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Abstract: Phishing is one of the biggest crimes in the world and involves the theft of the user’s
sensitive data. Usually, phishing websites target individuals’ websites, organizations, sites for cloud
storage, and government websites. Most users, while surfing the internet, are unaware of phishing
attacks. Many existing phishing approaches have failed in providing a useful way to the issues facing
e-mails attacks. Currently, hardware-based phishing approaches are used to face software attacks.
Due to the rise in these kinds of problems, the proposed work focused on a three-stage phishing
series attack for precisely detecting the problems in a content-based manner as a phishing attack
mechanism. There were three input values—uniform resource locators and traffic and web content
based on features of a phishing attack and non-attack of phishing website technique features. To
implement the proposed phishing attack mechanism, a dataset is collected from recent phishing
cases. It was found that real phishing cases give a higher accuracy on both zero-day phishing attacks
and in phishing attack detection. Three different classifiers were used to determine classification
accuracy in detecting phishing, resulting in a classification accuracy of 95.18%, 85.45%, and 78.89%,
for NN, SVM, and RF, respectively. The results suggest that a machine learning approach is best for
detecting phishing.

Keywords: phishing; attack detection; web crawler; heuristic analysis; machine learning classification

1. Introduction

In the modern era of networks, almost every industry uses the internet. Many different
security attacks affect businesses. Among the main attacks is phishing. Phishing threats
are conducted by e-mail spoofing and similar webpage functioning. The phisher can
perform attacks with the help of spoofed e-mails and by copying website design. Based on
the internet, the phisher can hack the user’s personal belongings. Phishing is an offence
implemented by technical and social technology and hacking user identity information and
banking information. Phishing threats are enabled by user weakness and the development
of sophisticated mechanisms by phishers [1].

When working on the internet, users need to enter user data such as personal infor-
mation and banking information. These attacks are used to steal the user’s data. Phishing
attacks are increasing. Phishing websites look the same as the original websites [2]. A group
named Anti-Phishing was formed to control phishing attacks. A report of that group says
that phishing activities are increasing. The main target of phishers is to attack the victim’s
e-mails, messages and phone calls. There are many kinds of phishing, such as deceptive
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phishing in which the attacker’s focus is on the organization in which the employees work.
Deceptive phishing is easily implemented by using the URL to distinguish genuine links
from the scammer. Phishing Spear is a kind of phishing in which attacks are conducted
through e-mail by targeting and collecting data about the entity on Facebook. Attackers
are targeted through emails by crafting a positioning attack on DNS. User IP address is
easily identified by attackers through DNS and users’ IP addresses are easily redirected to
malicious websites. A new type of phishing was discovered which is conducted through
dropbox—attackers want to steal the dropbox files from users. Phishing attackers create a
fake dropbox signature and then this is passed to the dropbox of users. Phishers can easily
steal files and users’ credentials which are hosted on the website. Google docs phishing
was derived from dropbox phishing, through which attackers can easily target victims.
Attackers initiate on SaaS or webmail by stealing sensitive data as their primary goal. To
integrate e-mail addresses into the system, an anti-phishing simulator was designed to
prevent serious threats by catching malicious emails arriving in the system. This system
also helps to evaluate keywords in the existing database and to determine the contents of
the database.

1.1. Existing Issues of Phishing on Website

In 2011, Prevost et al. identified phishing based on more than 25 features on a heuristic
webpage. The main disadvantage of this work is that when there are changes in webpages,
this method does not work, i.e., it is not robust. It also requires more heuristic parameters [2].
In 2016, Moghimi et al. developed rule-based phishing techniques, based on the parameters
of a webpage and applied the rules for retrieving the hidden information in the webpage.
The major drawback of this algorithm is that it is not reliable for identifying the phisher [3].
In 2010, Prakash et al. applied predictive blacklist techniques to identify and delete the
correct blacklist using the PhishNet database. This algorithm fails to detect the 0th-day
phishing [4].

