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Abstract: Here, we reported on experimental studies related to the exposure of oil to a 50 Hz elec-
tromagnetic field (0.81 T strength) and examined the changes in the geochemical characteristics of
oil: n-alkane distribution, isotopic composition (δ13C), and concentration of paramagnetic centers.
We discovered that electromagnetic fields have impacts on the distribution of n-alkanes and on
their individual isotopic composition, with the concentration of paramagnetic centers remaining
unchanged. While discussing the results, we looked into the state-of-the-art of research on electro-
magnetic exposures of the bottom-hole formation zone and into natural electric and geomagnetic
fields. We consequently hypothesized that natural geomagnetic fields can influence the geochemical
evolution processes of oil. This hypothesis requires further studies to reveal the frequency and
strength characteristics of natural geomagnetic fields.

Keywords: geochemical correlation; geomagnetic fields; geochemical evolution of oil; carbon
isotopic composition

1. Introduction

In the 1950s, scholars noted the importance of the geochemical evolution of oil to
solving applied geological and exploration problems and improving basic assumptions
concerning oil reservoir formation [1–3]. Later on, researchers conducted comprehensive
studies on the geochemical evolution of petroleum [4–6]. Today, there is a huge amount
of comprehensive data regarding the transformation and evolution of oil over geologic
time. The study [7] contains a great deal of survey materials evidencing that the key
environmental factors in petroleum evolution are temperature (thermal transformations),
high concentrations of dissolved gas (deasphaltization), migration processes (physical
fractionation of specific oil components), bacterial factors (biodegradation), and the others.
The scientific views on processes affecting the geochemical evolution of oil have changed
very little since then. Many papers focus on specific applied problems by drawing specific
correlations between petroleum geochemical characteristics and relatively well-studied
geological processes mentioned above. However, there still remain issues regarding how
the geochemical evolution of oil is influenced by natural geomagnetic fields.

Some studies do indicate that the geomagnetic field strength and polarity have been
discontinuous because of geomagnetic reversals [8–10]. Furthermore, it was suggested
that 183 geomagnetic reversals have occurred over the past 83 million years [11–14]. Ad-
ditionally, the magnitude of the Earth’s magnetic field diminishes from about 65,000 nT
to approx. 25,000 nT from the poles to the equator [15]. The paleo-environmental recon-
struction of geomagnetic reversals is a high-cost and difficult-to-perform procedure, as
it requires research into same-age rock samples from different parts of the globe using a
set of specific methods. The most studied geomagnetic reversal is called the Laschamp
event [16], which occurred about 40,000 years ago. During the Laschamp excursion, the
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poles were moving chaotically. The magnetic north crossed the entire planet, crossed the
equator twice, and then moved to the Southern Hemisphere and back to North America,
where it would stay for the longest period. Therefore, because geomagnetic fields influence
the geochemical evolution of petroleum, the greatest impact of the geomagnetic field at the
Laschamp excursion time is combined with other geological processes and must have been
observed in North America.

The impact of a discontinuous geomagnetic field on petroleum geochemical evolution
can simply be exemplified by applying various magnetic and electromagnetic factors to a
high-viscosity oil reservoir, which is known as the oil recovery stimulation method [17,18].
Studies show that the stimulation of a high-viscosity oil reservoir triggers changes in the
physicochemical properties of oil, including a decline in viscosity [19–21]. Clearly, the mag-
netic field strengths under lab-scale conditions far exceed the corresponding geomagnetic
values. However, these are necessary for understanding that the geomagnetic fields have
continued their influence for tens of million years, while in the laboratory settings, the
stimulation lasts for only a few hours.

Pivovarova et al. [22] examined the impact of magnetic and geomagnetic fields on
oil geochemistry. Their work suggests that magnetic, electromagnetic, and acoustic fields
and the sunlight affect petroleum rheology. This explains the changes in the magnetic
effect generated by singlet–triplet (S–T) or triplet–singlet (T–S) transitions, triggering the
chemical polarization of electrons and nuclei. In radical reactions, spin polarization and
magnetic effects are two closely related phenomena. In low magnetic fields, both electronic
and nuclear polarizations may occur with S−T transitions, within a broad range of radical
reactions. In addition, the ambient magnetic field impact intermolecular force and conse-
quently can promote different chemical reactions. The quantum excitation of particles and
interparticle formations within the structure of condensed media, followed by the excited
state relaxation, are largely mediated by intermolecular force [23]. Therefore, knowledge
about the electron–nuclei spin interaction and dynamics of spin systems inherent in oil is
viewed as a requisite tool to follow the routes and mechanisms of the ambient impact on
oil [24–28].

