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Abstract: In this study, we rationally designed a facile stepwise route and successfully synthesized a
Co(OH)2/Ni3S2 heterostructure supported on nickel foam (NF) as a binder-free electrode for energy
storage. Galvanostatic deposition was first applied to produce uniform Co(OH)2 nanoflakes on
NF. Then, Ni3S2 was applied to its surface by potentiostatic deposition to form a Co(OH)2/Ni3S2

heterostructure at room temperature. The added Co(OH)2 not only functions as a practical electro-
chemically active component but also provides support for the growth of Ni3S2, and the deposition
amount of Ni3S2 is controlled by adjusting the electrodeposition duration of Ni3S2. Then, the electro-
chemical behaviors of the Co(OH)2/Ni3S2 composite can be optimized. A maximum areal specific
capacitance (Cs) of 5.73 F cm−2 at 2 mA cm−2 was achieved, and the coulombic efficiency was as
high as 94.14%. A capacitance retention of 84.38% was measured after 5000 charge–discharge cycles.

Keywords: hybrid nanomaterials; nickel foam; electrodeposition; electrochemical energy storage

1. Introduction

As the core factor determining the performance of energy storage devices, electrode
materials have garnered significant attention [1,2]. Taking supercapacitors as an example,
from the perspective of the energy storage mechanism, electrode materials can be divided
into two categories: electric double-layer and pseudocapacitance electrode materials [3].
As is known, the latter has been proved to reflect higher specific capacitance (Cs) because
the active sites on the surface and near-surface regions of electrode materials can partici-
pate in the pseudocapacitive reaction [4]. Therefore, metal-oxide-type electrode materials
represented by Ni(OH)2 and Co(OH)2 have attracted the particular attention of researchers,
including NiO and Co3O4 obtained by calcinating them and their derivatives nickel sulfide
and cobalt sulfide [5,6]. Therefore, in addition to improving traditional preparation routes,
such as the hydrothermal method, coprecipitation technology and the electrodeposition
process, extensive research has focused on improving the overall electrochemical properties
of the materials by regulating the components of electrode materials and optimizing the
structure design [7,8]. For example, Satpathy et al. designed a Cu(OH)2 nanobelt/Co(OH)2
nanosheet heterostructure through chemical etching and electrodeposition on copper foil.
Cu(OH)2 was selected as the component because of its high electrical conductivity, which
can also provide abundant available space for the subsequent deposition of Co(OH)2; this
hybrid hydroxide as a binder-free electrode exhibits remarkably higher Cs than single
Co(OH)2 [9]. Using similar strategies, our research group prepared a Cu(OH)2/Ni3S2
electrode on copper foam, which achieved a high Cs of 4.85 F cm−2 at 2 mA cm−2 [10].
The choice of the Ni3S2 component is based on the fact that the sulfur in Ni3S2 has a lower
electronegativity than the oxygen in the corresponding hydroxide (oxide). Thus, it reflects
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the advantages of better electrochemical activity and stability [11–13]. However, the com-
mon problem of the above two examples is that Cu(OH)2 mainly acts as a bridge between
the substrate and another component. As a component, Cu(OH)2 has little contribution to
the overall electrochemical performance. Finding a candidate to ensure that it can replace
the role of Cu(OH)2 and has outstanding pseudocapacitance reaction characteristics has
been regarded as the main direction of exploration. Co(OH)2 has become one of the candi-
dates because of its high theoretical Cs and typical flake structure [14,15]. In addition to
providing sufficient support for the growth of other components, these flake structures are
intertwined with each other, which facilitates the diffusion of electrolyte ions and promotes
the efficient contact between the electrolyte and electrode material [16].

Inspired by the above discussion, we designed and constructed a Co(OH)2/Ni3S2
heterostructure on nickel foam, which not only gives full play to the energy storage char-
acteristics of each component but also makes full use of the skeleton support function
of Co(OH)2 flakes, which provide sufficient exposed active sites from the perspective of
structural design [12,17]. As for the specific preparation route, a three-electrode system was
adopted to perform two-step electrodeposition according to previous reports with some
modifications; that is, Co(OH)2 nanoflakes were first grown on nickel foam by galvanos-
tatic deposition, and then Ni3S2 was coated on the surface of Co(OH)2 by potentiostatic
deposition. An electrodeposition process is a viable option for achieving in situ growth and
developing a binder-free electrode. Moreover, its operation process is time-saving, safe and
straightforward. In particular, the loading amount of deposited active electrode material
can be controlled by adjusting the experimental parameters [18]. In our reaction system,
the optimal reaction conditions were identified by adjusting the deposition duration of
Ni3S2 and thus delivered the best electrochemical properties of the Co(OH)2/Ni3S2 het-
erostructure. The present work provides new insight for selecting composite components
and structural designs.