1.2. Existing Issues of Phishing in E-Mail

In 2006, Lyon et al. proposed the authentication for domain level by securely sending
the data by e-mail. The main drawback of this algorithm is that it works only when both
the sender and receiver have the same device [5]. Chen et al. developed the LinkGuard
algorithm. This algorithm is capable of detecting the actual domain of phishers and also
detecting the phisher link URL. The main drawback of this algorithm is that it is applicable
only for e-mail and not for detecting phishers on the web [6]. In 2009, Gansterer et al.
applied a machine learning-based K-nearest learning approach to detect phishing based
on the parameters of e-mail and ranked those parameters., The main limitations are that it
attained a high false-positive rate for spam detecting filters [7,8].

A phishing attack is a dangerous threat. For example, at Deleware University, nearly
75 thousand people faced this problem as phishers stole the personal information of
teachers, students, researchers and faculty through websites [9]. In 2001, the first online
gold fraud was investigated. This was similar to a phisher sending spam mail to increase
their network. Since the number of phishing attacks have increased, the government set
up the working group Anti-Phishing and also implemented several laws for victims [10].
Figure 1 shows phishing sites reported in 2019.
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1.3. Proposed Research Key Features

The objective of this work is to evaluate the harmfulness of this problem and offers
better solutions to protect against phishing attacks.

• Fishing attacks may occur at any time. Thus, based on database features, this work
develops a mechanism.

• The proposed work focuses on recent databases and performance can be evaluated
based on parameters.

• According to the literature survey, most of the existing work is based on imbalanced
mechanisms.

• Three different classifiers are used to determine classification accuracy in detecting
phishing.

• The motivation for the current work is the increasing number of phishing attacks; we
need to develop a computational automated methodology for detecting phishing.

Figure 2 shows internet usage per year from 2014 to 2019. Figure 3 shows a year-wise
online report of phishing attack incidents from 2014 to 2019.
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1.4. Motivation

• The motivation for this work is that there is still a lack of awareness regarding
phishing threats.

• The main phishing crimes are stealing banking details stealing such as CVV details
and credit card information through websites such as PayPal and e-bay.

• Other phishing crimes include theft of personal data and capturing trade secrets and
important documents.

2. Literature Survey

A literature survey which is related to the mechanism developed in this investigation
is presented in this section. Table 1 summarizes the literature survey for detecting phishing.
Figure 4 illustrates phishing attacks in the industry.

Table 1. Literature on Phishing.

Source Algorithms Techniques Merits Demerits

Babagoli et al.
(2018) [11]

Heuristic value based
on extracting the
parameters

A decision tree and wrapper
are used for selecting
heuristic-based nonlinear
regression.

Using decision trees
original dataset can be
reduced.

Only phishing and real
web pages are used as
they contains smaller
datasets.

Peng et al. (2018)
[12] Naïve Bayes classifier

A phishing email is
identified by using a Naïve
Bayes classifier on machine
learning and NLP
techniques.

To detect the
appropriateness of each
word, NLP is used.

To establish virus pairs,
machine learning is
used. Emails text
analysis on replying.

Aburrous et al.
(2018) [13]

SVM, KNN, Random
Forest algorithm, Naïve
Bayes

Applying 7 different
machine learning processes
for the anti-detection
process.

Easy to identify the
words present in the
URL by using NPL
features.

To handle large
datasets, machine
learning will not be
more effective.

Kim et al. (2017)
[14]

Features of machine
learning

Authentication on user and
domain levels.

Communication of
security can be
increased.

The same technology
should be used on the
sender side and the
receiver side.
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Table 1. Cont.

Source Algorithms Techniques Merits Demerits

Zhang et al.
(2017) [15] Neural Networks

A Neural Network was
classified with the Monte
Carlo algorithm.

Increases accuracy rate
and stability detection.

The whole page has to
be downloaded.

Drew et al. (2014)
[16]

Support Vector
Machine

Implementing a transfer of
data on prototype between
MUA and MTA.

Each sentence can be
easily detected by
using NLP.

Time consuming and
only a small dataset can
be used.

Xiang et al. (2011)
[17]. CANTINA+

ML methods can be used to
identify the phishing site for
a content-based system.

Precious work has to be
performed to increase
the number of specific
values. Phishing
attacks can be easily
understood for
evaluation.

Authentication for
third-party services. A
limited number of
datasets used such as
8118 phishing and 4883
original webpages.

Ma et al. (2009)
[18]

K-means clustering
algorithm

Clustering email, targeted
functions, features of 13
orthographic.

