
Citation: Giao, J.; Nazarenko, A.A.;

Luis-Ferreira, F.; Gonçalves, D.;

Sarraipa, J. A Framework for

Service-Oriented Architecture

(SOA)-Based IoT Application

Development. Processes 2022, 10, 1782.

https://doi.org/10.3390/pr10091782

Academic Editors: Shahryar

Sorooshian and Madjid Tavana

Received: 29 July 2022

Accepted: 27 August 2022

Published: 5 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

A Framework for Service-Oriented Architecture (SOA)-Based
IoT Application Development
Joao Giao 1,* , Artem A. Nazarenko 1,2 , Fernando Luis-Ferreira 1 , Diogo Gonçalves 3 and Joao Sarraipa 1

1 Faculty of Sciences and Technology & UNINOVA-CTS, Nova University of Lisbon,
2829-516 Monte Caparica, Portugal

2 Chair of IT Security, Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Wachsmann-Allee 5,
03046 Cottbus, Germany

3 School of Economics, University of Bristol, Priory Road Complex, Priory Road, Bristol BS8 1TU, UK
* Correspondence: jgs@uninova.pt

Abstract: In the last decades, the increasing complexity of industrial information technology has led
to the emergence of new trends in manufacturing. Factories are using multiple Internet of Things (IoT)
platforms to harvest sensor information to improve production. Such a transformation contributes
to efficiency growth and reduced production costs. To deal with the heterogeneity of the services
within an IoT system, Service-Oriented Architecture (SOA) is referred to in the literature as being
advantageous for the design and development of software to support IoT-based production processes.
The aim of SOA-based design is to provide the leverage to use and reuse loosely coupled IoT services
at the middleware layer to minimise system integration problems. We propose a system architecture
that follows the SOA architectural pattern and enables developers and business process designers to
dynamically add, query or use instances of existing modular software in the IoT context. Furthermore,
an analysis of utilization of modular software that presents some challenges and limitations of this
approach is also in the scope of this work.

Keywords: application programming interfaces; Internet of Things; interoperability; middleware;
modular construction

1. Introduction

The Internet of Things (IoT) departs from the conceptualization that everyday objects
have internet connection and are equipped with sensing, actuation and processing capabili-
ties so that such devices will provide benefits both in terms of new services and in terms
of efficiency improvement for existing services and processes [1]. The IoT is considered a
large-scale system that allows billions of physical objects to communicate with each other
and collect data over the internet [2]. In this regard, the concept of “things”—devices with
sensing and computing capabilities that communicate with other devices/things, bringing
new functionalities and added value into many application domains—has appeared [3].

IoT systems bridge the cyber and the physical space and thus rely on a wide range of
both hardware and software solutions. In the case of hardware, several challenges have
been identified to satisfy IoT-immanent demands, such as mobility and autonomy, energy-
use optimization and decreased production costs [4]. The growing number of internet-
connected devices directly affects the amount of data generated to be potentially used by
different applications to create value, which, in turn, influences common approaches to
data treatment and management. Let us consider, for example, the usage of data in the
transport and logistics domain, where vehicles such as cars and buses and infrastructure
objects such as roads and highways are equipped with sensors that have the processing
capability to transmit data between each other in real-time. This would allow accurate
estimation of traffic density, allowing users to select the quickest route to their destination
based on the number of road users at that point in time. In addition, it is possible to make

Processes 2022, 10, 1782. https://doi.org/10.3390/pr10091782 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr10091782
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-4525-4832
https://orcid.org/0000-0003-2435-3970
https://orcid.org/0000-0001-9220-6046
https://orcid.org/0000-0003-3102-3179
https://doi.org/10.3390/pr10091782
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr10091782?type=check_update&version=1

Processes 2022, 10, 1782 2 of 25

inferences such as the amount of gas or electricity required for a specific vehicle to reach a
specific destination based on the traffic density in real-time.

To correctly identify the most-promising areas where IoT technologies are able to
have the greatest impact, it is necessary to evaluate the place of IoT technologies in the
global economy. For instance, Manyika et al. [5] estimated the impact of IoT technologies
at around $11.1 trillion by 2025, a value that is equivalent to 11 percent of the world
economy. As Xie and Chen [6] noted, the introduction of an IoT-based supply chain and
logistics management reduces the Average Queue Time of vehicles by approximately seven
times their initial value, improving the efficiency and cooperation of various departments
within a business and minimising supply-chain disruptions, which cause extensive costs to
businesses. As a result, the relationship between consumers and suppliers is optimised,
and the overall competitiveness of the business is improved, highlighting the importance
of developing and implementing these IoT technologies at the micro and macro levels.

Furthermore, benefits of the IoT are observed in the business supply chains profiting
from the real-time data that are further analysed to better understand supply and demand
patterns for goods and services. This allows accurate analysis of surpluses or shortages of
specific goods. It also ensures that producers align their pricing strategies and production
resources to manage their stock levels based on current demand. An IoT system may
combine heterogeneous communication interfaces from different equipment vendors or
the coexisting differences in communication specifications [7]. In this regard, serious
obstacles arise on the way to the establishment of interoperability between a myriad
of potentially connected IoT devices, as there is no well-defined reference standard for
IoT platforms, and the likelihood of one appearing in the near future is low. Hence,
there is a necessity to find a strategy to tackle the lack of interoperability, which is a
known cause for technological incompatibilities when integrating new applications from
different sources. An additional challenge is the flexibility required for “plug-and-play”
deployment of new IoT devices to an existing IoT environment. The same is relevant
for interconnection of different IoT platforms [8]. To overcome this challenge, attempts at
addressing IoT interoperability through standardization activities have been undertaken [9].
In this sense, the authors of [10] prove that Service-Oriented Architecture (SOA) [11] is
one of the most suitable architectural paradigms to achieve interoperability in IoT systems.
By definition, interoperability is the ability of two or more systems or components to
exchange information and use the information that has been exchanged [12]. In [11], Marks
et al. define SOA as “a conceptual business architecture where business functionality or
application logic is made available to SOA users or consumers, as shared, reusable services
with exposed interfaces”. In this regard, the challenge is to pursue a strategy to support IoT
interoperability by introducing a SOA-based conceptual business architecture to orchestrate
the interactions between IoT devices within different platforms.

To solve the integration and interoperability problems of digital technological environ-
ments, the present research proposes an approach based on the use of software technology
designed for online computing, thus answer to the following research question: How can
existing software modules be integrated in an industrial factory with an existing system
without changing the current system’s architecture? The main contribution from this article
is a framework that facilitates the integration of different software modules while using
multiple services and/or different communication interfaces. It also allows the reuse of
these software modules in distinct scenarios in distinct domains. Therefore, the presented
research can be of use to facilitate the integration of existing IoT services and to improve
interoperability between IoT components.

When using IoT devices and services throughout global connectivity and accessibility,
security becomes a critical aspect. In fact, there is a risk that anyone may try to access the
IoT devices from anywhere at anytime, thus exposing them to cyberattacks against the IoT
applications and networks [13]. Therefore, this paper also considers related security and
safety issues.

Processes 2022, 10, 1782 3 of 25

This paper presents in Section 2 an overview of interoperability, SOA and security
concerns in the context of Industrial IoT (IIoT). In Section 3, we describe the solution and
explain the developed framework. Section 4 introduces a demonstration scenario as well as
the developed use case with different software modules. Finally, the results are presented
in Section 5, and Section 6 is a discussion of the insights from this work.

2. Related Work

Nowadays, the Industry 4.0 paradigm, along with the tight integration of various
Cyber Physical and IoT systems, focuses on interoperability and secure interconnection
among heterogeneous components of a system [14]. This section discusses relevant topics
related to integration and interoperability, and how SOA design can promote the seamless
integration of heterogeneous services.

2.1. IoT-Driven Integration

IoT plays a central role in Industry 4.0. As a matter of fact, IIoT is the employment of
IoT in industry, where sensors are embedded in all the components related to a manufac-
turing process [15]. These devices collect data that can be used to monitor and control the
factory’s processes, helping its efficiency, productivity or even the safety of the workers in
the factory. A wide range of IIoT applications have been released in different areas, with
some notable examples in economic, energy, engineering and industrial control, instrumen-
tation, manufacturing and transportation [16].

IoT is shifting how systems sense and acquire information from the environment,
resulting in the integration of multiple devices within the same system. In fact, IoT devices
are bridging digital and physical worlds. The full potential of IoT will be achieved when
everyday things can sense the environment and understand the context of the events
occurring within this environment to jointly act in collaboration with other things. Thereby,
IoT emphasizes interaction among the networked things to generate added value [3].
Moreover, users can access the information from IoT devices through the Internet, getting
notified and becoming empowered to take action to control the environment [17].

An IoT system requires some aspects/properties to be considered at the design phase
to enhance the advantages of interconnected objects in a network [13,18], such as:

• Adaptivity: IoT devices are often mobile, moving across wide geographical area, while
still needing to continue interacting with other assets in real-time [17]. For this reason,
communication devices should adjust themselves in new locations and collaborate
with the local things.

• Context-awareness: Systems and their components need to understand the context of
events to accurately adapt their actions to satisfy the users’ needs and requirements
and thus enrich the available services.

• Autonomy: Applications/IoT devices should be able to manage spontaneous interactions
when they move to new locations and get in other objects’ communication range [19].
These interactions should occur without or with minimal human involvement.

• Distributivity: IoT devices are intrinsically distributed, resource-constrained com-
ponents and often require middleware to function properly [20]. The distributive
approach helps reduce the overhead of centralized architectures, since IoT systems
have a vast number of devices that are constantly collecting and exchanging data over
the internet.

• Interoperability: In an IoT environment, heterogeneous devices, technologies and
applications should operate to achieve the goal of integration, a property of utmost
interest in Industry 4.0. Interoperability has the potential to make software components
or systems accessible, manageable and potentially linked despite their differences in
interface, execution platform and language [21].

Interoperability between different devices and applications becomes a major challenge
in IoT. The reasons range from different design patterns to the existence of a wide set of

Processes 2022, 10, 1782 4 of 25

technologies, both old and new, including a large number of incompatible communica-
tion protocols.

2.2. Interoperability in IoT

Interoperability has multiple dimensions to be considered. These dimensions have to
be addressed through different strategies that can assist in overcoming the interoperability
gaps and platform connectivity limitations to enhance collaboration among heterogeneous
applications and systems.

Interoperability among heterogeneous systems can occur in the following dimen-
sions [8]:

• Technical Interoperability: hardware/software components, platforms and systems that
allow machine-to-machine communication;

• Syntactical Interoperability: related to data formats;
• Semantic Interoperability: related to the meaning of contents.

These are the dimensions that an IoT platform has to handle to correctly exchange
data and pass information to other modules. An interoperable platform provides organi-
zations with the capability to exchange data across systems that rely on heterogeneous
infrastructures and ensures that these data are correctly interpreted.