Buchachenko et al. [29–33] highlighted an important role of paramagnetic centers and
magnetic species (nuclei, electrons, atoms, ions, and radicals) in chemical reactions. The
stimulation of chemical reactions through magnetic spin change is called spin catalysis. Spin
catalysis speeds up chemical reactions in the same manner as the other types of catalysis.
Reactions with high activation barriers may have a much lower activation energy. The
spin catalysis effects may vary within a particular reaction. However, tendencies towards
an increase in the rate constant and a decrease in activation energy were observed in
reactions such as hydrogenation, oxidation, and isomerization. The isotopic compositions
of petroleum and bitumoids provide useful information on hydrocarbon evolution and
genesis. The isotopic fractionation due to the exposure to a light quantum is exemplified in
Figure 1.

Here, T–S is the area where a triplet–singlet spin conversion occurs in a radical pair,
while hν is the light quantum. As shown in Figure 1, the electromagnetic impact on
dibenzyl ketone in the presence of isotope 13C causes emerging radicals to assemble back
into the original molecule, while the radicals generate two distinct molecules (reaction
byproducts) in the presence of isotope 12C. Similar isotopic fractionation reactions with
carbon may occur during the geochemical evolution of oil. This is because they come amid
radical reactions and also have paramagnetic centers. If the hypothesis is true, magnetic
isotopes and stable radicals have a high catalytic potential in the petroleum evolution
processes. However, the mechanisms of these phenomena (isotopic fractionation and spin
catalysis) in the oil evolution processes are not well-studied. To evaluate the likelihood of
chemical reactions (P) and aforesaid magnetic effects, Buchachenko et al. [32] introduced
the following function:
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P =
∫
[H, ai, µn, I, mI , HI , ω, J] (1)

where H is the ambient magnetic field, ai is the hyperfine coupling of unpaired electrons
with nuclei, µn is the nuclear magnetic momentum, I is the spin, mI is the spin projection,
HI is the microwave amplitude, ω is the frequency, and J is the exchange coupling between
unpaired electrons, which determines the triplet–singlet gap. According to Equation (1),
the ambient magnetic field can serve as a stimulating factor for spin catalysis and iso-
topic fractionation. That influence depends on many parameters whose values must be
investigated thoroughly.
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permission from Ref. [30], 2010, A.L. Buchachenko.)

The present study aimed to draw the scientific community’s attention to the problem
of the geochemical evolution of oil when exposed to geomagnetic fields. The experiment
sought to evaluate variations in the geochemistry of oil when exposed to a 50 Hz electro-
magnetic field. Some results concerning changes in the composition of oil for enhanced oil
recovery have been reported elsewhere [34–36].

2. Materials and Methods
2.1. Oil Samples and Electromagnetic Treatment

For this study, oil was extracted from the Salym reservoir in the Bazhenov Suite (with
a sampling interval of 2873−2940 m) with a pace of 824 kg/m3 and a kinematic viscosity
of 5.80 mm3/s at 20 ◦C, with the contents of asphaltene and resins being 0.5% and 3.1%,
respectively [34–36]. The sulfur content of oil was very low and estimated to be less than
0.1%. For the electromagnetic (EM) treatment of oil, a coil on the split ferric core connected
to a 50 Hz generator with sinusoidal electric current, as shown in Figure 2, to produce a
0.81 T effective magnetic field, which was exploited. The experimental setup is described
in detail elsewhere [34–36]. Six 2 mL oil samples were prepared and put in sealed plastic
containers. The samples were exposed to EM for 10, 20, 30, 40, 50, and 60 min, respectively,
and then analyzed by a set of methods described below. The results were compared with
the oil reference.
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2.2. Methods

Analytical measurements used a Thermo Delta V Advantage isotopic mass spectrome-
ter (ThermoFisher, Waltham, MA, USA) (the package includes an element analyzer and a
gas chromatograph) and a Kristall-5000 chromatograph with a thermostat-cooling system.
The overall isotopic composition (δ13C) was quantified from the average of the isotopic
composition of n-alkanes that were detected by equipment. The variations in the material
composition of the oil samples were monitored by gas chromatography on a Kristall-5000
chromatograph (ZAO Chromatec, Yoshkar-Ola, Russia) as follows: a 30 m capillary column
and 100% polymethylsiloxane as the phase. The column temperature regime consisted
of a programmable linear heating from 30 to 300 ◦C. The evaporator temperature regime
consisted of a 310 ◦C isotherm. The chemical composition was estimated by the simulated
distillation method.