Enables achieving
reliable results with
high effectivity.

Only a K-means
algorithm offline
technique can be used.

Abu-nimeh et al.
(2007) [19]

NNET, BART, Random
Forest, CART, Support
Vector Machine,
Logistic Regression

There is no standard
algorithm for detecting
phishing by comparing six
machine learning algorithms.

To test the classifier, 43
features are used.

Consumes more time
and memory if it was
used.
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3. The Proposed Methodology

The phishing attack mechanism can be categorized into three categories as

• A DNS blacklist.
• A heuristic-based approach.
• A web crawler-based approach.

These approaches are used for future purposes in phishing attacks for future extraction.
Figure 5 shows the proposed architecture of the phishing attack mechanism.



Processes 2022, 10, 1356 6 of 14Processes 2022, 10, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 5. Proposed architecture of the phishing attack mechanism. 

3.1. DNS Blacklist and Web Crawler 
A DNS blacklist (domain name system blacklist) is used for generating many Internet 

Protocol addresses which can be easily mounted for programming on the browser. The 
DNS blacklist is built on the top source file on the internet. This domain name system 
blacklist generates Internet Protocol addresses with spam purposes. Information is fre-
quently updated on the DNS system. Web crawler starts to attack websites interconnect-
ing with pages and links. Crawling from one website, the phishing attack mechanism goes 
through all the links in the web index. The proposed phishing attack mechanism crawl is 
creating a web crawler for each webpage in a website since the attack. Figure 6 shows the 
crawler for web indexing. 

 
Figure 6. Crawler for web indexing. 

Figure 5. Proposed architecture of the phishing attack mechanism.

3.1. DNS Blacklist and Web Crawler

A DNS blacklist (domain name system blacklist) is used for generating many Internet
Protocol addresses which can be easily mounted for programming on the browser. The DNS
blacklist is built on the top source file on the internet. This domain name system blacklist
generates Internet Protocol addresses with spam purposes. Information is frequently
updated on the DNS system. Web crawler starts to attack websites interconnecting with
pages and links. Crawling from one website, the phishing attack mechanism goes through
all the links in the web index. The proposed phishing attack mechanism crawl is creating a
web crawler for each webpage in a website since the attack. Figure 6 shows the crawler for
web indexing.
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3.2. Heuristic Analysis and URL Analysis

Algorithm 1 details the working module of heuristic-based phishing detection. Three
features of heuristic analysis phases are as follows. URLs. URL partition is as follows.
<protocol>://<subdomain> <primary domain> <TLD>/<path domain>. Algorithm 2
explains the working module of URL-based phishing detection.

Algorithm 1: Heuristic Phishing Detection

Input Features of URL, content of website, website traffic.
Output Phishing e-mail or non-phishing site
Step 1 if copyrights are illegal

then
“User notify”
end if

Step 2 (URL initialization→ calling algorithm 1 (Web traffic analysis)
Step 3 Counts (total number of counts per visit, number of people visiting per page,

visiting duration, bouncing rate)
Step 4 Condition→Operating (PageRank)
Step 5 if Condition is lower

then
“User notify”
end if

Step 6 Condition→ Operate (Siri Reputation)
Step 7 if Condition is low

then
“User notify”
end if

Algorithm 2: URL-Based Phishing Detection

Input Primary domain –k are the features of URL, @, -dots, ID.
Output Either phished or legal classification.
Step 1 if k is IP address then

Condition = Phished
else if turned up (‘@’,‘-’,‘.’);

Step 2 If ‘@’ && ‘-’
Condition = Phished.

Step 3 else if turned up (‘.’)>5
Condition = Phished
end if

Step 4 else if ld < 3
Condition = Phished
end if

Step 5 if Condition is Phishing then
"User notify"
end if

3.3. Web Content Analysis and Web Traffic Analyzer

Crawling through the website and web page content copyrights was proposed by the
phishing detection mechanism in the website. Regarding suspicion, phishing detection
mechanism classifiers send an alert for the message for the contents by the phishing
detection mechanism. Parameters are taken from the web traffic analyzer such as tool visits
for sites, pages visited per page, duration visiting per person on average, and the bouncing
rate. SiriReputation is used on the valued website for calculating the website links from
other web pages to itself. PageRank is similar to this [20]. SiriReputation will also be low
for phishing the websites in a higher level, for SiriReputation is similar to Pagerank, where
SiriReputation values are lower for phishing the websites on a legitimate site.
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4. A Machine Learning Approach for Detecting the Attacks