2. Materials and Methods
2.1. Materials

Nickel foam (NF, 110 PPI, 1.5 mm thick) was cut into 1 cm×1.5 cm pieces and then used
as a substrate after soaking in hydrochloric acid, acetone, ethanol and water. The reagents
involved in the experiment include Co(NO3)2·6H2O, NiCl2·6H2O, CH4N2S and NaOH.

2.2. Electrodeposition of Co(OH)2/Ni3S2 Heterostructure on NF

Co(OH)2 was first deposited on NF by galvanostatic deposition at 0.02 A for 10 min.
The division of labor of the three-electrode system is as follows: NF (working electrode),
saturated calomel electrode (SCE, reference electrode) and a Pt foil (counter electrode). A
0.1 M Co(NO3)2 solution was used as the electrolyte.

Ni3S2 was then deposited on the surface of Co(OH)2 by potentiostatic deposition
at −1.1 V for 20 min. A similar three-electrode system was adopted, except that the
working electrode was Co(OH)2/NF obtained in the previous step. The electrolyte was a
mixed solution of NiCl2 (0.05 M) and CH4N2S (0.5 M). For comparison, the potentiostatic
deposition of Ni3S2 was carried out for different durations, including 1 min (labeled as S-1),
10 min (S-10), 20 min (S-20) and 40 min (S-40).

2.3. Characterization

The products were examined by X-ray diffraction (XRD Cu Kα radiation with λ = 1.5406 Å),
scanning electron microscopy (FE-SEM JSM-7610F) and X-ray photoelectron spectroscopy
(XPS, ESCALAB 250Xi). The energy storage properties were evaluated, including cyclic
voltammetry (CV, 0–0.7 V vs. Ag/AgCl), galvanostatic charge–discharge (GCD) and cycling
performance through a CHI 760E electrochemical workstation in 2 M NaOH solution.
The three-electrode test system consisted of Co(OH)2/Ni3S2/NF (working), Ag/AgCl
(reference) and a Pt foil (counter) electrode.
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3. Results

Scheme 1 depicts the synthesis route of the Cu(OH)2/Ni3S2 heterostructure. The first
step is to achieve the in situ growth of Co(OH)2 on NF through galvanostatic deposition
in a three-electrode system. Figure S1 reveals a typical FE-SEM image of pristine NF. As
the electrode substrate, its specific 3D porous structure provides sufficient support for the
growth of electrode materials, and silver-gray 3D NF is covered by dense bluish-green
Co(OH)2 nanoflakes. In the second step, the surface of Co(OH)2 turns black due to the
deposition of Ni3S2, which is performed by potentiostatic deposition in a similar three-
electrode system. Thus, the obtained Co(OH)2/Ni3S2 composite can be directly used as an
electrode for electrochemical performance testing because it is grown on the NF substrate
directly, which avoids the complex process of preparing the electrode by adding a binder
and conductive agent.
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Scheme 1. The synthesis route of Co(OH)2/Ni3S2 heterostructure.

Figure 1a shows the XRD spectrum of the sample generated by the first step of
galvanostatic deposition, in which the two prominent well-defined peaks marked with
circles come from the NF substrate (JCPDS No. 01-1258). The peaks marked with squares
correspond to the (100), (102), (105), (108) and (110) planes of the hexagonal phase of
α-Co(OH)2 (JCPDS No. 46-0605) [19]. Figure 1b is a low-magnification SEM image of the
corresponding Co(OH)2. As can be seen from this figure, dense Co(OH)2 evenly covers
the surface of the NF substrate. High-magnification images confirmed that these Co(OH)2
are irregular nanoflake structures with a smooth surface. These curved, silk-ribbon-like
nanoflakes are interlaced with a thickness of ca. 10 nm (Figure 1c,d).