The previous study [37] evaluated oil geochemistry, various characteristics and com-
binations thereof, and the obtained values. By relying on competences and available
laboratory equipment of our research team, we assessed oil geochemical characteristics
such as n-alkanes, total δ13C in oil, and some individual n-alkanes (from n-C-10 to n-C-22).
Subsequently, it became necessary to interpret the data and compare the resulting char-
acteristics with geochemical characteristics as applied to solving specific geological and
prospecting problems. For example, to study the organic maturity degree, the scholars
used the chromatography of oil (bitumoid) and consequently different types of coeffi-
cients arising from the n-alkane ratio, more specifically the predominance coefficient of the
odd-numbered over even-numbered n-alkanes.

Bray and Evans [38] pioneered the use of Carbon Preference Indices (CPI) coefficient
expressed in Equation (2):

CPI =
1
2

[
C25 + C27 + . . . + C33

C24 + C26 + . . . + C32
+

C25 + C27 + . . . + C33

C26 + C28 + . . . + C34

]
(2)

Philippi [39] applied the R29 coefficient shown in Equation (3):

R29 =
2C29

C28 + C29
(3)

The study [7] suggests that some natural samples have abnormal coefficients and deriva-
tives. Therefore, scientists must develop hypotheses about catagenesis, biodegradation, or
chemical composition of organic matter. These hypotheses cannot be univocally corroborated.

Another example is a study on petroleum reservoir formation processes using oil–oil
correlations to examine the relationship between oil and oil-source rock. Tissot and Welte [7]
noted that correlations work better with the aid of biomarkers such as pristane/phytane
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ratios. Furthermore, a comparison of the isotopic composition (δ13C) can be applied (see
Equation (4)) [40]:

δ13CSample =


( 13C

12C

)
Sample(

13C
12C

)
Re f erence

− 1

 ∗ 1000 (4)

The studies by Russian scientists Kontorovich [40], Poturay [41], and Galimov [42]
report many variations in the correlation parameters obtained by gas chromatography
and isotopic mass spectrometry. Here, to evaluate the impact of geomagnetic fields on the
geochemical evolution of oil, we used the following parameters: CPI, pristane/phytane, Σ
even n-alkanes/Σ odd n-alkanes (from n-C-10 to n-C-38), phytane/n-C-18, pristane/n-C-17,
and δ13C.

We also investigated the spectroscopic and relaxation characteristics of intrinsic oil
paramagnetic centers by using a pulsed Bruker ElexSys 680 (W-band, 94 GHz microwave
frequency) electron paramagnetic resonance (EPR) spectrometer (Bruker Corporation,
Billerica, MA, USA). The two-pulse sequence π/2–τ–π with a π/2-pulse time of 16–32 ns
and a delay time τ of 240 ns was used for electron spin echo (ESE) detection. The transverse
(spin–spin) relaxation time T2e was measured from the decay of the primary ESE amplitude
with an increment in the interval τ between pulses, with a pace of 4 ns and a fixed duration
of π/2–π pulses. The recovery curve of the longitudinal magnetization and the longitudinal
(spin–lattice) relaxation time T1e was determined by the inversion recovery pulse sequence
of π–TDelay–π/2–τ–π–ESE for a fixed pulse length and time τ but with a variable TDelay time.

We also performed a statistical analysis of the data acquired by gas chromatography. In
particular, the distribution of peak areas in the chromatograms was used as source data and
was processed to obtain the ratios of the adjacent components of n-alkanes and biomarkers
(pristine and phytane). Further, to prove the fact that an electromagnetic field influences
the oil composition, we evaluated the averages and maxima that are characteristic of the
difference in geochemical indicators between the initial oil (no electromagnetic exposure)
and experimental oil samples (electromagnetically treated). This approach allowed us to
clearly document the geochemical characteristics and components that were altered by the
electromagnetic field treatment of oil.

