Naturally, the correlation
between input and neuron weight is considered non-linear. To overcome this, one neural
network variance was introduced [18]. The major difference between HONN and conven-
tional ANN is how the weighted sum of the input vector is calculated. The operation of
synaptic weight and input is defined as:

v = w0x0 +
n
∑

i1=1
wi1 xi1 +

n
∑

i1=1

n
∑

i2=i1
wi1i2 xi1 xi2

+ · · ·
n
∑

i1=1

n
∑

i2=i1
· · ·

n
∑

iN=iN−1

wi1i2 · · ·iN xi1 xi2 · · · xiN

(1)

where xi is the neuron input of ith element of X, wi is the weight of neuron input of ith, x0 is
the bias neuron input, w0 is the weight of bias and v is the output of the synaptic operation.
Additionally, the somatic operation to calculate the outputs is described as

y = ϕ(v) (2)

where y is the output of the neural network and ϕ is the activation function. Architecture-
wise, as illustrated in Figure 1, HONN have interconnected layers, and the input vector
will be calculated in each correlator (order) and then applied to the weighted sum of those.

Suppose we have a neural network structure, as shown in Figure 1.
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First, we must carry out a feed-forward operation by the initial weight, and the input
then calculates the error.

Error =
1
2
(output−Oout)

2 (3)

where output is the desired output and Oout is the neural output (or y). We begin backprop-
agating the error from the output layer to the hidden layer.

dError
dWjo

=
dError
dOout

× dOout

dOin
× dOin

dWjo
(4)

Recall the error formula to calculate the derivative error.

dError
dOout

= −(output−Oout) (5)

The derivative output layer node-out to output layer node-in is derivative of its
activation function

dOout

dOin
= ϕ′(Oin) (6)

Output layer node-in is calculated by multiplying the weight and input of the high
order hidden layer node.

dOin
dWjo

= Jho (7)

Then, we continue backpropagating the error from the hidden layer to the input layer.

dError
dWij

=
dError
dJout

× dJout

dJin
× dJin

dWij
(8)

Derivative error to hidden layer:

dError
dJout

=
dError
dOin

× dOin
dJout

=

(
dError
dOout

× dOout

dOin

)
× dOin

dJout
(9)
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We already calculated dError
dOout

and dOout
dOin

in the previous step. To calculate dOin
dJout , recall

the high order synaptics operation when we conducted the feed-forward.

Oin = J1wJ1O + J2wJ2O + J2
1 wJ11O + J1 J2wJ12o + J2

2 wJ22o + .. (10)

Thus,
dOin
dJ1out

= wJ1O + 0 + 2J1wJ11O + J1wJ12o + 0 + .. (11)

dOin
dJ2out

= 0 + wJ2O + 0 + J2wJ12o + 2J2wJ22o + .. (12)

The derivative hidden layer node-out to hidden layer node in is derivative of its
activation function

dJout

dJin
= ∅′(Jin) (13)

Hidden layer node-in is calculated by multiplying the weight and input of the high
order input layer node.

dJin
dWij

= Iho (14)

The error (squared error) is minimized by updating the weight matrix as

Wk+1 = Wk + ∆Wk (15)

where the change in weight matric is denoted by ∆Wk which is proportional to the gradient
of the error function as

∆Wk = −η
dErrork

dWk
(16)

where η > 0 is the learning rate which affects the performance of the algorithm during the
updating process.

2.3. Multi-Layer Neural Network with Multi-Valued Neurons (MLMVN)

MLMVN is a multi-layer neural network consisting of Multi-Valued Neurons (MVN)
as basic neurons with complex-valued weights, which becomes the key difference between
MLMVN and the classic neural network. The difference makes the learning process in
MLMVN simpler and means that it has a better capability of generalization.

All neurons in the network are complex numbers located on the unit circle and the
weights. An input/output mapping of a continuous MVN is described by a function of
n variables

f (x1, . . . , xn) = P(w0 + w1x1 + · · ·+ wnxn), f : On → O (17)

where O is a set of points located on the unit circle, xi is the neuron input of ith element of
X, wi is the weight of neuron input of ith element of X, x0 is the bias neuron input, w0 is the
weight of bias.