The datasets are collected from Alexa, Siri, and Phish Tank and then processed into
machine learning algorithms. This learning algorithm extracts useful information from
training examples. The machine learning algorithms can be classified into supervised and
semi-supervised. A supervised learning algorithm learns from labelled samples, whereas
an unsupervised learning algorithm learns from unknown samples. Initially, the classifier
starts with a training phase that can be used to build a decision model. The very important
machine learning classifier described here is used for detecting phishing attacks described
below. Figure 7 shows the machine learning techniques for detecting phishing attacks.
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4.1. Neural Network Algorithm (NN)

The NN algorithm consists of three layers—an input layer, an output layer and a
hidden layer. The hidden layer processes the data and passes it to the output layer. Several
attacks are found and recognized by the multi-layer perception algorithm. This algorithm is
trained by the back-propagation technique, which is based on the concept of feed forward
and back propagation [21–23].

4.2. Support Vector Machine (SVM)

The SVM is used for guess and classification, which is used to find the boundaries in
multi-dimensional space [24–26]. Its distinct data points can be divided into two classes,
+1 and −1, using a hyperplane. Hence, +1 denotes ordinary data and −1 denotes doubt-
ful data.

The hyperplane can be written as Equation (1)

WX = b = 0 (1)

where W = w1, w2, . . . , wn are weight vectors for n attributes values x1, x2, . . . , xn and b is a
scalar. The Support Vector Machine aims to discover the linear best hyperplane so that the
boundary of partition between the two classes is magnified. The hyperplane with the peak
margin is treated as a good hyperplane. This machine classifies two classes, and multi-class
classification is understood by developing an SVM for each two of the classes.

4.3. Random Forest

Random Forests are based on decision trees [27–29]. The computational methodology
is the best method to classify phishing in phishing attack mechanisms. Figure 8 shows the
extraction parameter in the URL and website. Figure 9 shows the extraction parameter in
an e-mail. Table 2 shows the feature extraction and dataset creation.
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Table 2. Feature Extraction and Dataset Creation.

S. No Feature Extraction Feature Description

1 Lengthily URL Websites with a URL length greater than 1750 is likely phishing.
2 Symbol “-” Domain names including “-” are considered legitimate URLs.
3 URL subdomain URL subdomains is are likely phishing.
4 HTTPS This is considered a secure URL.
5 IP address using the domain name Hackers hide the number with their name when it is phishing.

6 URL request URLs which consider all images and text together in the same
domain.

7 Domain age Websites created within the last year are likely phishing.

8 Traffic website Traffic is how many times users have visited a site. A website
with no previous history is likely phishing.

9 Domain record If there is no previous record of the website, it is likely phishing.

10 Pop-up Pop-up windows are used for hacking, by phishing for
passwords.

11 Page redirecting Redirection to another web page based on a link is likely
phishing.

12 URL abnormal An abnormal URL is identified by the WHO through the
domain, based on results identified as phishing.

For training data, 200 samples with features and labels were divided into training and
testing learning processes, respectively. Three classification algorithms are used to develop
an accurate approach for detecting phishing. The performance of various algorithms was
measured by using evaluation metrics on the test samples. A total of 70% of the data
were used in the training stage. Testing and validation were processed with the remaining
30% samples.
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Sensitivity is described as the ratio of correctly recognized phishing attacks. (1-
Specificity) is another attribute of a classifier which describes the ratio of non-phishing
attacks. Sensitivity and specificity are the most significant parameters for performance
metrics computed by any classifier.

Predicted Class

Actual Class
TP FN

FP TN

Recall =
TP

TP + FN

Precision =
TP

TP + FP

Speci f icity =
TN

TN + FP

(1− Speci f icity) =
FP

FP + TN

ccuracy =
TP + TN

TP + TN + FP + FN

F1 ∗ Score = 2 ∗ Precision ∗ Recall
Precision + Recall

where Confusion Matrix is a method to analyze the performance metrics of any classification
algorithm and it also provides better solutions.