The statistical analysis of the isotope mass spectrometry data was not performed. We
statistically analyzed electronic relaxation times that are employed in EPR spectrometry.
We built relationships and estimated the coefficient of determination, R2, between the
electronic relaxation time (T1, T2) and electromagnetic exposure time of the experimental
oil samples.

3. Results
3.1. Gas Chromatography Results

Two samples were compared in detail: a reference sample and a sample following a
50 min EM exposure (Figure 3). A comparison between the chromatograms revealed that
the 50 min electromagnetic field exposure diminished the naphthene bump, which is an
inseparable mixture of isoalkanes and cyclanes. This may indicate that the total concentra-
tions of n-alkanes and acyclic isopropanes in the sample treated with the electromagnetic
field are higher than those in the initial oil with no exposure [43].
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Figure 4 shows that the n-alkane concentration remains almost unchanged up to
40 min of the EM exposure. The amount of n-alkanes increases suddenly over an interval
between 40 and 50 min. This indicates that processes related to chemical polarization of
electrons and nuclei in petroleum systems, which are understudied, trigger a collective
recombination of hydrocarbon compounds.
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Figure 4. A time profile of N-alkane concentration of oil samples.

A comparative analysis of pristane/phytane, Σ even n-alkanes/Σ odd n-alkanes
(n-C-10 to n-C-38), phytane/n-C-18, pristane/n-C-17, and CPI is shown in Figure 5. Sur-
prisingly, the results show dramatic changes in the pristane/phytane and CPI coefficients,
as well as 0.14‰ and 0.16‰ differences in maxima and minima, respectively. However,
the other geochemical characteristics did not significantly change, as the differences in the
maxima and minima did not exceed 0.06‰.
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3.2. Isotopic Mass Spectrometry Results

In his study [29], Buchachenko emphasized that isotopic composition data can be
very useful in reconstructing the geochemical evolution process. Most of the current
correlations, which are used in oil geochemistry, pertain to a comparison of the overall
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isotopic composition of chemical elements of matter. This subsection contains information
on variations in δ13C of oil and in particular components of oil when exposed to an
electromagnetic field. Figure 6 demonstrates general changes in δ13C occurring in the
oil samples.
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The general time course of δ13C in oil indicates that electromagnetic fields alter the
isotopic composition of oil. The difference between the maxima and minima of δ13C is
as high as 2.6‰. These results suggest that even a relatively short (60 min) exposure
to an ambient magnetic field causes major changes in the isotopic composition (δ13C).
This significance is confirmed by the fact that when geochemists use a classic approach
to the interpretation of δ13C values, isotopic differences exceeding 2‰ are considered
high enough to distinguish between different types of oil. This was confirmed by several
studies [7,44–46]. Therefore, understanding the changes in the isotopic composition (δ13C)
of oil when the reservoir is exposed to a natural geomagnetic field can be very helpful in
specifying geochemical criteria while solving particular applied problems.

Here, we examined the geomagnetic field impact on both the isotopic composition
(δ13C) of overall oil and specific normal components of alkanes. Figure 7 displays the
transformation results of δ13C in oil components (n-C-10 to n-C-22, including pristane and
phytane) contained in the samples.
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Figure 7 shows three groups of components that are differentially sensitive to an
electromagnetic impact. In Group 1, changes do not exceed 3% (C-10, n-C-11, n-C-12, n-C-16,
and n-C-19); in Group 2, changes range from 3% to 6% (n-C-17, n-C-18, n-C-11, phytane,
n-C-20, and n-C-21); in Group 3, δ13C varies from 6‰ to 13‰ (n-C-13, n-C-14, n-C-15,
pristane, and n-C-22). In this context, the necessity of using more advanced approaches
for the interpretation of isotopic mass spectrometry data with geochemical correlations
is more evident. This concerns both the overall and specific isotopic compositions of oil.
The mechanism of isotopic fractionation of stable isotopes with magnetic effects, including
δ13C, supports petroleum geochemists developing an evidence-based approach to address
key aspects of the geochemical evolution of oil. This may require a re-interpretation of the
existing geological and geochemical data.