The number of IoT platforms is constantly growing. However, most of these platforms
are narrowly focused on specific domains or applications [18]. Most of those platforms
were created for a specific domain or application, which results in a fragmented IoT land-
scape with many vertical IoT environments, which are rarely interconnected [18]. This
contradicts the basic IoT principle of interconnectivity, regardless of whether the platforms
are physically connected. This non-uniformity is an obstacle when application develop-
ers aim to establish cross-platform and cross-domain IoT solutions [9]. Moreover, some
architectures are designed based on existing IoT standards. However, the problem appears
with the growing number of standards that are not always compatible. This problem is also
caused by quick evolution of technology and the emergence of new hardware and software
paradigms [22].

Cross-platform IoT interaction is necessary when applications need to access different
IoT platforms to utilize data made available by them. To achieve this goal, developers
need extensive knowledge of each platform’s specific Application Programming Inter-
faces (APIs) and information models [9]. In line with this, the European Commission
and other international organizations have already developed domain-specific, poten-
tially open IoT platforms (some can be found in [8]) to facilitate such cross-platform
application development. Some examples of these IoT platforms are the IOT-A (https:
//cordis.europa.eu/project/id/257521), (accessed on 28 July 2022) an architectural ref-
erence model for IoT, or Butler (https://cordis.europa.eu/project/id/287901), (accessed
on 28 July 2022) a platform that integrates current IoT technologies and development
processes. Another example is the FIWARE platform initiative, which provides a set of
open-source modular components called enablers. FIWARE has the purpose of creating an
open-source cloud platform while boosting development and adoption of Future Internet
technologies in Europe [23] that would help developers to create software applications
using different software components that provide different functionalities. FIWARE allows
users to deploy enablers that are compliant with the FIWARE Context Broker, which is
used to manage context information of the platform or solution. These enablers can be
installed and configured only through command line interface using Docker or Kubernetes
functionalities [24]. These enablers provide services to be used by software developers in
different domains, such as manufacturing, health or energy.

It is thus far a fact that traditional IoT lacks uniform standardization such as that
found in communication protocols and sensing technology [25], and as a result, it can be a
challenge to ensure high levels of interoperability between all IoT modules. Moreover, in
this paper, we identify and address several IoT middleware-related challenges, namely:
(i) resource or service discovery that includes more than just simple IP address discovery,

https://cordis.europa.eu/project/id/257521
https://cordis.europa.eu/project/id/257521
https://cordis.europa.eu/project/id/287901

Processes 2022, 10, 1782 5 of 25

but also considers services semantics; (ii) security, privacy and trust mechanisms utilizing
authentication, encryption and access control [26]; and (iii) scalability of resource manage-
ment, resilience and on demand utilization, presuming that even if one of the software
modules fails, the system quickly adapts without significantly affecting user request pro-
cessing [27]. The next subsection presents an architecture standard that has been used to
cope with these IoT integration gaps.

2.3. Service-Oriented Architecture and IoT

SOA is an architectural style that uses a set of services in order to build complex
systems of systems [28] in which standalone applications and services can be linked to
other applications. SOA has been used in the industry and validated by many researchers
as a promising solution to support a variety of standards by the exposure of one or more
interfaces. The usage of loose software modules and its high flexibility can open new
horizons for business purposes and revolutionize the manufacturing processes [29]. These
software components, referred to as “services”, define independent units of software
modules, or a set of functionalities, responsible for specific tasks. They contain the code
and the necessary information to be used by the system in order to do a complete job [30],
which can be reusable by third-party applications and platforms without knowledge of
how they are implemented [31]. Thus, in SOA-based IoT systems, each device can have the
role as service consumer as well as the role of a service provider, interacting via compatible
APIs. This type of architecture allows systems to publish, discover or select a wide range of
services provided by independently deployed IoT devices to communicate and be used
by multiple applications across the system [32]. Additionally, SOA-driven systems have
the characteristic of service adaptivity, meaning heterogeneous services should be able to
interoperate without needing modifications.

In general, the most significant benefits from using SOA are the reuse of technology and
the agility to integrate new devices and modules in a “plug-and-play” manner according
to the system’s needs [33,34]. The reuse and maintenance of software modules enables, by
using small, independent interconnected services instead of complex monoliths, multiple
added values in general IT and cloud contexts: service reutilization, reduced complexity,
faster testing cycles and agile development due to fewer dependencies code-wise, and
less support required as a consequence of fewer bugs [34]. Thus, SOA’s goal is to allow
such a platform to link IoT applications and their services by uniform and structured
formats, as well as to enable abstraction of underlying implementation complexity. A
systematic literature review of SOA is available in [35], and a comprehensive analysis
of security on SOA-based IoT middleware systems is available in [36]. Similar to SOA,
another service-based architecture is Microservice Architecture (MSA). Both MSA and SOA
are generally distributed architectures that lend themselves to more loosely coupled and
modular applications by using service functionality. However, they represent different
architectural styles; for example, microservices are small, fine-grained services, while
services in SOA range in size from very small to large enterprise services. They also differ
concerning data sharing, as MSA uses a style where microservices share as little data
as possible, whereas SOA encourages the opposite concept of sharing as much data as
possible [37]. A thorough comparison between SOA and MSA is available in [38].

Zhu et al. [39] developed an ontology model that correlates IoT services with the
physical objects within the system. To use the developed semantic model, all IoT objects
must be defined within an ontology. Uviase et al. [40] presented theoretical research focused
on using an SOA design type to develop a highly scalable, extensible and fault-tolerant
integration framework to integrate IoT devices and systems. The main message that can
be extracted from the literature is that SOA can be used to ensure interoperability in the
IoT domain.

Different formal models and standards already exist within IoT that enable easy
integration and uniformization across IoT resources, such as W3C Semantic Sensor Network
Ontology (SSN) [41] and Web of Things (WoT) [42]; ISO/IEC 30161:2020–Requirements

Processes 2022, 10, 1782 6 of 25

of IoT data exchange platform for various IoT services or European Telecommunications
Standards Institute [43]; and European Telecommunications Standards Institute (ETSI)
Smart Applications REFerence ontology [44]. However, there is no common agreement on
which standard must be used for all IoT platforms to describe their services, in contrast
to, for instance, web services [45]. This poses a great challenge for integration of existing
services to be used by smart applications. Furthermore, according to the authors of [11],
service-level metrics may be used to increase the success of an SOA application for IoT.

The presented framework can act as middleware, providing the necessary abstraction
layer to expose the IoT resources through a predefined REST API. In the context of this
work, middleware is a software component that integrates heterogeneous computing and
communication devices, and supports interoperability within different applications and
services running these devices. It abstracts the complexities of the system or hardware and
hides the heterogenous interfaces. A general analysis of middleware within the IoT domain
can be found in [46–48].

2.4. Related Middleware Platforms

As mentioned before, IoT is considered a large-scale system that uses intelligent and
smart sensors and actuators that interact autonomously with minimal human intervention
and is connected to the internet. To this end, to have successful communication between all
IoT devices, they need to use a common language. As stated in a previous subsection, this
interoperability problem is difficult to solve through agreement on a universal standard.
For this reason, middleware can be used since it can provide interoperability among
incompatible devices and applications [49]. In the following, we summarize and discuss
the main characteristics of the most-relevant IoT middleware platforms considered for this
study, and a comparison of them is made in Table 1.

• Orion: Open-source component that allows the user to manage context information,
including update context, queries context, registrations and subscriptions. Developed
by the FIWARE foundation, it can be useful for providing functionalities for context
management and can be useful in use cases that involve data brokers between pro-
ducers (e.g., sensors) and consumers (e.g., smartphone applications). It has an NGSI
interface that allows users to make several operations, such as register, update and
query context information, as well as receive notifications when changes in context in-
formation take place (e.g., a sensor value has changed). This component has a Metrics
API that provides a few statistical data about their services. Orion also implements a
simple multitenant/multiservice model that ensures entities from one service cannot
be affected by other services [50].

• ETSI M2M: Set of standards provided by ETSI defining the entities and functions to en-
able interoperability between M2M services. The ETSI M2M architecture is agnostic to
underlying networks and includes two basic elements: Service Capability Layers and
Service Capabilities. The first functionality exposes the Service Capabilities to M2M
applications and should be implemented on top of devices and/or gateways [51]. The
second functionality provides generic M2M functions, analogous to GEs in FIWARE,
including communication management, application management, device discovery
and integration, etc. It also supports both the request–response and publish–subscribe
communication models [52]. According to the authors of [53], ETSI M2M has no
reference implementation, compared to, for instance, FIWARE. However, the authors
provide their implementation of an ETSI M2M broker and APIs and also benchmark
the ETSI M2M implementation against the FIWARE-based solution. ETSI M2M en-
ables connections between physical devices and their digital representations, called
Business Applications [54]. However, there is limited information on the possibility of
creating multiple instances of Business Applications.

• Ptolemy Accessor Host: Actor-based framework that relies on the notion of an actor
as a central element. In the context of this component, “actor” is used to specify a
software component that is triggered based on an input event and produces an output

Processes 2022, 10, 1782 7 of 25

event. One specific type of actor is called an “accessor”, which wraps a device or
a service in an actor interface [55]. Every accessor possesses an interface serving
as a local proxy and implementation encapsulating the API of a physical device
or remote service [26]. Accessors can form applications that are placed within the
accessor host, providing registration and discovery functionalities. Moreover, Ptolemy
provides user interface with drag-and-drop capabilities to connect actors and accessors.
Ptolemy Accessor Host supports instantiation functionality, which allows the creation
of multiple accessors within other accessors [56]. To the best of our knowledge, metrics
are not available on the Ptolemy platform.

• DeviceHive: Middleware designed to enable message exchange between smart devices
and client applications [57] that supports a wide variety of communication models,
such as publish/subscribe (through MQTT), Rest and Websockets [58]. It also supports
the abstraction or logical grouping of different appliances based on, for instance, their
location [59]. Authentication is accomplished using a JSON Web Token. DeviceHive
API is a service able to manage several resource types, for instance, the “Network”,
which is an isolation entity encapsulating multiple devices. However, the solution
does not provide metrics to assess API performance [60].

• NodeRED: Open-source middleware provided by IBM. The main element of the
NodeRED environment is called a Node, which is the visual representation of a block
of Javascript codes providing specific functionalities. Moreover, NodeRED provides
a library of different nodes with different functionalities, including, for instance,
MQTT nodes. The advantage of this middleware is the visual canvas that is used to
drag and drop different elements/nodes and to establish connections to compose IoT
applications [26]. A device or service has to posses the API as a node.js library or
module accessible by NodeRED to communicate with other devices or services. While
good for rapid prototyping, NodeRED does not possess service-discovery capabilities.
NodeRED contains a module counts and calculates the metrics per message topic.