The continuous MVN activation function (as in Figure 2) is

P(z) = eiArg(z) =
z
|z| (18)

where z = w0 + w1x1 + · · ·+ wnxn is the weighted sum, Arg(z) is the main value of the
argument of the complex number z. Thus, a continuous MVN output is a projection of its
complex-valued weighted sum onto the unit circle.

The MVN training is based on the error-correction learning rule (Figure 3) as follows:

Wr+1 = Wr +
Cr

(n + 1)|zr|
(D−Y)X (19)
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where X is the array of neuron inputs complex-conjugated, n is the number of neuron
inputs, D is the expected target of the neuron, Y = P(z) is the calculated output of the
neuron, r is the number of the epoch step, Wr is the current weighting vector, Wr+1 is the
new weighting vector, Cr is a learning rate and |zr| is the current absolute value of the
weighted sum.
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The MLMVN learning algorithm is derivative-free. It is based on the same error-
correction learning rule as the one of a single MVN. Let MLMVN contain m layers of
neurons and x1, . . . , xn be the network inputs. To obtain the local errors for all neurons, the
global error of

δ∗jm = Djm −Yjm (20)

must be shared with these neurons. Therefore, the errors of the mth (output) layer neu-
rons are

δjm =
1
tm

δ∗jm (21)

where jm specifies the jth neuron of the mth layer; tm = Nm + 1. The errors of the hidden
layer’s neurons are

δjs =
1
ts

Ns+1

∑
j=1

δjs+1

(
wjs+1

i

)−1
(22)

where js specifies the jth neuron of the sth layer; ts = Ns−1 + 1, s = 2, . . . , m is the number
of all neurons in the layer s− 1, and t1 = n + 1 (n is the number of network inputs).
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After the error backpropagation is completed, the weights for all connecting layers
shall then be updated using the error-correction learning rule adapted to MLMVN. It means
that while it is used for the hidden neurons, the factor 1

|zr | should not be applied to the

output neurons thus it becomes Wr+1 = Wr +
Cr

(n+1) (D−Y)X in this output layer.

2.4. Empirical Mode Decomposition (EMD)

Empirical mode decomposition (EMD), also known as the Hilbert–Huang transfor-
mation (HHT), is a method to decompose signals into several simpler signals, called
intrinsic mode functions (IMF) [28]. This method is an empirical approach to obtain cur-
rent frequency data from a dataset, which preferably has non-stationer and non-linear
characteristics [29,30]. Each IMF has to satisfy only one extrema that crosses the zero line
(zero-crossing), with a mean value of zero. Due to its nature, the number of IMF obtained
cannot be pre-determined; thus, every dataset has its own number of IMF and residue (last
monotonic functions). The final result of EMD with the aggregation of all its components
(and residue) can be seen as

x(t) =
n

∑
i=1

(ci) + rn (23)

where x(t) is the time-series signal, is the ith IMF and rn is the residue.

2.5. Performance Evaluation

In this research, several performance metrics are used, such as R2 (coefficient of deter-
mination), root mean square error (RMSE) and mean absolute percentage error (MAPE),
as follows:

R2 = 1− ∑n−1
i=0 (yi − ŷi)

2

∑n−1
i=0 (yi − y)2 (24)

RMSE =

√√√√ 1
n

n−1

∑
i=0

(yi − ŷi)
2 (25)

MAPE =
100%

n

n−1

∑
i=0

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (26)

where yi is the actual target for ith component, ŷi is the predicted value, y is the mean value
and n is the amount data.