3.3. EPR Results

The EPR spectrum of the initial oil (the control sample) under study was described in
detail in [24]. The main feature of the EPR spectrum of oil is that no EPR signals other than
those from the “free” stable radicals (FR) were recorded with the instrument sensitivity at
ambient temperatures. The signal exhibits a g-factor value of g = 2.0023(2), which is very
close to that of free electrons. The concentration of FR was estimated to be 8(2)·1018 spin/g.
No changes in the EPR spectrum and its intensity were detected in the EM treatment.

EPR spectra recorded by electron spin echo in the pulse mode are exemplified in
Figure 8. The spectra can be simulated reasonably well, assuming that a single paramagnetic
center of axial symmetry is existent [24]. The derived parameters, g = 2.00145(5) and
g = 2.00235(5), are in good agreement with those given for the X-band and do not vary
from sample to sample. The nature of the additional line in higher magnetic fields, which
disappears after a 40 min EM exposure, is still intriguing but not discussed herein.
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The relaxation characteristics measured at the ESE signal maximum are listed in
Table 1. Even though there is a tendency of the relaxation times to increase slightly with
exposure time, these changes are insignificant and, in our view, cannot be used to capture
changes in asphaltenes and resins of oil when exposed to the electromagnetic field, as
opposed to the study [47] on the use of supercritical water for oil properties improvement.
Therefore, summarizing all the EPR results, it can be speculated that the change in the oil
geochemistry has nothing to do with the combination–recombination processes of native
carbon-centered FR.
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Table 1. Electronic relaxation times for the test samples.

Sample T1 (µs) T2 (ns)

Untreated 21.3 (3) 610 (20)

EM treatment 10 min. 22.2 (3) 620 (20)

EM treatment 20 min. 24.6 (4) 640 (20)

EM treatment 40 min. 25.2 (3) 635 (20)

EM treatment 50 min. 24.8 (3) 660 (20)

EM treatment 60 min. 26.2 (4) 690 (20)

3.4. Statistical Analysis Results

Figures 9 and 10 show the results from the statistical analysis of the chromatographic
data, which describe the geochemical characteristics of the samples.
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Figure 9. The means of the difference modulus of geochemical characteristics of oil (untreated and
treated with the electromagnetic field) as per gas chromatography data.
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Figure 10. The maxima of the difference modulus of geochemical characteristics of oil (untreated and
treated with the electromagnetic field) as per gas chromatography data.

The analysis of Figur9 shows significant differences in geochemical characteristics
such as n-C25/n-C26, n-C26/n-C27, n-C33/n-C34, n-C34/n-C35, and n-C37/n-C38.

The analysis of Figure 10 shows geochemical characteristics that have the highest
differences between the initial oil and oil exposed to the electromagnetic field. Significant
differences were detected in geochemical characteristics such as n-C25/n-C26, n-C26/n-C27,
and from n-C30/n-C31 to n-C37/n-C38.



Processes 2022, 10, 2376 11 of 18

Figure 11 shows the electronic relation time, T1, plotted against the electromagnetic
exposure time of oil.
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Figure 11. Electronic relation time T1 plotted against the electromagnetic exposure time of oil.

Figure 12 displays the electronic relation time, T1, plotted against the electromagnetic
exposure time of oil.
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Figure 12. Electronic relation time T2 plotted against the electromagnetic exposure time of oil.

The analysis of Figures 11 and 12 demonstrates that electronic relation times T1 and
T2 are highly associated with the electromagnetic treatment time of oil. This is evidenced
by the coefficient of determination values, R2, that exceed 0.84.

4. Discussion

By discussing our study results, we want to touch upon three key directions related
to the present study: (1) experimental studies on variations in properties of oils when
exposed to electromagnetic fields; (2) geochemical characteristics of oil and the applied
significance thereof; and (3) natural magnetic, electric, and electromagnetic fields. Our
obtained findings will be discussed hereinafter.

Before proceeding to discussing specific things related to our study results, we want to
emphasize the relevance of the topic studied herein. Raw hydrocarbons such as oil and gas
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are strategic resources enabling nations to flourish. Hydrocarbon resources are well-known
to be exhaustible, necessitating that the resource base be replenished by enhancing the oil
recovery factor and discovering new hydrocarbon deposits. The oil recovery factor can be
enhanced by using oil recovery enhancement methods (reservoir treatment methods), to
which the electromagnetic exposures of the bottom-hole formation zone are also related,
while the discovery of new deposits can be achieved by forming new fundamental insights
into oil generation and geochemical evolution.