• Ignition: Modular server-based middleware that combines the SCADA environment
and OPC UA communication [61]. Other modules that can be added on-demand
include databases, connectivity gateways, industrial control system security services,
charts, alarm dispatchers, etc. According to Inductive Automation—the company
that developed this middleware—Ignition has the following distinguishing features:
support for some SQL databases, synchronization of design and run-time, cross-
platform nature and simple deployment procedure [62]. This platform also enables a
wide range of metrics, including a dashboard to visualize statistics. Moreover, this
component allows decoupling of physical devices from applications, which enables
service isolation [63].

Table 1. Comparison of IoT middleware functionalities.

Name Communication
Interface Metrics Plug-and-

Play Instantiation Installed Service
Isolation User Interface

Orion NGSI Yes Yes No Yes No

ETSI M2M REST No No N/A Yes Option
available

Ptolemy
Accessor Host HTTP No No Yes Yes Yes

DeviceHive
EST,

Websockets,
MQTT

No No Yes Yes No

Processes 2022, 10, 1782 8 of 25

Table 1. Cont.

Name Communication
Interface Metrics Plug-and-

Play Instantiation Installed Service
Isolation User Interface

NodeRED HTTP, MQTT,
OPC UA Yes Yes No No Yes

Ignition OPA UA,
related APIs Yes Yes Yes Yes Yes

Proposed
Solution REST, NGSI Yes Yes Yes Yes Yes

The horizontal row heading in Table 1 lists the key functionalities for SOA-based
middleware components to allow connection with existing IoT modules. Each row of this
table enumerates the features of the most-relevant IoT middleware platforms considered
for this study, which were discussed in this section. Communication interface contains the
networking protocols and communication capabilities of the platform, which are used to
connect external modules. These protocols use a variety of communication models and can
be used for user-centric applications such as home automation, or for messaging purposes
between devices and to send/receive messages between sensor nodes [64]. In software
development, Metrics are measurable characteristics of the analysed software to quantify
consistency and quality of an asset and to plan, support progress tracking and identify
problems by software architects and developers [65]. Plug-and-Play, Instantiation and
Installed Service Isolation refer to the capability to connect to other modules, create multiple
instances of the module and specify a network isolation between modules, respectively.
These properties are useful in IoT systems as they need to interconnect with multiple
devices, and they must adapt to the surrounding environment. User Interface facilitates
visualization of the module’s properties and management. As depicted in Table 1, all
platforms lack some of the features we describe. Even though Ignition has the characteristics
we seek for integrating existing modular components, it does not connect some components,
such as FIWARE enablers, that have NGSI communication protocol, a key requirement for
this work.

2.5. Security and Safety Challenges

Since technological developments are emerging at a fast pace, more-tangible ap-
proaches must be taken to ensure security and privacy of user data within intelligent
systems adopted in business. Correct identification of more-tangible approaches address-
ing security and privacy challenges of IoT technologies is a necessary step towards the
establishment of a more reliable collaborative environment [66]. Given this, adequate
cybersecurity measures must be implemented to ensure immunity to the potential threats
that will arise in the near future. An additional challenge comes from the complex nature
of IoT systems with different security dimensions [67]. For usefulness to be maximized
and risk to be minimized, businesses and producers must work together to develop IoT
technologies that are secure by default, allowing their usage without endangering the
privacy of stakeholders.

The convergence of security and privacy domains is of great importance against
intellectual property and identity theft. This allows user authentication and prevents
manipulation of data stored on servers and other internet-enabled devices. An additional
threat is the use of web-integrated components such as actuators and sensors requiring
real-time data transmission that might be susceptible to man-in-the-middle attacks aimed
at modifying actuator action, causing damage to the infrastructure [68]. For instance, the
application of IoT in supply chain networks and manufacturing brings the ability to make
added-value decisions, but with the price of increased risk that sensitive data may be
exposed to adversaries if it is created and stored outside the system’s premises. Therefore,
risk management is needed for protecting critical infrastructure when the architecture of
the system has been defined [69].

Processes 2022, 10, 1782 9 of 25

In this regard, a strong focus is made on data security, as it might affect data-driven
operational decision-making, adding complexity to risk-management processes. Businesses
must, therefore, remain increasingly vigilant for possible risks attributed to the use of
newly introduced technologies that, besides having advantages, could also induce risks
and vulnerabilities that could threaten users’ data security and privacy [70].

IoT must be considered as a long-term investment for companies. A successful IoT
solution must be the one that implements a structured approach by identifying threats
and finding appropriate responses reinforcing security measures. Given the high volume
of sensitive data exchanged by IoT solutions and the critical requirement to process data
in real- or close-to-real-time, security is considered a critical factor for the success of IoT
solutions within enterprises.

One particular aspect of a more-tangible approach is privacy-enhancing technology.
This includes inter alia, a virtual private network (VPN) that should be established and
accessed solely by authorized users. However, the use of a VPN could hinder efficient data
exchange between third parties by increasing transfer time. This occurs through a reduction
of the routes of convergence, which increases the required time to update the necessary
routes for data transfer. The latter is prevalent amongst large enterprises employing Border
Gateway Protocol VPNs to ensure that sites in different locations are interconnected with
the same level of security [71]. The sensitive nature of connection stability amongst this
type of VPNs implies potential bottlenecks as the scale of the network increases, thereby
impacting an essential feature of intelligent interconnected systems and IoT solutions,
affecting the operation processes of an enterprise.

3. Solution Description

The framework presented in this work is based on an SOA-based conceptual ar-
chitecture that provides functionalities that allow the integration and uniformization of
enablers to be used by software applications. Enablers are open-source software com-
ponents developed to be easily integrated with third-party applications and providing
different functionalities. These modular components execute specific services that can be
used in multiple domains. As an example, Lagsaiar et al. [72] developed a system by using
existing software modules, an approach that was characterized by simplicity, reliability,
low cost and ease of construction. Thus, enablers are software components that provide
multiple services, developed either for general or specific usage in different domains, that
can be used by smart applications [73]. They can be connected to IoT sensors and actuators
or to data storage, acting as middleware to store and retrieve data. As service-oriented
software, enablers allow dynamic interaction with real-world devices and applications.
These software solutions can use different communication protocols, such as RESTful API,
NGSIv1 or NGSIv2 [74]. This same framework, which was designed to integrate different
enablers, was developed under the vf-Os project, the overall goal of which was to develop
a virtual factory Open Operating System (vf-OS) [75].

SOA-based systems are organized into horizontal technical layers, and their services
also follow this approach, being grouped according to their functional similarity (e.g.,
business services, device services or process services) [10]. The goal of this categorization
is to use it as a foundation to increase service characterization granularity. Based on this,
the presented work defines two types of enablers based on their maturity level, usage,
popularity and date of development

• Generic Enablers (GE): Software components from the FIWARE project. These enablers
provide base services that help applications use IoT devices and third-parties applica-
tions to process data and media in real-time on a large scale, perform Big-Data analysis
or incorporate advanced features for interaction with end-users. Usually, this type of
enabler must be approved by specific guidelines and public dissemination through
FIWARE channels [76].

Processes 2022, 10, 1782 10 of 25

• Specific Enablers: Set of software modules developed by other researchers to help
developers create applications that provide functionalities that are more specific to the
system’s domain. User instructions and software testing are not standardized.

As mentioned before, there is a diversity of protocols in the IoT domain, and to
deal with this challenge, this work presents the Enablers Framework (EF) component,
which acts like an interface proxy, allowing applications to use a unique REST API for all
registered enablers. This is a common approach in many IoT platforms [17] that allows IoT
inter-platform communication through middleware to connect non-interoperable services.
The presented framework explores this methodology to ease the integration between
REST applications and registered enablers, allowing them to be integrated into SOA-based
systems. This approach facilitates the usage of enablers to integrate such diverse solutions
during the application development phase. Figure 1 shows a functional architecture of EF.

Application 1 Application 2 Application 3 Application N

Enablers
Framework

Enabler 1 Enabler 2 Enabler N

Service
Service

Service
Service

Service
Service

Service
Service

Service

Figure 1. Interoperability between applications and enablers. Each enabler can have different services
that can be accessed by different applications only through the EF component.

In Figure 1, the EF is the central point of communication with all system applications
and enablers. Several applications can interact with different enablers, each one providing
unique services, including data acquisition from sensors. The EF manages the integration
of enablers through instantiation of new entities of available services. This enables a
protocol-agnostic approach for applications to communicate with IoT devices as well as for
replication of existing software components through instantiation. Enablers instantiation
allows a system to: (i) have a high level of fault tolerance; in other words, IoT devices can
continue to operate in the case of failure of one of the software modules; (ii) accomplish
tests on newly added industrial equipment on the fly, i.e., without affecting the production
process; (iii) reuse existing software modules for different applications for different domains;
and (iv) securely isolate IoT devices from system enablers (e.g., databases, system services,
etc.), meaning it is possible to instantiate multiple services on the same machine that are
not connected to each other by utilizing Docker, as presented in Figure 2. The figure shows
the Docker network architecture used by the EF. Its main goal is to allow communication
between registered enablers while isolating them from enabler subcomponents; “efi” is
the private network for all EF subcomponents, and “efn” is the network that allows
communication between the Request Handler component (presented in next subsection)
and the main container of each enabler. Each time an enabler is installed, an internal
network (enablerN internal) is created for that enabler, encapsulating the containers for all
the enabler’s subcomponents. The creation of a private network for each enabler improves
the security of the system, as it separates the internal component(s) of the enabler (e.g.,
an enabler can have a database, a user interface or a data-filtering component). Thus, the
proposed framework operates as an intermediate isolation and protection module for the
IoT system.

Processes 2022, 10, 1782 11 of 25

Figure 2. EF instantiation networks. The main enabler module can only be accessed through the
Request Handler, an EF submodule.

3.1. Software Architecture

The architecture presented in Figure 3 represents the internal structure and inter-
communications of the EF components.

Enabler Framework
Storage

Framework
Configuration

Enabler Access
Services

Performance
Request Handler

Docker API

Performance
Measurement

Service Proxy

NGSI1

REST

Enabler Registry

Enabler
Deployment

Service
Discovery

Request
Controller

Enabler
Registry

Enablers Registry
Framework Configs

Instance
Management

Config
Manager

Performance Management

NGSI2

Application
Enabler Access

Monitoring
Services

Instance
Management

User/Admin

CRUD
Enabler
Details

Configurations
Management Instance

Management

Access
Functionality

Enablers
Information

Performance
Details

Manage
Instances

Enablers
Services

PerformanceInvoke
Service

Docker
Management

Invoke
Enabers
Service

Access
Enabler

Enabler(s) Application(s) Dashboard Environment
Setup

Figure 3. EF internal components and its interactions with external applications and modules.