2.6. Framework of the Proposed Model

In this research, a hybrid model of combining EMD and HONN with a backprop-
agation learning method is proposed to forecast the oil flow rate of 30 well production
data. Another hybrid model of EMD and MLMVN is also introduced as a benchmark. The
proposed method includes several steps, as shown in Figure 4. The first step is to deliver
pre-processing of all datasets. The pre-processing started by normalizing all values to the
same range. For the CB dataset, the scaler was applied as in the original paper, which
calculated the ratio to maximum production (9500 m3) [15]. For the CS dataset, a min-max
scaler (−1 to 1) is applied for HONN and 0 to 1 for MLMVN. Additionally, the normalized
value is processed with an EMD algorithm which constructs multiple IMFs (and residue)
for each dataset. Due to the fact that the proposed learning algorithms are not able to learn
from time-series data directly, the feature transformation using a lag feature transforms
to the supervised-learning dataset. For this research, two up to five prior time series data
were selected as inputs (i.e., Xt−5, Xt−4, Xt−3, Xt−2, Xt−1, for the lag feature of five) and
the subsequent time series as a target (y). Then, the transformed feature feeds into HONN
with the backpropagation learning method. For HONN and EMD-HONN, we chose hy-
perparameter as follows: the network architecture is one hidden layer for the activation
function of tanh-tanh, the initial learning rate is 0.001 and is adaptive to the error of each



Processes 2022, 10, 1137 9 of 15

epoch; if the error decreases, the learning rate multiplies by 0.7 and 1.05 if the error increase.
The iteration for backpropagation learning (epoch) is 600, and the momentum is 0.9. The
experiment was repeated with different hidden neuron configurations from 2 to 10 and
also with the polynomial synaptic operation of linear (LSO), quadratic (QSO) and cubical
(CSO). The best-performed model was selected to compete with other benchmark models.
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Figure 4. Proposed model of EMD-BP-HONN.

For the second hybrid model introduced using EMD-MLMVN, a similar framework
has been utilized, with BP-HONN being replaced with BP-MLMVN. The architecture of
BP-MLMVN of 1 hidden layer, with randomized initial weight and number of training
epochs of 500. The experiment was repeated with different hidden neurons configuration
from 2 to 10 to select the best performing configuration.

Additionally, three other forecasting methods were utilized for benchmarking. The
most basic forecasting method is persistence or naïve, which takes the previous value
(Xt−1) as the next step value (Xt+1) or forecasted value. For a more advanced baseline,
two time series forecasting algorithms are used: autoregressive integrated moving average
(ARIMA) and long short-term memory (LSTM). ARIMA is a very popular statistical model
for forecasting time series data. It consists of three components: autoregression (p), moving
average (q) and differencing (d). For this experiment, the variable p, d, q values are
selected from 1 to 4. LSTM as the variance of recurrent neural network (RNN) can capture
nonlinearity trends of well production forecast [19]. The hyperparameters for LSTM are
the number of layers and activation function. The best of 20, 50 and 200 layers with
combinations of tanh, relu and sigmoid activation functions are selected as the benchmarks
for the proposed model.

3. Results and Discussion
3.1. Result of CB and CS Datasets

The result of the proposed methods and other benchmark methods for both oilfields
are presented in this section. As mentioned in the previous section, the proposed models
repeated runs with different parameters and configurations and selected the best to compete
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with benchmark models. An example of the best configuration for several wells can be
seen in Table 3, which shows that different lag features and the number of hidden neurons
provide the best MAPE. In the summary, as seen in Tables 4–7, the proposed EMD-BP-
HONN and EMD-MLMVN outperformed all benchmarked models with the smallest
MAPE in 23 out of 30 wells. Interestingly, ARIMA models have a decent result compared
to our proposed models. For other metrics measured, RMSE and R2 have consistent results,
as seen in Tables 5 and 6 for the CB dataset, in which the proposed methods have better
forecasting performance than the benchmark models. Additionally, for detailed prediction,
as an example, the prediction result of the proposed models for CB2 are presented in
Figures 5 and 6. The prediction results of the proposed models for CS18 are presented in
Figures 7 and 8.
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Table 3. Best result of HONN-based methods on several wells.

Well Methods No. of Hidden
Neurons

Synaptic
Operation Lag MAPE R2 RMSE

CB1 BP-HONN 2 CSO 5 34.77 0.87 0.004
EMD-BP-HONN 3 CSO 3 33.86 0.90 0.003

CS2 BP-HONN 6 CSO 4 5.76 0.97 214.15
EMD-BP-HONN 9 CSO 2 5.16 0.99 118.49

CS18 BP-HONN 3 CSO 2 4.07 0.14 74.62
EMD-BP-HONN 6 CSO 3 2.09 0.81 34.69

Table 4. Result of CB oilfield in MAPE metric. The lowest score is in bold.