First, we will look into the studies in which oil and oil reservoirs are treated with
electromagnetic fields. We overviewed recent review papers on this topic [48,49] and want
to note the following: (1) in most cases, the electromagnetic treatment of a reservoir is used
to increase the mobility of high-viscosity oils and separate the interphases near the water–
oil contact; (2) the field effect is attained by heating oil reservoirs with an electromagnetic
field; (3) to enhance the field effects, magnetic nanoparticles are utilized along with the
electromagnetic exposure; (4) most studies are concerned with evaluating the oil rheology,
whereas the variations in oil properties at the molecular level have almost not been studied.
The present study carried additional information on the change in oil properties at the
molecular level as a result of the electromagnetic exposure.

Now, we want to discuss the applied significance of oil geochemical characteristics
that we investigated to the prospecting and exploration of new deposits. The current
theory of oilfield genesis is premised on the fact that oil was generated in source rocks and
further migrated to the overlying strata [7]. In order to find a new oil deposit, it is required
that oil migration paths be tracked. This is achieved by comparing the geochemical
characteristics of soluble organic matter (or oil) in the source rock or soluble organic
matter (or oil) in potentially productive or productive reservoirs. A wide spectrum of
geochemical instruments such as gas chromatographs, mass spectrometers, and isotope
mass spectrometers are typically used to perform geochemical correlations (a comparison
of geochemical characteristics). Then, different geochemical indices are employed. Below
are outlined some examples of geochemical correlations.

Shi et al. [50] sought to identify source-rock deposits from which the giant Palogue
oilfield was formed.

Figure 13 illustrates a distribution of n-alkanes of crude oils from the Moleeta, Jamous,
and Palogue oilfields.
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Based on the comparison of the distribution of n-alkanes, as well as on the comparison
of geochemical characteristics similar to those we used in our study, these authors were
able to establish that the Palogue oilfield had formed with a mixed involvement of the
source-rock deposits from the Moleeta and Jamous oilfields, although the source-rock
deposits from the Jamous oilfield were the major contributor.

Ma et al. [51] investigated three oil families from the sub-sag A of the Weixinan
Depression. Figure 14 compares geochemical characteristics, including those we used in
our study.
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By comparing the geochemical characteristics of oil in [51], these authors discovered
that the oils refer to three different source rocks rather than a single one, as expected before.
This makes geologic exploration works well-reasoned for the search for new oilfields on
the surveyed terrain.

Now, we want to briefly describe the natural magnetic, electromagnetic, and electric
fields. We shall not put a lot of time into this issue and shall try to outline some results
from other scholars and formulate our own considerations. Oilfields are well-known to be
dynamically active porous systems. The fluids are constantly moving within and interacting
both with each other and with the rock walls. As a result of these movements in the reservoir
rocks (for example, sandstones), the following effects may arise: (1) interfacial polarization,
(2) electronic polarization, (3) orientation polarization, (4) ionic polarization, and others.
Sikiru [52] notes that ionic strength has a vital role to play in reservoir sandstones and
relies on the interaction between oppositely charged ions. The transport and distribution
of ions in reservoir sandstones are dependent on types of salification within the medium
and were considered to be affected by the evaporation rate and solubility of the salts in the
porous medium.