In Figure 3, the boxes at the bottom represent the system’s components that can
interact with the EF. These can be: (i) enablers, which provide the diverse services to be

Processes 2022, 10, 1782 12 of 25

used by the applications; (ii) a dashboard, which displays metrics based on historical
EF data in order to map usage characteristics and track possible errors that might occur
during the enabler’s run-time; (iii) the environment setup, which can manage the required
instances of enablers to be used by the applications; and (iv) the application, which offers
the system’s functionalities to the final user. The yellow boxes represent the interfaces
between EF internal components and external services. These access points have a distinct
and straightforward API to simplify their usage by the application developer. The purple
boxes represent user interfaces, allowing the administrator (Admin) to configure and access
EF data. The black arrows represent the interactions among various components and
services. Although these arrows presume different data responses, such as data transfer
confirmations or errors, they are not represented on the EF architecture diagram to simplify
its representation. The interactions of EF’s internal components, represented by orange
boxes, need to be in the same environment to be more efficient. The internal components
are responsible for the following functionalities:

• Enabler Registry: This module allows developers to register a new enabler or to search
for an available enabler. Moreover, EF is responsible for providing instruments for
performing CRUD (create, read, update and delete) operations. This module also
contains a Docker management unit that allows the Admin to install new enabler
instances and allows the configuration of various parameters for proper functioning
of enablers. Enabler Registry could also use Kubernets to deploy and manage the
enabler’s instances; however, this software is very complex and brings a heavy load
into the system. Thus, researchers suggest Kubernets works best for deploying com-
plex applications; otherwise other orchestration tools such as Docker management are
more appropriate [77].

• Storage: Persistent storage is provided by on-premise storage that contains all enabler
information and the configuration specifications of the EF. This storage is a PostgreSQL
database, and all data management operations performed over EF components are
based on ORM (object–relation mapping), which reduces the complexity of access-
ing the database [78]. ORM functionality is available through the library of static
data models.

• Request Handler: This module implements all necessary functionalities for translating
application requests to the enablers that are made available by the EF. The internal
submodules parse the requests and create a suitable communication channel for
accessing the functionalities of the enablers and build the necessary response message
based on the results of function invocation. This module uses the enabler technical
details from the registry and has suitable proxies to invoke the services of the enabler
as requested by the application. The current module allows integration of services that
use NGSIV1, NGSIV2 and REST protocols because they are the interfaces required
for vf-OS. Nonetheless, other protocols can be integrated into the Request Handler
module to allow interoperability of services with other interfaces.

Taking into account that the EF submodule is responsible for making requests to
the registered enablers, it can be configured to limit the number of requests to these
enablers. This security measure is managed by the EF configuration GUI, which allows
the administrator to define a security layer and control request throughput. This central
module provides access to the registered enablers and also measures the time the enabler
took to respond and any enabler errors or technical information. This information is sent
to the enabler registry submodule to be associated with the enabler’s registry information
and become accessible to a monitoring service that will track possible service errors.

3.2. Enabler Data Structure

This subsection focuses on the granularity that an enabler component can have.
Figure 4 represents the main classes of enablers and their hierarchical structure. Although
this diagram was made for enablers, this object data model can be applied to any ser-
vice/application deployed in an IoT environment. A software component possesses one or

Processes 2022, 10, 1782 13 of 25

multiple services (identified by their unique identifier), and it can have multiple versions
and instances deployed and being used by the system.

Service
<PK> id: integer
<FK> versionId: integer
name: string
description: text
bodySchema: json
outputSchema: json
urlSchema: json
headers: json
url: string
method: enum [POST,
 GET,PUT,POST,DELETE]
isSemanticUrl: boolean
metadata: json

Qualification
<PK> id: integer
<FK> versionId: integer
type: enum [Generic,Manufacturing
 VfOsEnabler,other]
verified: boolean
deployable: boolean

Enabler
<PK>name: string
description: text
metadata: json

Version
<PK> id: integer
number: string
<FK> enablerName: string
description: text
protocol: enum [NGSIv1, NGSIc2, REST]
composeUrl: string
dependencyEnablerName: string
dependencyVersionNumber: string

Instance
<PK> id: integer
<FK> versionId: integer
name: string
description: text
url: string
port: integer
access: enum [Private, Public]
status: enum [Running, Installing, Error]
autoInstall: boolean

Metric
<PK> id: integer
<FK> instanceId: integer
<FK> serviceId: integer
vapp: string
frameworkExecTime: integer
enablerExecTime: integer
status: enum [Success, Error]
errorMessage: string
requestSize: integer
responseSize: integer
sentToDashboard: boolean
requestTime: timestamp

1
N

1

1 N

N

1

N

UniqueContrain:
(VersionNumber, EnablerName)

UniqueContrain:
(VersionId, ServiceName)

UniqueContrain:
(VersionId, InstanceName)

Figure 4. Enabler data structure class names and their relations. Attributes and parameters are not
presented in order to simplify the diagram.

A description of the classes represented in Figure 4 is provided below:

• Enabler: Contains information that identifies one enabler. It contains a name that must
be unique to avoid conflicts when the application is accessing the IoT software asset.

• Version: Each time a software component changes, it is a good practice to change its
version number. This is due to the fact that some updates can impact service execution,
such as different APIs or internal behaviour changes. To prevent interoperability
problems when a software component is updated, the Enabler class is compatible with
multiple versions.

• Qualification: Provides stability and trust for the associated version. Each time a new
version is added, a specialized authority, e.g., security admin or software developer
chief, must validate and confirm that this new version is working and can be used for
future applications.

• Service: All available services from the particular version of a particular enabler’s
version are instances of this class. For each service, it is possible to specify the required
inputs to execute the service, thus facilitating service execution. This class contains
multiple fields (e.g., input headers, required URL parameters and input body schemas)
to allow the specification of a wide range of services.

• Instance: Instances are software components that have all functionalities of the corre-
sponding enabler. This feature allows replication of software components or having
multiple versions of the same enabler within the same IoT system, as examples, to
have software redundancy or software compatibility, respectively, without changing
any software code.

• Metric: Metrics refers to quantitative measurements for quality engineering. This
SOA characteristic is important when developing applications to guarantee Quality
of Service, as it provides information on the availability of a service and also allows
choice between identical services that have different response times.

Programmatically, the mentioned classes were developed using the Sequelize (http:
//docs.sequelizejs.com, (accessed on 28 July 2022)) library—an ORM framework that
allows developers to define static models for all information that is stored in a database.
This high-level abstraction enables management of objects, inheritances and properties
related to the service execution without using SQL queries. This database management
system is used by the EF only to abstract DB-specific implementation details and facilitate
data access.

http://docs.sequelizejs.com
http://docs.sequelizejs.com

Processes 2022, 10, 1782 14 of 25

3.3. Instantiation of Enablers

Instance creation and installation are performed by establishment of a Docker container
from the enabler’s image, as described in [79]. To run an enabler on a personal computer
or public server, it is necessary to have access to its virtual instance. The Docker solution
allows instantiation of enablers, following an approach similar to the one for microservices
described in [80] presenting an alternative to Virtual Machines. Docker is a platform that
lets users run applications in an isolated environment, i.e., it is possible to run multiple
containers at the same time on the same host. Using this approach, it is possible to package
any component into isolated containers with required code, runtime environment, system
tools, system libraries and settings all bundled together. This strategy can provide efficient,
lightweight, self-contained software packages and guarantees that software always runs
the same way regardless of where it is deployed. A Docker-based approach ensures enabler
instantiation, granting that all enablers can be installed, thus contributing to the integration
of the overall system.

To perform the functions mentioned above, the EF possesses specific Docker services,
allowing it to deploy Docker instances. Taking into consideration that EF is used as a bridge
between external services (enablers) and applications, deep analysis (e.g., software tests
and documentation analysis) of the enabler’s communication protocol is recommended in
order to guarantee interoperability between components. Figure 5 illustrates the modular
approach for Dockerisation in IoT using software-based solutions.

Dockerization

Enabler A Enabler A
Customization

Enabler A Enabler A Enabler A

Enablers
Framework

Application
1

Application
2

Application
3

(a)

Dockerization

Enabler A
v1

Enabler A
v1

Enabler A
v2

Enabler A
v2

Enablers
Framework

Application
1

Application
1

(b)

Figure 5. Dockerisation within EF: (a) enabler Dockerisation and replication on an IoT environment;
(b) an application can choose the version that is compatible.

Figure 5a represents the capability for replication of enablers and their services. First, it
is necessary to preconfigure the enabler and then upload it into a Docker Hub. Afterwards,
the EF will download and install that preconfigured enabler. In the end, each application
has the possibility to instantiate its enabler. This contributes not only to customization
of their inner content, but also improves throughput by having available service replicas
of the same enabler. Moreover, from a security perspective, major IoT environments use
external services to compute or store sensor data. In this regard, there is a need that critical
components or functions are replicated and have high availability to increase reliability of
the system by ensuring components are always available to perform their actions.

Figure 5b shows how an application can use other versions of the same enabler.
By having accessible and integrated old and new enabler versions, the developer of an
application can choose and test different versions of the same component. In this fashion,
there is the opportunity to validate that a new version of an enabler does not negatively
affect the application (e.g., unstable versions and revoked functionalities). In software,

Processes 2022, 10, 1782 15 of 25

new versions might not only bring the new and upgraded features related to the core
functionality, but can also include security improvements.

3.4. Enhancing Security with Enablers Framework

In the proposed scenario, two different components responsible for security are used,
as mentioned in the next subsection. Security has always been a matter of extreme rele-
vance as a result of the increased use of intelligent systems dealing with sensitive data by
businesses in various industries worldwide.

An alternative type of privacy-enhancing technology that ensures data integrity is
Transport Layer Security (TLS). This type of security protocol provides enhanced privacy
and data integrity between two networks. The use of such a protocol improves the pri-
vacy of users and the confidentiality of sensitive data exchanged between intelligent IoT
systems [81]. The proposed data-middleware enablers for security, presented in the next
subsection, provide this security feature by enabling TLS on the message broker. Thus,
IoT technologies will be viewed by enterprises as a solution with greater integrity while
maintaining added value since business operations would be optimized without the risk of
compromising sensitive data.

However, there are some implications related to the utilization of existing security-
and privacy-enhancing enablers by EF. The most important challenge is the customization
and adoption of security-enhancing components by different applications of the system
that have their specific interfaces to access security functionalities. One possibility to over-
come this implication is to integrate the EF with the Zero-Defects Manufacturing Platform
(ZDMP) [82] so that the EF can use the security mechanisms implemented within ZDMP.
ZDMP is a European manufacturing project that focuses on using different technological
concepts, including IoT, to improve the quality assessment process in the manufacturing
domain. Moreover, it provides a platform on which different services are available, includ-
ing ones addressing security and privacy issues. All security functionalities are aggregated
by the Security Command Centre (SCC) and can be managed/administrated from within
the SCC by authorized users. The following core security issues are addressed by ZDMP
security components:

• Secure Communication: This issue is addressed by withdrawal, renewal and issuing of
digital certificates to enable secure data exchange between system components and
external resources. All components within the system environment should possess
a certificate for secure communication with other components. Thus, only authentic
users and assets are allowed to exchange data and to be sure that data are genuine.
Certificates are needed both to encrypt and authenticate communication channels and
transmitted data.