The XRD spectrum of the sample after the second step of potentiostatic deposition is
shown in Figure 2a. Except for the square (NF substrate) and circular (Co(OH)2) peaks,
the diffraction peaks marked with an asterisk are attributed to the (100), (003), (021) and
(122) crystalline planes of Ni3S2 (JCPDS card No. 44-1418), which confirms the formation
of Ni3S2 on the surface of Co(OH)2 [12]. The SEM image in Figure 2b also confirms that
these intertwined Co(OH)2 nanoflakes became significantly thicker due to the coating of
Ni3S2. Figure 2c,d are corresponding enlarged images; it should be noted that the coated
Ni3S2 also has the shape of curved nanoflakes with a thickness of ca. 5 nm. They are also
intertwined with each other to form a network on the surface of Co(OH)2.

Figure 3 presents the XPS spectra of the Co(OH)2/Ni3S2 electrode. It is confirmed
from the full spectrum that the sample contains Co, Ni, O and S elements (Figure 3a). The
calibration is based on the C 1s peak at 284.8 eV (Figure 3b). As for the Co 2p spectrum in
Figure 3c, two intense feature peaks situated at 798 and 781.3 eV correspond to Co 2p1/2 and
Co 2p3/2. They all have corresponding satellite peaks located at 803.7 and 786.85 eV, which
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are indexed to the characteristic signatures of Co(OH)2 [15,20,21]. The Ni 2p spectrum is
exhibited in Figure 3d. Two prominent peaks positioned at 874.26 and 856.60 eV can be
assigned to Ni 2p1/2 and Ni 2p3/2 and a spin-orbit splitting of 17.7 eV, which confirms the
existence of Ni2+ and Ni3+. The peaks at 880 and 861.7 eV are their satellite peaks [22,23].
In the O 1s spectrum (Figure 3e), the peak at 531.4 eV comes from hydroxyl oxygen in
Co(OH)2 [14]. Figure 3f records the spectrum of S 2p, in which the intense main peak
is composed of S 2p1/2 and S 2p3/2 at 163.3 and 162.1 eV, respectively, which arise from
S2− [12]. In addition, a broad peak appears at 168.10 eV, which is ascribed to the S-O bond,
and the oxygen comes from the hydroxyl groups produced by the hydrolysis of thiourea,
as previously reported [24,25].
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In order to verify the effectiveness of the composite structure design, we compared
the electrochemical behavior of Co(OH)2/Ni3S2, Ni3S2 and Co(OH)2 electrodes. Figure 4a
presents the CV curves of the four electrodes at a scan rate of 10 mV s−1. A solution of
2 M NaOH was used as the electrolyte. Its function is to provide OH− for a reversible
pseudocapacitance reaction with electrode materials, which also reflects the energy storage
mechanism of pseudocapacitance materials. According to the rule, the larger the critical
area of the CV curve, the higher the Cs [26]. It is evident that the Cs of the Co(OH)2/Ni3S2
electrode is significantly greater than the other three, and NF has almost no capacitance
characteristics. The pseudocapacitive reactions involved are as follows [19,27]:

Ni3S2 + 3OH− ↔ Ni3S2(OH)3 + 3e− (1)

Co(OH)2 + OH↔ CoOOH + H2O + e− (2)

CoOOH + OH − ↔ CoO2 + H2O + e− (3)

The above inference can also be confirmed from the GCD curve (2 mA cm−2) in
Figure 4b on the premise of the same discharge current density: the longer the discharge
time, the greater the Cs of the electrode [28]. Figure 4c also lists the Cs of the four elec-
trodes at current densities of 2–60 mA cm−2, which fully confirms that the Cs of the
Co(OH)2/Ni3S2 electrode was significantly enhanced compared with any single compo-
nent. In fact, theoretically speaking, the more OH− that the electrolyte can provide, that is,
the greater the electrolyte concentration, the more electrochemical active sites participating
in the pseudocapacitance reaction, and the greater the Cs of the product. Therefore, the
GCD curves of Co(OH)2/Ni3S2 composite at different NaOH concentrations, including
1, 2, 4 and 6 M, are compared in Figure S2a. With the increase in NaOH concentration,
the discharge time of Co(OH)2/Ni3S2 gradually increases; therefore, Figure S2b shows a
significantly enhanced trend of Cs. However, in our reaction system, we focus on compar-
ing the difference in Cs between composite components and single components under the
same test conditions. Therefore, we chose the 2 M NaOH electrolyte as an example for the
electrochemical test and analysis.