Well Persistence ARIMA LSTM BP-HONN BP-MLMVN EMD-BP-
HONN

EMD-BP-
MLMVN

CB1 58.8217 51.1220 85.6711 34.7721 49.5745 33.8551 24.6530
CB2 8.1251 3.2276 7.5459 3.6933 4.2213 3.6687 3.0037
CB3 5.9905 5.1662 6.8647 2.7992 9.2329 1.7264 4.4384
CB4 8.8297 7.7091 7.5996 5.9757 6.5168 2.2271 2.6348
CB5 22.0980 22.5708 26.8748 22.1773 24.6941 20.2176 24.6921

Table 5. Result of CB oilfield in RMSE metric. The lowest score is in bold.

Well Persistence ARIMA LSTM BP-HONN BP-MLMVN EMD-BP-
HONN

EMD-BP-
MLMVN

CB1 0.00551 0.00480 0.00676 0.00361 0.00695 0.00318 0.00276
CB2 0.01336 0.00674 0.01408 0.00807 0.00818 0.00689 0.00674
CB3 0.02946 0.02520 0.03293 0.01407 0.04957 0.00956 0.02327
CB4 0.00333 0.00285 0.00248 0.00290 0.00263 0.00091 0.00095
CB5 0.04342 0.04616 0.04532 0.03075 0.05439 0.02217 0.01977

Table 6. Result of CB oilfield in R2 metric. The highest score is in bold.

Well Persistence ARIMA LSTM BP-HONN BP-MLMVN EMD-BP-
HONN

EMD-BP-
MLMVN

CB1 0.70758 0.778648 0.832072 0.874414 0.535006 0.902602 0.926822
CB2 0.533407 0.881093 0.746193 0.82976 0.825121 0.87584 0.881261
CB3 0.897148 0.92478 0.854823 0.976548 0.708902 0.989175 0.935841
CB4 0.729598 0.80199 0.476615 0.795313 0.831711 0.979662 0.978109
CB5 0.341114 0.255405 0.389998 0.669492 0.016875 0.828181 0.863412
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Table 7. Result of CS oilfield in MAPE metric. The lowest score is in bold.

Well Persistence ARIMA LSTM BP-HONN BP-MLMVN EMD-BP-
HONN

EMD-BP-
MLMVN

CS1 3.6933 2.9200 3.5937 4.4857 5.8110 3.8575 5.7848
CS2 7.0161 5.9889 9.4525 5.7664 27.0809 5.1646 7.6287
CS3 2.2222 2.0381 3.5247 3.3583 3.7679 3.0959 3.6221
CS4 1.0469 0.7155 0.9131 1.0340 1.1026 1.0184 0.5969
CS5 0.2214 0.1850 0.2117 0.1940 0.4261 0.1295 0.0957
CS6 0.8595 0.7304 0.7838 0.7078 0.7072 0.7061 0.6763
CS7 1.0125 0.9918 1.0067 0.8609 10.2040 0.7166 8.2757
CS8 16.8791 12.3467 12.9215 11.5983 15.8302 8.9814 10.3197
CS9 0.2833 0.1979 0.2027 0.2371 0.4662 0.2130 0.3398

CS10 0.6888 0.6293 0.5143 0.4623 0.5642 0.4420 0.3449
CS11 350.2999 377.4806 409.8470 88.3414 99.2139 51.6295 47.3973
CS12 10.1758 9.9895 10.7328 19.3471 25.0963 15.2705 20.9661
CS13 8.8332 9.8213 12.3169 6.1035 7.4236 3.8197 5.7077
CS14 7.2523 5.8126 5.8123 3.0850 2.9582 2.4229 1.8676
CS15 5.0698 4.5538 5.3236 5.6101 6.8687 4.4302 5.7963
CS16 42.9258 46.7672 75.0410 1.7973 1.5646 0.5894 0.7129
CS17 68.4740 72.0464 90.0719 1.8375 1.9177 1.6845 1.1904
CS18 7.0018 6.7551 10.4111 4.0748 3.9908 2.0935 2.6025
CS19 6.0988 6.4009 7.0253 10.7183 11.9264 8.5481 9.4610
CS20 5.9032 5.7425 5.2782 5.2151 5.2374 2.6710 2.3559
CS21 2.2704 1.8905 2.3375 4.5688 4.8310 2.8859 3.2109
CS22 4.0042 3.4350 3.2347 3.7852 3.7051 2.3720 2.4807
CS23 5.1769 4.5989 4.2936 15.6620 20.6448 14.9554 20.2448
CS24 6.1914 7.3289 11.5756 2.8008 3.2835 2.3956 1.9994
CS25 4.7480 4.9989 3.6993 3.9649 4.0291 2.1641 2.0224