• Secure Installation: Considering the potential risks third-party applications present
to an IoT system, there is a necessity to use mechanisms to minimize these security
risks, both for data and infrastructure. In this regard, the security measures provided
are: (i) signature verification, (ii) behaviour monitoring during application run-time
to detect any deviations or anomalies, and (iii) security policy management to limit
accessible data to the minimum required by the service/application.

• Authorization and authentication: Authentication is the process of validation of user
or asset identity, while authorization starts afterward to verify if the authenticated
person/asset is allowed to access the requested resources. Authentication and autho-
rization management is available from within the SCC, while the system assets can
acquire functionality using the REST API. The authorization process relies heavily on
OAuth 2.0 protocol combined with Role-Based Access Control and Attribute-Based
Access Control.

ZDMP follows the recommendations described within the General Data Protection
Regulation (GDPR), to ensure privacy perseverance. Based on this, ZDMP acts in accor-
dance with the following principles:

Processes 2022, 10, 1782 16 of 25

• “Privacy by design”: A key principle that is applied to all activities involving the
processing of personal data. This presumes the introduction of data protection from
the very beginning the design of the product, service and application. This principle
is applied for all the cases where ZDMP or its partners have the role of data controller,
i.e., “the natural or legal person, public authority, agency, or another body which,
alone or jointly with others, determines the purposes and means of the processing of
personal data” [83].

• “Privacy by default”: This is applied to all activities involving the processing of personal
data. This means that all the partners involved in ZDMP implement and ensure
collection of only the necessary personal data for all the activities they are involved
as controllers in. Thus, each process involving personal data processing is checked
for the possibility of decreasing the personal data required to reach the same or a
comparable result.

4. Methods for Prototypical Implementation of an IoT Scenario

The availability of data is a key element for IoT applications [13]. In IoT, data mainly
refer to data from sensors or any network infrastructure relevant for the applications,
bringing opportunities for devices, services and users to share and exchange information
over the network. As mentioned before, to ease this interoperability between IoT compo-
nents, the reutilization of existing services allow integration of multiple software modules
and their use on different domains. Thus, this section presents an industrial scenario
to demonstrate the applicability of the proposed EF for IOT applications development
according to such characteristics as multiple software module integration and reutilization.
Additionally, this scenario may be applied to any other IoT domain, such as agriculture,
domotics or healthcare.

4.1. Industrial Scenario

The proposed scenario is based on the architecture presented in Section 3.1, making
use of the data from sensors to manage a supply chain within an industrial environment,
represented in Figure 6. Taking advantage of sensors placed on different locations of the
factory, the management of products can be significantly improved. A particular example
focuses on scheduling when the final product is ready to be delivered to the customer.
This figure contains real-time data applications that are responsible for executing a set of
services for specific use-cases, presented in Section 4.3. The collected data are also used by
internal components to trigger alarms when a specific threshold is crossed. The authors
also take into consideration the security principles that are important and necessary for an
industrial scenario in order to prove the applicability of the proposed framework.

As depicted in Figure 6, the industrial applications, represented by green tabs, use dif-
ferent enablers, represented by blue tabs, and the external module is represented by a grey
tab. The arrows interconnect the enablers/components and industrial applications. The
colour of these arrows, namely yellow and purple, corresponds to the specific application,
Supply Analytic and Product Alarm, respectively. The black arrows stand for the allowed
interactions between the software modules of the proposed scenario.

Integration of these components is a challenging task because each dependent module
has a different communication protocol and a different API. To overcome this interoper-
ability problem, all applications use the EF as a bridge between industrial applications and
corresponding enablers/components.

Processes 2022, 10, 1782 17 of 25

Data
Middleware Message queue

OrionNotification
Enabler

Enablers
Framework

STH IoT Agent

ZD
M

P
Se

cu
rit

y
C

om
m

an
d

C
en

te
r

Au
th

en
tic

at
io

n
an

d
Au

th
or

is
at

io
n

Se
cu

re
C

om
m

un
ic

at
io

n

Data
Processor Message queue

OrionNotification
Enabler

Enablers
Framework

STH IoT Agent

Au
th

en
tic

at
io

n
an

d
Au

th
or

is
at

io
n

Se
cu

re
C

om
m

un
ic

at
io

n

IoT Sensors

Product
Alarm

Supply
Analytic

Figure 6. Industrial scenario using enablers to create an IoT environment. Both ZDMP and enablers
can be accessed by one software module, EF, that provides the necessary services for the IoT system.

4.2. Components

The components that are involved in the proposed scenario were selected based on
their relevance for the vf-OS project and security features adopted from ZDMP. These
components are represented in Figure 6 by blue and grey tabs, and their descriptions are
listed below.

• Message Queue and Data Processor: Responsible for communication and data-flow
management between the connected applications and IoT sensors. They are composed
of a RabbitMQ (www.rabbitmq.com, (accessed on 28 July 2022)) message broker and
Data Processor grey box from Figure 6. The message queue receives all data from
the enablers and redirects them to the correct receivers though the Data Processor
component. The modules that use this messaging functionality have access to the
software library, which provides functionalities for communication with the broker
using the AMQP (www.amqp.org, (accessed on 28 July 2022)) protocol. This protocol is
a middleware messaging standard, and it can be applied following publish/subscribe
or point-to-point communication patterns.

• Enablers Framework: Middleware component responsible for the integration of enablers
so that different enablers can be uniformly accessed and utilized.

• Orion Context Broker: GE that allows management of context information. This enabler op-
erates with the notions of entity (e.g., house, room, or car) and a set of attributes intrinsic
to the entity with the capability to query, update and subscribe established entities.

• Short-Time Historic (STH): A GE that manages (stores and retrieves) historical and
aggregated time-series data. It reflects the changes in the context data, for instance,
updates of attribute values.

• IoT Agent: GE used to manage connections of edge devices, such as sensors, providing
corresponding APIs. The sensors are connected with a driver module, a component
that is responsible for interpreting the different sensor protocols in order to connect to
the message broker.

• Notification Enabler: Specific enabler component that provides a notification functional-
ity based on predefined rules, for example, if the room temperature is higher than a

www.rabbitmq.com
www.amqp.org

Processes 2022, 10, 1782 18 of 25

specific value. If these rules are triggered, the user will be notified through an HTTP
call or by email [84].

• ZDMP Security Command Center: Two specific enablers that were developed for ZDMP
that address the following security concerns:

– Authentication and Authorization: This enabler is used to provide authorization and
authentication for users and assets (other enablers and edge devices). The enabler
can: (i) store authentication credentials, (ii) issue, after successful authentication,
and store access tokens, (iii) store logs of all authentication attempts, (iv) manage
the access policy for the registered assets, and (v) detect suspicious activity while
monitoring communication among users and assets.

– Secure Communication: This enabler addresses the issuing and revoking of digi-
tal certificates for secure communication among users and assets, both internal
and external. The enabler includes a Certification Authority and a Registration
Authority. The secure communication enabler is tightly coupled with the authen-
tication and authorisation enabler, so that authenticated users or assets can get
corresponding digital certificates to collaborate with each other.

4.3. Applications

The applications involved in this scenario are represented by a green application frame
in Figure 6, and their descriptions are provided below:

• SupplyAnalytic: All sensors from the environment generate large amounts of data,
which are useless unless analysed and interpreted. This application uses the data
gathered from the sensors deployed in the physical environment to know the past and
current supply chain context. With this information, it is possible to determine how the
product evolves over time and, in case of success or failure, repeat or avoid past pro-
duction methodologies accordingly. The enabler responsible for context information
management receives data from sensors to simplify interpretation. Moreover, another
enabler stores historic data. When actuators are involved, the IoT agent component is
used to automatically trigger the control output.

• ProductAlarm: The real-time size of each product from a factory production line is
used as an input for this application. Data preprocessing (filtering, compression and
aggregation) is then performed to examine the status of the production line. According
to the factory’s current context values, if the product has not reached a predefined size
threshold, an email is sent to the responsible parties. This product-monitor application
can be used to detect and prevent faulty products in a production line when machinery
calibration is required. Many factory machines require calibration when specific
problems occur, and if it is not done quickly, the output might be incorrect. In a factory,
the late detection of these problems can lead to severe economic losses.

5. Results

The proposed architecture from Section 3.1 was validated in an industrial scenario by
resorting to already-developed modules, i.e., GEs and specific enablers, with the objectives
of accelerating the development of new applications, reducing the cost of creating applica-
tions from scratch, and seamlessly integrating factory devices and factory data analytics by
utilizing EF functionalities. The two applications and enabler instances presented in this
section were deployed on the same machine and using, when necessary, the same enabler
instance. This is due to the fact that the presented scenario covers the same IoT system, so
the data are freely shared among all applications. Furthermore, all enablers, their versions
and instances were registered on the EF and were available to internal and external users.
This registration allows central and common access to the enabler services by the developer
of the application.

As developers start to integrate the inner components of their IoT applications, it is
helpful to know how the components behave, e.g., their response time or their availability
and error handling. Figure 7 shows the Enabler Registry user interface from EF with all GEs

Processes 2022, 10, 1782 19 of 25

described in Section 4.2 that were involved in the proposed scenario. This main page allows
EF configuration and the registration of new enablers to be used within the IoT system.

Figure 7. Enabler Registry management of enablers and their services.

One of the purposes of EF is to provide awareness to the developer during the run-time
of the enabler through different measurements, as illustrated in Figure 8. These metrics
indicate the execution time of the enabler, explore if any errors occurred, and provide data
size and run-time duration. As such, these measurements can indicate the successfulness
of enabler integration and usage.

Figure 8. Measurements of enabler services through quantifiable and countable characteristics.

In the next step, configuration of all enabler instances and security components is
accomplished. For example, the Notification Enabler component is configured, meaning
the product threshold is set so that every threshold violation triggers an alarm, e.g., if
the size of a product from a production line is not higher than a predefined measure-
ment. The application scenario presented in Section 4.3 addresses the steps represented in
Figures 9 and 10. As such, Figure 9 shows an output example of an Orion enabler based
on a sensor value. The integration of this enabler allows the creation of applications that
use contextual information to describe and act according to the context defined by the
user, the system equipment and the surrounding environment. Figure 10 is an example of

Processes 2022, 10, 1782 20 of 25

how the application integrates the information from the IoT (sensor attribute) and sends a
notification by means of the Notification Enabler to the target user. Here, the application
is registered at the Notification Enabler, and run-time configurations are made (e.g., the
factory supervisor email is defined). Then, the context of the factory is acquired, and these
values are submitted to the Notification Enabler to trigger an alarm if the previous values
exceed the threshold.