5. Results

Table 3 shows a comparison of existing work based on features. In general, researchers
have achieved an accuracy of approximately 90%. However, in all the previous cases,
researchers have restricted their analysis to only one algorithm. Moreover, none of them
has considered all areas, i.e., URL, website and email. Thus, the current work has a definite
advantage over them in terms of the widespread application area and comprehensive
analysis in terms of the several algorithms considered.

Table 3. Comparison of Existing Work Based on Features.

Source Area Database Importance Features Algorithm Accuracy

Darling et al.
(2015) [10] URL PhishTank, Alexa URL Quadgram, Hostname Support Vector

Machine 90%

Hassan et al.
(2017) [30] Website

UCI Repository
based on machine
learning

Subdomain, URL Anchor Neural Network 92%

Toolan et al.
(2018) [31] E-Mail SpamAssassin

Nazario
The number of characters, words,
function body and URLs

Support Vector
Machine 93%

Lee et al. (2013)
[32] URL Twitter

Applications

Date of account creation, similarity of
text by tweeting and friends ratio by
followers

Machine learning
approach 91%

Rajab et al.
(2017) [33]. Website

Yahoo mail
directory,
PhishTank

Anchor URL, domain name &
subdomain name, state of finite SSL

Machine learning
approach 94%

Figure 10 illustrates classifier performance. Table 4 depicts the accuracies in % of
different classifiers against extracted features. In terms of classifier performance, the
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algorithms can be ranked from best to worst as Neural Network > Support Vector Machine
> Random Forest. With respect to the Random Forest classifier, the Support Vector Machine
and Neural Network classifiers showed 8.32% and 20.65% improvement. A total of 12
parameters were extracted by the algorithms.
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Table 4. Accuracies in % of Different Classifiers against Extracted Features.

Machine Learning Accuracy
Support Vector Machine Random Forest Neural Network Total Extracted Parameter

85.45% 78.89% 95.18% 12 Parameters

Table 5 shows performance evaluation metrics with different classifiers. In terms of
specificity, the Random Forest and Neural Network classifiers are better than the Support
Vector Machine classifier by 0.42% and 4.65%, respectively. However, the sensitivity of the
Support Vector Machine and Neural Network classifiers is greater than the Random Forest
classifier by 9.74% and 21.99%, respectively. Similarly, the precision of the Support Vector
Machine and Neural Network classifiers is greater than the Random Forest classifier by
16.46% and 28.77%, respectively. The F1 score of the Support Vector Machine and Neural
Network classifiers show 14.27% and 26.66% respective improvements over the Random
Forest classifier.

Table 5. Performance Evaluation Metrics with Different Classifiers.

Classifiers Specificity F1 Precision Sensitivity

Support Vector
Machine 0.9463 0.8488 0.8757 0.8334

Random Forest 0.9503 0.7428 0.7519 0.7594
Neural Network 0.9903 0.9408 0.9682 0.9264

Figure 11 shows the comparison of different methodologies. The machine learning
approach is found to be the best among the three approaches. The heuristic-based approach
and the machine learning approach show an improvement of 2.22% and 5.76%, respectively,
over the blacklist-based approach.
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Figure 12 illustrates spam mails detected by the proposed methodology in e-mail.
Figure 13 shows fake websites detected and blocked by the proposed methodology in
Netcraft. Figure 14 illustrates fake websites detected by the proposed methodology in
Google Safe Browsing.
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6. Conclusions

A phishing detection mechanism was proposed to detect phishing attackers. The
developed phishing detection mechanism is implemented through three phases. Detection
based on the DNS blacklist is performed, and then heuristic-based detection is followed
by using a web crawler. It is easy to identify the websites frequently using phishing IPs
in the DNS blacklist. Using the web crawler and analysis phase, phishing e-mails and
sites are identified. The proposed experimental analysis was performed for the phishing
detection mechanism and it is used for precisely detecting websites which are phishing as
the phishing detection mechanism has the best accuracy. Three different classifiers were
used to determine classification accuracy in detecting phishing, resulting in a classification
accuracy of 95.18%, 85.45% and 78.89%, for NN, SVM, and RF, respectively. The results
suggest that a machine learning approach is best for detecting phishing.
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