Another interesting finding, based on the result, is that the hybrid model indeed
improves the performance of the base model. As seen in Tables 4 and 7, by implementing
EMD in the pre-processing stage, both BP-HONN and BP-MLMVN have been improved,
on average, by 23% and 34%, respectively.

In regard to comparing our work to other studies, other studies proposed a DLSTM
model that outperforms the HONN vanilla model for the Cambay Basin dataset [20]. How-
ever, instead of individual well production, the dataset used is the cumulative production
of five wells, as in Table 1. Based on the result, the reported MAPE scores are 2.851 and
3.459 for DLSTM and vanilla-HONN, respectively. To compare the performance of EMD-
BP-HONN and EMD-BP-MLMVN, the same dataset was carried out, and the result can be
seen in Table 8. EMD-BP-HONN continues to show better performance than other methods
that are reported in other papers.

Table 8. Comparison to other study for cumulative production of Cambay Basin Oilfield.

Metric DLSTM 1 Vanilla-HONN 1 LSTM BP-HONN BP-MLMVN EMD-BP-
HONN

EMD-BP-
MLMVN

MAPE 2.851 3.459 4.04 2.86 2.19 1.28 1.39
RMSE 0.025 0.035 0.037 0.031 0.019 0.010 0.013

R2 - - 0.6 0.8 0.92 0.98 0.97
1 Reprinted/adapted with permission from Ref. [20]. Copyright 2022, copyright Elsevier, License Number:
5320830137007.

3.2. Statistical Tests

In this section, a statistical test was applied to evaluate whether there is a significant
difference between the methods being proposed and the benchmark models. The Friedman
test uses null and alternative hypotheses. The null hypothesis (H0) implies that the mean
for each population is equal; thus, there is no significant difference among methods. The
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alternate hypothesis implies that at least one population mean is different from the rest. If
the p-value of the test is less than 0.05, the null hypothesis can be rejected.

Using the Friedman chi-square test (using scipy python library) with MAPE metrics
for all datasets, the results are as follows: statistic = 52.828 and p-value = 1.270 × 10−9.
Seeing this result, the null hypothesis can be rejected. Then, to determine which meth-
ods are significantly different, the Nemenyi post hoc test was utilized, and the result is
shown in Figure 9. The result shows that EMD-BP-HONN is significantly different from
other benchmark methods except with EMD-BP-MLMVN. EMD-BP-MLMVN significantly
differs from persistence and LSTM; however, it is not significantly different from ARIMA
and BP-HONN.
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4. Conclusions

In this study, we introduced a hybrid model of EMD-BP-HONN and EMD-BP-
MLMVN for oil flow rate forecasting. The decomposition method of EMD was utilized in
the pre-processing stage to make time-series data simpler; thus, it should increase the per-
formance of the forecasting algorithm. The proposed methods were applied to 30 datasets
collected from two oilfields, Cambay Basin, India and the Central Sumatra Basin, Indonesia.
To compare the performance, time-series forecasting was tested as well. The proposed
methods have significant results and outperformed the benchmark models in most datasets.
In addition, by implementing the decomposition method prior to base models, the hybrid
models were improved significantly in all datasets.

For future works, the hybrid models being proposed, EMD-BP-HONN and EMD-BP-
MLMVN, could be improved with a more advanced version of the decomposition method.
Selecting the best parameter can also be explored using an optimization algorithm to be
able to search global optimum of parameters.
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