{
 "contextResponses":[
 {
 "contextElement":{
 "type" : "Sensor",
 "isPattern" : "false",
 "id" : "Sensor1",
 "attributes":[
 {
 "name" : "value",
 "type" : "int",
 "value" : "37"
 }
]
 },
 "statusCode" : {
 "code" : "200",
 "reasonPhrase" : "OK"
 }
 }
]

}

Figure 9. Orion sensor information after receiving data from IoT agent.

Figure 10. Example of the execution of a service using EF; in particular, sending a notification based
on a sensor value.

6. Discussion

The IT infrastructure of industrial and enterprise environments has always been evolv-
ing. Since industrial machinery commonly used in factories needs to be enhanced over time
to add functionalities and to improve those already available, their hardware/software
must also be adjusted to these changes, which can be seamlessly made through chang-
ing/adding new components to the process workflow [85]. Yelamarthi et al. [86] claim that
most of the existing IoT architectures are not prepared to be used in various application
domains. To overcome this adaptation problem, the authors propose a modular IoT archi-
tecture that can be configured for different domains, such as Smart Homes or Smart Cities,
industrial environment control for energy usage optimization and automation, agriculture
for soil and temperature monitoring, healthcare for monitoring patient physiological state,
or remote motion tracking [85].

In order to integrate IoT components within an industrial system, a layer that provides
the necessary abstraction from the technical details of existing services is needed to reduce
the complexity of the system components for the external developers. Thus, this abstraction
layer serves as middleware to provide an intermediary layer between applications and
services provided by the IoT platform. Development of such an abstraction layer requires
the following implementation-level concerns to be considered [13]:

• Programming abstraction: The API for application developers must be easy and intuitive
to use. When developing the middleware, programming paradigms and interface
types must be well-defined. The abstraction level specifies how the user views the
system (e.g., individual node/device level). The appropriate programming paradigm

Processes 2022, 10, 1782 21 of 25

simplifies the processes of modelling and programming, and the interface type defines
the communication style and must be similar to the services to be more intuitive.

• Service-based: The process of adding new functions to IoT middleware has to be flexible
and easy. To have the seamless integration of different components, the interfaces of
those components must be standardized to facilitate interoperability [87]. It is also
mandatory that each IoT module is uniquely defined, enabling discoverability within
the object’s network [17].

As the software industry is moving towards service-oriented integration, multiple
services that use specific communication protocols co-exist; vivid examples are RESTful
APIs or JSON RPC-based interfaces. For this reason, a service abstraction layer in the IoT
architecture is rather important to allow interoperability between an IoT application and all
available services, assuring correct information exchange. Thus, the presented framework
can help in this interoperability process by offering such a common interface regardless of
the system, i.e., REST API. This methodology allows new devices or software components
that rely on different interfaces to still be able to communicate without affecting the con-
sumers or additional integration efforts. As a result, any application that can communicate
with the EF can also use the EF-registered services. Additionally, by introducing some met-
rics about the running services, such as execution time or error messages, administrators
have improved knowledge about the services that are running on the system. As a result,
the EF contributes to the service layer of SOA while allowing comparison, deployment and
analysis of new services entering the existing system.

In our opinion, a big advantage of adopting IoT is the opportunity to make use of
data-rich environments to produce new services for citizens, industry or even primary
sectors (e.g., agriculture and aquaculture). The amount of data generated comes from
a high number of internet-connected devices, which, subsequently, impose additional
security and safety challenges to be managed. The potential security threats might cause
significant consequences related to incorrect decisions in the product value chain, causing
monetary losses.

The research presented in this document covers some aspects of IoT platforms, such
as sensor data, security, integration and interoperability of software services containing
different interfaces or communication protocols between different IoT components. The
presented work can help other researchers and practitioners to understand possible ways
to improve the interoperability of IoT solutions and create IoT applications that are useful
for daily life. The presented framework is not static, and for this reason, if an IoT system
requires integration of components with other communication interfaces that are not
available in the EF, these components can be improved to allow the correct exchange
of information.

The presented scenario is based on a multilayer generic and modular architecture. The
scenario was developed and tested within the research performed in the scope of vf-OS
and ZDMP H2020 research projects; we will formalize the definitions of specific enablers
for ZDMP components, and they will be integrated with the EF in future work. As a final
consideration and prospect for future work, it is considered that the applications presented
in this document and those being developed are examples of the immense potential of IoT
devices using a SOA-based framework. As demonstrated through this work, a service-
oriented architecture provides high flexibility and integration functionalities, which are
important for both academia and industry to conduct future analysis and investigations
in the field of interoperability. Such an environment has multiple applications, such as
those hereby presented and scalability to any other business activity where connectivity is
essential and the IoT is a driver of innovation and real-world data collection and actuation.
The present work aims to widen such a vision and foster new opportunities and new
applications for IoT-based applications.

Processes 2022, 10, 1782 22 of 25

Author Contributions: J.G., F.L.-F. and J.S. conceived the presented idea. J.G., A.A.N. and D.G.
developed the theoretical analysis. F.L.-F. and J.S. supervised the findings of this work. All authors
provided critical feedback and helped shaping the research, discussed the results and contributed to
the final manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by funds provided by the European Commission
in the scope of FoF/H2020-723710 vf-OS, ICT/H2020-825631 ZDMP projects, and by the FCT—
Fundação para a Ciência e a Tecnologia in the scope of UIDB/00066/2020 related to CTS—Centro de
Tecnologia e Sistemas research unit.

Data Availability Statement: The framework presented in this work is available at https://code.
grisenergia.pt/vfos/enablers-framework (accessed on 28 July 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

API Application Programming Interface
GE Generic Enablers
IIoT Industrial IoT
IoT Internet of Things
MSA Microservice Architecture
ORM Object-relation Mapping
SOA Service-Oriented Architecture
SCC Security Command Centre
TLS Transport Layer Security
VPN Virtual Private Networks
ZDMP Zero-Defects Manufacturing Platform

References
1. Blackstock, M.; Lea, R. IoT interoperability: A hub-based approach. In Proceedings of the 2014 International Conference on the

Internet of Things (IOT), Cambridge, MA, USA, 6–8 October 2014. [CrossRef]
2. Khan, F.; Tarimer, I.; Taekeun, W. Factor Model for Online Education during the COVID-19 Pandemic Using the IoT. Processes

2022, 10, 1419. [CrossRef]
3. Li, S.; Xu, L.D.; Zhao, S. The internet of things: A survey. Inf. Syst. Front. 2015, 17, 243–259. [CrossRef]
4. Saidu, C.; Usman, A.; Ogedebe, P. Internet of Things: Impact on Economy. Br. J. Math. Comput. Sci. 2015, 7, 241–251. [CrossRef]
5. Manyika, J.; Dobbs, R.; Chui, M.; Bughin, J.; Bisson, P.; Woetzel, J. The Internet of Things: Mapping the Value Beyond the Hype;

Technical Report; McKinsey Global Institute, McKinsey & Company: Hong Kong, China, 2015.
6. Xie, J.; Chen, C. Supply chain and logistics optimization management for international trading enterprises using IoT-based

economic logistics model. Oper. Manag. Res. 2022. [CrossRef]
7. Jiang, Z.; Chang, Y.; Liu, X. Design of software-defined gateway for industrial interconnection. J. Ind. Inf. Integr. 2020, 18, 100130.

[CrossRef]
8. Fortino, G.; Savaglio, C.; Palau, C.E.; de Puga, J.S.; Ganzha, M.; Paprzycki, M.; Montesinos, M.; Liotta, A.; Llop, M. Towards

Multi-layer Interoperability of Heterogeneous IoT Platforms: The INTER-IoT Approach. In Integration, Interconnection, and
Interoperability of IoT Systems; Internet of Things (Technology, Communications and Computing); Springer International Publishing:
Berlin/Heidelberg, Germany, 2018; pp. 199–232. [CrossRef]

9. Noura, M.; Atiquzzaman, M.; Gaedke, M. Interoperability in Internet of Things: Taxonomies and Open Challenges. Mob. Netw.
Appl. 2019, 24, 796–809. [CrossRef]

10. Costa, B.; Pires, P.F.; Delicato, F.C. Towards the adoption of OMG standards in the development of SOA-based IoT systems. J.
Syst. Softw. 2020, 169, 110720. [CrossRef]

11. Marks, E.A.; Bell, M. Service-Oriented Architecture; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [CrossRef]
12. Kosanke, K. ISO Standards for Interoperability: A Comparison. In Interoperability of Enterprise Software and Applications; Konstantas,

D., Bourrières, J.P., Léonard, M., Boudjlida, N., Eds.; Springer: London, UK, 2006; pp. 55–64. [CrossRef]
13. Razzaque, M.A.; Milojevic-Jevric, M.; Palade, A.; Clarke, S. Middleware for Internet of Things: A Survey. IEEE Internet Things J.

2016, 3, 70–95. [CrossRef]
14. Lu, Y. Industry 4.0: A survey on technologies, applications and open research issues. J. Ind. Inf. Integr. 2017, 6, 1–10. [CrossRef]
15. Tran, K.P. Artificial Intelligence for Smart Manufacturing: Methods and Applications. Sensors 2021, 21, 5584. [CrossRef]
16. Chen, Y. A Survey on Industrial Information Integration 2016–2019. J. Ind. Integr. Manag. 2020, 5, 33–163. [CrossRef]

https://code.grisenergia.pt/vfos/enablers-framework
https://code.grisenergia.pt/vfos/enablers-framework
http://doi.org/10.1109/iot.2014.7030119
http://dx.doi.org/10.3390/pr10071419
http://dx.doi.org/10.1007/s10796-014-9492-7
http://dx.doi.org/10.9734/BJMCS/2015/14742
http://dx.doi.org/10.1007/s12063-022-00254-y
http://dx.doi.org/10.1016/j.jii.2020.100130
http://dx.doi.org/10.1007/978-3-319-61300-0_10
http://dx.doi.org/10.1007/s11036-018-1089-9
http://dx.doi.org/10.1016/j.jss.2020.110720
http://dx.doi.org/10.1002/97811 19201700
http://dx.doi.org/10.1007/1-84628-152-0_6
http://dx.doi.org/10.1109/JIOT.2015.2498900
http://dx.doi.org/10.1016/j.jii.2017.04.005
http://dx.doi.org/10.3390/s21165584
http://dx.doi.org/10.1142/S2424862219500167

Processes 2022, 10, 1782 23 of 25

17. Hejazi, H.; Rajab, H.; Cinkler, T.; Lengyel, L. Survey of platforms for massive IoT. In Proceedings of the 2018 IEEE International
Conference on Future IoT Technologies (Future IoT), Eger, Hungary, 18–19 January 2018; pp. 1–8. [CrossRef]

18. Schneider, M.; Hippchen, B.; Abeck, S.; Jacoby, M.; Herzog, R. Enabling IoT Platform Interoperability Using a Systematic
Development Approach by Example. In Proceedings of the 2018 Global Internet of Things Summit (GIoTS), Bilbao, Spain, 4–7
June 2018; pp. 1–6. [CrossRef]

19. Sill, A. Standards at the Edge of the Cloud. IEEE Cloud Comput. 2017, 4, 63–67. [CrossRef]
20. Alsboui, T.; Qin, Y.; Hill, R.; Al-Aqrabi, H. Distributed Intelligence in the Internet of Things: Challenges and Opportunities. SN

Comput. Sci. 2021, 2, 277. [CrossRef]
21. López, E.J.; Jiménez, F.C.; Sandoval, G.L.; Estrella, F.J.O.; Monteón, M.A.M.; Muñoz, F.; Leyva, P.A.L. Technical Considerations

for the Conformation of Specific Competences in Mechatronic Engineers in the Context of Industry 4.0 and 5.0. Processes 2022,
10, 1445. [CrossRef]

22. Tayur, V.M.; Suchithra, R. Review of interoperability approaches in application layer of Internet of Things. In Proceedings of the
2017 International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), Bengaluru, India, 21–23 February
2017; pp. 322–326. [CrossRef]

23. European Commission. The Future Internet Platform FIWARE. Available online: https://ec.europa.eu/digital-single-market/
en/future-internet-public-private-partnership (accessed on 23 August 2018).