In order to further evaluate the electrochemical properties of the composites and give
full play to the supporting role of Co(OH)2 and its synergistic effect with Ni3S2, we system-
atically investigated the impact of the loading amount of Ni3S2 on the morphology and
structure of the composite. When the deposition duration is 1 min, as shown in Figure 5a,
the SEM image of the Co(OH)2/Ni3S2 composite at low magnification does not show a
noticeable difference from pure Co(OH)2, which is also a curved flake structure. From
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the enlarged image in Figure 5b, it is found that the surface of these Co(OH)2 nanoflakes
becomes rough due to the scattering of a large number of linear Ni3S2 particles. When
the deposition reaches 10 min, it is evident from Figure 5c that these Co(OH)2 nanoflakes
become thicker. After magnification, it is confirmed that these wrapped large amounts of
Ni3S2 also begin to form a curved nanoflake structure, and the size is much smaller than
that of Co(OH)2 (Figure 5d). As the deposition increases to 20 min, these nanoflakes gradu-
ally increase and become dense (Figure 5e), which is described in detail in Figure 2. When
it extends to 40 min, the continuous excessive aggregation of Ni3S2 leads to disorderly
accumulation and the destruction of the partial structures of Co(OH)2 (Figure 5f).
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Figure 6 compares the pseudocapacitance characteristics of the above four samples in
2 M NaOH solution. As seen in the CV curves in Figure 6a, the integral areas of the samples
show an increasing trend with the increase in the potentiostatic deposition duration, except
for S-40 because the necessary site of S-40 is almost the same as that of S-20. This trend is
also reflected in Figure 6b. In order to distinguish these results in detail, Figure 6c lists the
Cs values of four samples at current densities of 2–60 mA cm−2 according to the formula
calculation [29]. The conclusion is that the Cs value is in the order of S-20 > S-10 > S-1
under the same current density. As for S-40, the Cs value is slightly greater than that of S-20
between 2 and 8 mA cm−2, while when the current density reaches 12 mA cm−2, the Cs
value of S-40 is lower than that of S-20. Meanwhile, the rate capability of the four samples
was deduced based on the sets of data [30]. S-20 is the largest, and its discharge Cs is still
maintained at 52.53% when the current density increases from 2 to 60 mA cm−2. Figure 6d
presents the voltage drop curves at current densities of 2–60 mA cm−2 of the four samples
and the corresponding derived average RESR. The minimum RESR is S-20 with 1.35 Ω cm−2

according to the formula used [29].
According to the comparison and analysis of the above data, in addition to being

the active component of the composite electrode, Co(OH)2 also provides support for the
deposition of Ni3S2. At the same time, in general, the larger the loading amount of Ni3S2,
the more active sites provided, and therefore, the more extensive the areal Cs [28], such
as S-20 > S-10 > S-1. However, with the excessive aggregation of Ni3S2, the nanoflake
structure of Co(OH)2 is completely covered or even destroyed (Figure 5f). These disorderly
stacked Ni3S2 particles easily fall off in the charge–discharge process, resulting in decreases
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in Cs and rate capability, such as S-40. Additionally, excessive accumulation is bound
to hinder the movement of ions and increase the average RESR [15]. Therefore, based on
the relatively superior energy storage characteristics of S-20, it was further tested and
systematically investigated.
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Figure 5. FE-SEM images of Ni3S2 electrodeposited on Co(OH)2/NF for different potentiostatic
deposition durations: (a,b) S-1, (c,d) S-10, (e) S-20 and (f) S-40.

Figure 7a shows the CV curves of the sample (S-20) in the scan rate range of 2–50 mV s−1.
With the increase in the scan rate, the redox peaks move to a broader potential window,
and the area surrounded by the CV curve gradually increases, but the corresponding Cs
gradually decreases [9]. This is because the internal electrochemical active sites do not have
enough time to fully react with the OH− in the electrolyte at high scan rates [15]. Figure 7b
shows the GCD curves of the sample in the current density range of 2–60 mA cm−2. Ac-
cording to the formula, the lower the current density, the higher the discharge time and
Cs [29]. At the same time, when the current density is 2 mA cm−2, the coulombic efficiency
reaches 94.14% [31]. The calculated values of Cs are displayed in Figure 7c, which decrease
from 5.73 to 3.01 F cm−2, corresponding to current density increases from 2 to 60 mA cm−2;
that is, the Cs value can still be maintained at 52.53% of the initial value when the current
density increases by 30 times, which reflects a relatively high rate performance. Figure 7d re-
veals the voltage drop curve at different current densities, and thus, the calculated average
RESR is 1.35 Ω cm−2; these results are described in Figure 6c.
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As for single-component Co(OH)2 and Ni3S2 electrodes, their CV curves at scan rates
of 2–50 mV s−1, GCD curves at current densities of 2–60 mA cm−2 and the corresponding
Cs are also presented in Figure 8.
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The Cs retention of the Co(OH)2/Ni3S2 electrode is presented in Figure 9. It can be
observed that Cs reaches 90.63% at the 600th cycle and maintains the initial 84.38% within
5000 cycles.
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Table 1. Comparison of Cs of Cu(OH)2/Ni3S2 with reported in the literatures.