24. FIWARE. FIWARE Catalogue. Available online: https://github.com/FIWARE/catalogue (accessed on 25 November 2021).
25. Abid, M.A.; Afaqui, N.; Khan, M.A.; Akhtar, M.W.; Malik, A.W.; Munir, A.; Ahmad, J.; Shabir, B. Evolution towards Smart and

Software-Defined Internet of Things. AI 2022, 3, 100–123. [CrossRef]
26. Ngu, A.H.H.; Gutierrez, M.; Metsis, V.; Nepal, S.; Sheng, M.Z. IoT Middleware: A Survey on Issues and Enabling technologies.

IEEE Internet Things J. 2016, 4, 1–20. [CrossRef]
27. Zhang, J.; Ma, M.; Wang, P.; dong Sun, X. Middleware for the Internet of Things: A survey on requirements, enabling technologies,

and solutions. J. Syst. Archit. 2021, 117, 02098. [CrossRef]
28. Xia, F. QoS Challenges and Opportunities in Wireless Sensor/Actuator Networks. Sensors 2008, 8, 1099–1110. [CrossRef]
29. Kuehnel, K.; Au-Yong-Oliveira, M. The Development of an Information Technology Architecture for Automated, Agile and

Versatile Companies with Ecological and Ethical Guidelines. Informatics 2022, 9, 37. [CrossRef]
30. Shaikh, A.; Reshan, M.S.A.; Sulaiman, A.; Alshahrani, H.; Asiri, Y. Secure Telemedicine System Design for COVID-19 Patients

Treatment Using Service Oriented Architecture. Sensors 2022, 22, 952. [CrossRef]
31. Avila, K.; Sanmartin, P.; Jabba, D.; Jimeno, M. Applications Based on Service-Oriented Architecture (SOA) in the Field of Home

Healthcare. Sensors 2017, 17, 1703. [CrossRef]
32. Chen, I.R.; Guo, J.; Bao, F. Trust Management for SOA-Based IoT and Its Application to Service Composition. IEEE Trans. Serv.

Comput. 2016, 9, 482–495. [CrossRef]
33. Ochs, J.; Biermann, F.; Piotrowski, T.; Erkens, F.; Nießing, B.; Herbst, L.; König, N.; Schmitt, R.H. Fully Automated Cultivation of

Adipose-Derived Stem Cells in the StemCellDiscovery—A Robotic Laboratory for Small-Scale, High-Throughput Cell Production
Including Deep Learning-Based Confluence Estimation. Processes 2021, 9, 575. [CrossRef]

34. Kyösti, P.; Lindström, J. SOA-Based Platform Use in Development and Operation of Automation Solutions: Challenges,
Opportunities, and Supporting Pillars towards Emerging Trends. Appl. Sci. 2022, 12, 1074. [CrossRef]

35. Niknejad, N.; Ismail, W.; Ghani, I.; Nazari, B.; Bahari, M.; Hussin, A.R.B.C. Understanding Service-Oriented Architecture (SOA):
A systematic literature review and directions for further investigation. Inf. Syst. 2020, 91, 101491. [CrossRef]

36. Tiburski, R.T.; Amaral, L.A.; Matos, E.D.; Hessel, F. The importance of a standard security architecture for SOA-based iot
middleware. IEEE Commun. Mag. 2015, 53, 20–26. [CrossRef]

37. Suljkanović, A.; Milosavljević, B.; Ind̄ić, V.; Dejanović, I. Developing Microservice-Based Applications Using the Silvera
Domain-Specific Language. Appl. Sci. 2022, 12, 6679. [CrossRef]

38. Raj, V.; Sadam, R. Performance and complexity comparison of service oriented architecture and microservices architecture. Int. J.
Commun. Netw. Distrib. Syst. 2021, 27, 100–117. [CrossRef]

39. Zhu, W.; Zhou, G.; Yen, I.L.; Bastani, F. A PT-SOA Model for CPS/IoT Services. In Proceedings of the 2015 IEEE International
Conference on Web Services, New York, NY, USA, 27 June–2 July 2015. [CrossRef]

40. Uviase, O.; Kotonya, G. IoT Architectural Framework: Connection and Integration Framework for IoT Systems. Electron. Proc.
Theor. Comput. Sci. 2018, 264, 1–17. [CrossRef]

41. W3C Semantic Sensor Network Incubator Group. Semantic Sensor Network Ontology. Available online: https://www.w3.org/
2005/Incubator/ssn/ssnx/ssn (accessed on 25 November 2021).

42. W3C. Web of Things (WoT) Architecture. Available online: https://www.w3.org/TR/wot-architecture/ (accessed on 25
November 2021).

43. ISO. ISO/IEC 30161:2020-Internet of Things (IoT) — Requirements of IoT Data Exchange Platform for Various IoT Services.
Available online: https://www.iso.org/standard/53281.html (accessed on 25 November 2021).

44. ETSI. Smart Appliances and SAREF. Available online: https://www.etsi.org/technologies/smart-appliances (accessed on 25
November 2021).

45. Balaji, S.; Salih, A.; Al-Atroshi, C. Adaptability of SOA in IoT Services—An Empirical Survey. Int. J. Comput. Appl. 2018,
182, 25–28. [CrossRef]

http://dx.doi.org/10.1109/fiot.2018.8325598
http://dx.doi.org/10.1109/giots.2018.8534549
http://dx.doi.org/10.1109/MCC.2017.23
http://dx.doi.org/10.1007/s42979-021-00677-7
http://dx.doi.org/10.3390/pr10081445
http://dx.doi.org/10.1109/icimia.2017.7975628
https://ec.europa.eu/digital-single-market/en/future-internet-public-private-partnership
https://ec.europa.eu/digital-single-market/en/future-internet-public-private-partnership
https://github.com/FIWARE/catalogue
http://dx.doi.org/10.3390/ai3010007
http://dx.doi.org/10.1109/JIOT.2016.2615180
http://dx.doi.org/10.1016/j.sysarc.2021.102098
http://dx.doi.org/10.3390/s8021099
http://dx.doi.org/10.3390/informatics9020037
http://dx.doi.org/10.3390/s22030952
http://dx.doi.org/10.3390/s17081703
http://dx.doi.org/10.1109/TSC.2014.2365797
http://dx.doi.org/10.3390/pr9040575
http://dx.doi.org/10.3390/app12031074
http://dx.doi.org/10.1016/j.is.2020.101491
http://dx.doi.org/10.1109/MCOM.2015.7355580
http://dx.doi.org/10.3390/app12136679
http://dx.doi.org/10.1504/IJCNDS.2021.116463
http://dx.doi.org/10.1109/icws.2015.91
http://dx.doi.org/10.4204/EPTCS.264.1
https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
https://www.w3.org/TR/wot-architecture/
https://www.iso.org/standard/53281.html
https://www.etsi.org/technologies/smart-appliances
http://dx.doi.org/10.5120/ijca2018918249

Processes 2022, 10, 1782 24 of 25

46. Bandyopadhyay, S.; Sengupta, M.; Maiti, S.; Dutta, S. Role Of Middleware For Internet Of Things: A Study. Int. J. Comput. Sci.
Eng. Surv. 2011, 2, 94–105. [CrossRef]

47. Alfalouji, Q.; Schranz, T.; Kümpel, A.; Schraven, M.; Storek, T.; Gross, S.; Monti, A.; Müller, D.; Schweiger, G. IoT Middleware
Platforms for Smart Energy Systems: An Empirical Expert Survey. Buildings 2022, 12, 526. [CrossRef]

48. Palade, A.; Cabrera, C.; Li, F.; White, G.; Razzaque, M.A.; Clarke, S. Middleware for internet of things: An evaluation in a
small-scale IoT environment. J. Reliab. Intell. Environ. 2018, 4, 3–23. [CrossRef]

49. da Cruz, M.A.A.; Rodrigues, J.J.P.C.; Sangaiah, A.K.; Al-Muhtadi, J.; Korotaev, V. Performance evaluation of IoT middleware. J.
Netw. Comput. Appl. 2018, 109, 53–65. [CrossRef]

50. FIWARE. Orion Context Broker. Available online: https://fiware-orion.readthedocs.io/ (accessed on 14 August 2022).
51. Martigne, P. Overview of ETSI machine-to-machine and oneM2M architectures. In Machine-to-Machine (M2M) Communications;

Elsevier: Amsterdam, The Netherlands, 2015; pp. 27–46. [CrossRef]
52. Pereira, C.; Pinto, A.; Aguiar, A.; Rocha, P.; Santiago, F.; Sousa, J. IoT interoperability for actuating applications through

standardised M2M communications. In Proceedings of the 2016 IEEE 17th International Symposium on A World of Wireless,
Mobile and Multimedia Networks (WoWMoM), Coimbra, Portugal, 21–24 June 2016; pp. 1–6. [CrossRef]

53. Cardoso, J.; Pereira, C.; Aguiar, A.; Morla, R. Benchmarking IoT middleware platforms. In Proceedings of the 2017 IEEE 18th
International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), Macau, China, 12–15 June
2017; pp. 1–7. [CrossRef]

54. Arndt, M.; Koss, J. ETSI M2M Horizontal Platform Strategy; Technical Report; ETSI: Sophia Antipolis, France, 2014.
55. Lee, E.A. Accessors: What Are Accessors? Available online: https://ptolemy.berkeley.edu/accessors (accessed on 28 November 2021).
56. Accessors. Available online: https://wiki.eecs.berkeley.edu/accessors/Version1/AccessorSpecification (accessed on 14 August 2022).
57. Gama, K.; Touseau, L.; Donsez, D. Combining heterogeneous service technologies for building an Internet of Things middleware.

Comput. Commun. 2012, 35, 405–417. [CrossRef]
58. Mynzhasova, A.; Radojicic, C.; Heinz, C.; Kolsch, J.; Grimm, C.; Rico, J.; Dickerson, K.; Garcia-Castro, R.; Oravec, V. Drivers,

standards and platforms for the IoT: Towards a digital VICINITY. In Proceedings of the 2017 Intelligent Systems Conference
(IntelliSys), London, UK, 7–8 September 2017; pp. 170–176. [CrossRef]

59. Lyaskov, M.; Spasov, G.; Petrova, G. A practical implementation of smart home energy data storage and control application based
on cloud services. In Proceedings of the 2017 XXVI International Scientific Conference Electronics (ET), Sozopol, Bulgaria, 13–15
September 2017; pp. 1–4. [CrossRef]

60. DeviceHive. Three Steps To IoT. Available online: https://docs.devicehive.com/docs (accessed on 14 August 2022).
61. Protic, A.; Jin, Z.; Marian, R.; Abd, K.; Campbell, D.; Chahl, J. Implementation of a Bi-Directional Digital Twin for Industry 4 Labs

in Academia: A Solution Based on OPC UA. In Proceedings of the 2020 IEEE International Conference on Industrial Engineering
and Engineering Management (IEEM), Singapore, 14–17 December 2020; pp. 979–983. [CrossRef]

62. Automation, I. Solving SCADA Pain Points: Why SCADA Is Broken & How Ignition Can Fix It. Available online: https:
//inductiveautomation.com/static/pdf/Solving_SCADA_Pain_Points_04-17-2018.pdf (accessed on 28 November 2021).

63. Automation, I. Diagnostics-Metrics Dashboard. Available online: https://docs.inductiveautomation.com/display/DOC81/
Diagnostics+-+Metrics+Dashboard (accessed on 14 August 2022).

64. Balaji, S.; Nathani, K.; Santhakumar, R. IoT Technology, Applications and Challenges: A Contemporary Survey. Wirel. Pers.
Commun. 2019, 108, 363–388. [CrossRef]

65. Menzel, L.M. Investigating the Adoption and Management of Metrics in Large-Scale Agile Software Development at a German
IT-Provider. Master’s Thesis, Technische Universitatat Munchen, Munich, Germany, 2021.

66. Osório, A.L.; Camarinha-Matos, L.M.; Afsarmanesh, H.; Belloum, A. On Reliable Collaborative Mobility Services. In IFIP
Advances in Information and Communication Technology; Camarinha-Matos, L.M., Afsarmanesh, H., Rezgui, Y., Eds.; Springer
International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 297–311. [CrossRef]

67. Razzaq, M.A.; Habib, S.; Ali, M.; Ullah, S. Security Issues in the Internet of Things (IoT): A Comprehensive Study. Int. J. Adv.
Comput. Sci. Appl. 2017, 8, 383–388. [CrossRef]

68. Shaikh, E.; Mohiuddin, I.; Manzoor, A. Internet of Things (IoT): Security and Privacy Threats. In Proceedings of the 2019 2nd
International Conference on Computer Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia, 1–3 May 2019;
pp. 1–6. [CrossRef]

69. Gritzalis, D.A.; Pantziou, G.; Román-Castro, R. Sensors Cybersecurity. Sensors 2021, 21, 1762. [CrossRef]
70. Saif, I.; Peasley, S.; Perinkolam, A. Safeguarding the Internet of Things; Technical Report 17; Deloitte Review: Chiyoda, Tokyo, 2015.
71. Mai, J.; Du, J. BGP performance analysis for large scale VPN. In Proceedings of the 2013 IEEE Third International Conference on

Information Science and Technology (ICIST), Yangzhou, China, 23–25 March 2013. [CrossRef]
72. Lagsaiar, L.; Shahrour, I.; Aljer, A.; Soulhi, A. Modular Software Architecture for Local Smart Building Servers. Sensors 2021,

21, 5810. [CrossRef]
73. Corista, P.; Ferreira, D.; Giao, J.; Sarraipa, J.; Goncalves, R.J. An IoT Agriculture System Using FIWARE. In Proceedings of the

2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), Stuttgart, Germany, 17–20 June
2018; pp. 1–6. [CrossRef]

74. FIWARE. Ngsijs Documentation. Available online: https://conwetlab.github.io/ngsijs/stable/index.html (accessed on 9 March 2019).

http://dx.doi.org/10.5121/ijcses.2011.2307
http://dx.doi.org/10.3390/buildings12050526
http://dx.doi.org/10.1007/s40860-018-0055-4
http://dx.doi.org/10.1016/j.jnca.2018.02.013
https://fiware-orion.readthedocs.io/
http://dx.doi.org/10.1016/b978-1-78242-102-3.00002-2
http://dx.doi.org/10.1109/wowmom.2016.7523564
http://dx.doi.org/10.1109/wowmom.2017.7974339
https://ptolemy.berkeley.edu/accessors
https://wiki.eecs.berkeley.edu/accessors/Version1/AccessorSpecification
http://dx.doi.org/10.1016/j.comcom.2011.11.003
http://dx.doi.org/10.1109/intellisys.2017.8324287
http://dx.doi.org/10.1109/et.2017.8124387
https://docs.devicehive.com/docs
http://dx.doi.org/10.1109/ieem45057.2020.9309953
https://inductiveautomation.com/static/pdf/Solving_SCADA_Pain_Points_04-17-2018.pdf
https://inductiveautomation.com/static/pdf/Solving_SCADA_Pain_Points_04-17-2018.pdf
https://docs.inductiveautomation.com/display/DOC81/Diagnostics+-+Metrics+Dashboard
https://docs.inductiveautomation.com/display/DOC81/Diagnostics+-+Metrics+Dashboard
http://dx.doi.org/10.1007/s11277-019-06407-w
http://dx.doi.org/10.1007/978-3-319-99127-6_26
http://dx.doi.org/10.14569/ijacsa.2017.080650
http://dx.doi.org/10.1109/cais.2019.8769539
http://dx.doi.org/10.3390/s21051762
http://dx.doi.org/10.1109/icist.2013.6747647
http://dx.doi.org/10.3390/s21175810
http://dx.doi.org/10.1109/ice.2018.8436381
https://conwetlab.github.io/ngsijs/stable/index.html

Processes 2022, 10, 1782 25 of 25

75. Information Catalyst for Enterpresi LTD. Virtual Factory Open Operating System-CORDIS. Available online: https://cordis.
europa.eu/project/id/723710 (accessed on 7 October 2021).

76. FIWARE. FIWARE Contribution Requirements. Available online: https://fiware-requirements.readthedocs.io/en/latest/ (accessed
on 14 September 2021).

77. Chan, C. Autoscaling Cloud-Native Applications using Custom Controller of Kubernetes. Master’s Thesis, National College of
Ireland, Dublin, UK, 2021.

78. Chen, T.; Shang, W.; Yang, J.; Hassan, A.E.; Godfrey, M.W.; Nasser, M.; Flora, P. An Empirical Study on the Practice of Maintaining
Object-Relational Mapping Code in Java Systems. In Proceedings of the 2016 IEEE/ACM 13th Working Conference on Mining
Software Repositories (MSR), Austin, TX, USA, 14–15 May 2016; IEEE: New York, NY, USA; Los Alamitos, CA, USA, 2016;
pp. 165–176.

79. Merkel, D. Docker: Lightweight Linux containers for consistent development and deployment. Linux J. 2014, 239, 2.
80. Stubbs, J.; Moreira, W.; Dooley, R. Distributed Systems of Microservices Using Docker and Serfnode. In Proceedings of the 2015

7th International Workshop on Science Gateways, Budapest, Hungary, 3–5 June 2015; pp. 34–39. [CrossRef]
81. Weber, R.H. Internet of Things-New security and privacy challenges. Comput. Law Secur. Rev. 2010, 26, 23–30. [CrossRef]
82. Nazarenko, A.A.; Lopes, C.; Ferreira, J.; Usher, P.; Sarraipa, J. ZDMP Core Services and Middleware. In Proceedings of the

Workshops of I-ESA 2020, Tarbes, France, 17–19 November 2020.
83. ZDMP Consortium. WP2 Business Challenge: Vision, Market, Use Cases, and Interlinking-D2.5a: Regulation and Trustworthy

System-Vs: 1.0.1; Technical Report; 2020. Available online: https://www.zdmp.eu/_files/ugd/f83381_2bc34c64f6fb4e708d8a507
e94f86de7.pdf (accessed on 28 July 2022).

84. vf-OS Consortium. WP3: Virtual Factory System Kernel D3.1c: WP3 Umbrella Deliverable-Vs: 1.0; Technical Report; 2018.
Available online: https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5ce27dd8
9&appId=PPGMS (accessed on 28 July 2022)

85. Giao, J.; Sarraipa, J.; Jardim-Gonçalves, R. Open Modular Components in the Industry Using vf-OS Components. In DoCEIS 2019:
Technological Innovation for Industry and Service Systems; IFIP Advances in Information and Communication Technology; Springer:
Cham, Switzerland, 2019; Volume 553, pp. 238–246. [CrossRef]

86. Yelamarthi, K.; Aman, M.S.; Abdelgawad, A. An Application-Driven Modular IoT Architecture. Wirel. Commun. Mob. Comput.
2017, 2017, 1–16. [CrossRef] [PubMed]

87. Baheti, R.; Gill, H. Cyber-Physical Systems. In The Impact of Control Technology; IEEE Control Systems Society: New York, NY,
USA, 2011; Chapter Cross-Cutting Research Directions; pp. 161–166.

https://cordis.europa.eu/project/id/723710
https://cordis.europa.eu/project/id/723710
https://fiware-requirements.readthedocs.io/en/latest/
http://dx.doi.org/10.1109/iwsg.2015.16
http://dx.doi.org/10.1016/j.clsr.2009.11.008
https://www.zdmp.eu/_files/ugd/f83381_2bc34c64f6fb4e708d8a507e94f86de7.pdf
https://www.zdmp.eu/_files/ugd/f83381_2bc34c64f6fb4e708d8a507e94f86de7.pdf
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5ce27dd89&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5ce27dd89&appId=PPGMS
http://dx.doi.org/10.1007/978-3-030-17771-3_20
http://dx.doi.org/10.1155/2017/1350929
http://www.ncbi.nlm.nih.gov/pubmed/29644136

	Introduction
	Related Work
	IoT-Driven Integration
	Interoperability in IoT
	Service-Oriented Architecture and IoT
	Related Middleware Platforms
	Security and Safety Challenges

	Solution Description
	Software Architecture
	Enabler Data Structure
	Instantiation of Enablers
	Enhancing Security with Enablers Framework

	Methods for Prototypical Implementation of an IoT Scenario
	Industrial Scenario
	Components
	Applications

	Results
	Discussion
	References