Electrode
Materials

Electrode
Substrate Electrolyte

Current
Density

(mA cm−2)

Cs
(F cm−2) Literature

Co(OH)2/CoOOH/
Co3O4/Cu(OH)2

Cu foam 1 M KOH 1 1.94 [32]
Co(OH)2/Co9S8 NiFe skeleton 3 M KOH 10 5.28 [33]
Co9S8@Co(OH)2 Ni foam 3 M KOH 1.5 5.62 [13]

Co3S4-Ni3S2 Ni foam 6 M KOH 2 2.83 [34]
Ni3S2/rGO Ni foam 2 M KOH 2 1.96 [27]

Ni3S2/CoFeLDH Ni foam 1 M KOH 2 5.08 [35]
Cu(OH)2/Ni3S2 Cu foam 2 M NaOH 2 4.85 [10]

NiCoLDH@Ni3S2 Ni foam 3 M KOH 3 4.95 [36]
Co(OH)2/Ni3S2 Ni foam 2 M NaOH 2 5.73 Present work

Table 1 shows several composite electrode materials reported in the recent litera-
ture with Co(OH)2 or Ni3S2 as components and their Cs. By comparison, the prepared
Co(OH)2/Ni3S2 shows comparable or even more prominent properties than those pre-
viously reported. This is attributed to the selection of composite components and their
preparation strategies, which are mainly reflected in the following aspects: (1) Co(OH)2
and Ni3S2 are regarded as the most promising electrode materials owing to their low cost,
abundance and high theoretical Cs [22]. At the same time, it can be inferred that in our
reaction system, both Co(OH)2 and Ni3S2 participate in the pseudocapacitive reaction
as active components. In particular, the nanoflake structures of Co(OH)2 and Ni3S2 are
favorable for fast pseudocapacitive reactions due to the reduced charge transportation
pathways [12]. Meanwhile, these nanoflakes interweave with each other to form a network,
which provides more channels for charge transportation. Therefore, the Co(OH)2/Ni3S2
heterostructure can deliver a robust synergistic effect, which is bound to improve the
overall properties of the composite [18]. (2) The addition of Co(OH)2 also acts as a bridge
between the electrode substrate and Ni3S2, which provides support for the deposition of
Ni3S2 to form more abundant electrochemical active sites [18,37]. Meanwhile, the Co(OH)2
nanoflakes can effectively alleviate the collapse of the structure in the charge–discharge
process [12]. (3) This in situ electrodeposition technology reflects the advantages of a short
preparation cycle, easy regulation of the amount of deposited active substances, good
stability, direct acquisition of the binder-free electrode to be measured and reduction in
contact resistance [38].

4. Conclusions

In summary, we successfully synthesized a hierarchical Co(OH)2/Ni3S2 heterostruc-
ture on the NF substrate through the combination of galvanostatic and potentiostatic
deposition. The introduction of Co(OH)2, as an electrochemically active component, pro-
vides support for the deposition of Ni3S2. Then, the optimal deposition amount of Ni3S2 is
achieved by adjusting the deposition duration of Ni3S2. The Co(OH)2/Ni3S2 heterostruc-
tures thus obtained exhibited promising electrochemical characteristics with a high areal Cs
of 5.73 F cm−2 at 2 mA cm−2, which remained 3.01 F cm−2 at 60 mA cm−2. The coulombic
efficiency is excellent, reaching 94.14%, and the long-term cycle reversibility maintains
the initial 84.38% within 5000 cycles. Furthermore, the present work provides some new
inspiration for designing and developing efficient Co(OH)2- or Co3O4-based composite
electrode materials for energy storage.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pr10071255/s1. Figure S1: FE-SEM image of pristine NF; Figure S2: (a) GCD
curves at 2 mA cm−2 and (b) Cs of Co(OH)2/Ni3S2 heterostructure at different NaOH concentrations.
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