Additionally, it should be remembered that our planet Earth is a huge magnet. Of
course, the Earth’s magnetic field strength is several orders of magnitude lower than the
strength in our experiment, but we want to present our own considerations on that point.
The current theory of geomagnetism is premised on the geomagnetic dynamo model, as
shown in Figure 15.
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Figure 15. (a) The three-layer structure of Earth’s interior. The rocky mantle overlies a metallic core. 
The core, which is essentially made of iron, is divided into a liquid outer core and a solid inner core. 
The flow of liquid metal sustains dynamo action. The magnetic field lines (red to yellow lines) and 
the velocity field strength (blue to yellow) are taken from a direct numerical simulation of the dy-
namo driven by turbulent convection. (b–e) Candidate mechanisms that may drive the geodynamo 
in the outer core. (b) Convection driven by core cooling and inner-core growth. The heat Qcmb 
leaving the core leads to the solidification of the inner core, releasing light elements at the base of 
the outer core. At the outer edge of the core, cooling releases a cool, denser fluid that sinks into the 
deeper core. (c) Convection driven by the exsolution of light oxides such as MgO or SiO2. The 
iron-rich liquid released at the top of the core sinks into the core. (d) Precession makes the fluid 
rotate along an axis (blue) that is different from the mantle rotation axis (red); a secondary circula-
tion (teal arrows) is induced by the non-spherical shape. (e) Tides induce a deformation that rotates 
around the liquid core over approximately one day, inducing a recirculation. (Adapted with per-
mission from Ref. [53], 2022, M. Landeau.) 
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variable on different territories of our planet. Another important aspect is that the Earth’ 
crust is roughly dielectric, which governs our idea that the geomagnetic field strength 
3000 m deep on the geomagnetic poles can be comparable to that in our experiment. 
Based on this, we can hypothesize that the changes in the Earth’s magnetic field strength 
in different territories could influence the geochemical behavior of oil over geologic time. 
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method and the maximum difference method were employed to perform a comparison 
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Figure 15. (a) The three-layer structure of Earth’s interior. The rocky mantle overlies a metallic core.
The core, which is essentially made of iron, is divided into a liquid outer core and a solid inner core.
The flow of liquid metal sustains dynamo action. The magnetic field lines (red to yellow lines) and the
velocity field strength (blue to yellow) are taken from a direct numerical simulation of the dynamo
driven by turbulent convection. (b–e) Candidate mechanisms that may drive the geodynamo in the
outer core. (b) Convection driven by core cooling and inner-core growth. The heat Qcmb leaving
the core leads to the solidification of the inner core, releasing light elements at the base of the outer
core. At the outer edge of the core, cooling releases a cool, denser fluid that sinks into the deeper core.
(c) Convection driven by the exsolution of light oxides such as MgO or SiO2. The iron-rich liquid
released at the top of the core sinks into the core. (d) Precession makes the fluid rotate along an axis
(blue) that is different from the mantle rotation axis (red); a secondary circulation (teal arrows) is
induced by the non-spherical shape. (e) Tides induce a deformation that rotates around the liquid
core over approximately one day, inducing a recirculation. (Adapted with permission from Ref. [53],
2022, M. Landeau.)

In the context of our study, there is not much of a concern for us as to which processes
govern the Earth’s magnetic field and geomagnetic reversals. Within the context of our
study, an important aspect is that the geomagnetic field strength on the geomagnetic poles
is higher than that on the geomagnetic equator. This means that the field strength is variable
on different territories of our planet. Another important aspect is that the Earth’ crust
is roughly dielectric, which governs our idea that the geomagnetic field strength 3000 m
deep on the geomagnetic poles can be comparable to that in our experiment. Based on
this, we can hypothesize that the changes in the Earth’s magnetic field strength in different
territories could influence the geochemical behavior of oil over geologic time.
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Now, we discuss the statistical analysis of the data from our study. The means
method and the maximum difference method were employed to perform a comparison
of the initial oil sample and the oil samples treated with the electromagnetic field. The
findings demonstrate that the electromagnetic field can influence the essential geochemical
characteristics of oil. For instance, Ma at al. [51] were able to divide oils into three classes
by using the C27/C29 value in their geochemical comparisons, whereas the n-C26/n-C27
parameter considerably differed in our test samples, although we examined the same
oil. Moreover, in the present study, we were able to document changes in the isotopic
composition (δ13C) when the oil was electromagnetically treated. The overall isotopic
composition of oil did not change, and the differences varied within measurement errors.
However, the visual analysis of the variation in the isotopic composition of n-alkanes
separately suggests that the electromagnetic exposure resulted in exchanges/changes in
the quantity of the carbon isotope (δ13C) in the oil molecules (in n-alkanes). The literature
on this topic includes only Buchachenko’s studies, but the scientific community does not
find Buchachenko’s findings convincing.

In addition, we managed to establish a correlation between the electromagnetic expo-
sure of oil and the electronic relaxation time; the coefficient of determination, R2, demon-
strates a good correlation relationship between these characteristics, but the total concentra-
tion of paramagnetic centers is not influenced by the electromagnetic field. This evidences
that the concentration of paramagnetic centers in asphaltenes can be advised as a parameter
to perform a geochemical correlation, as exemplified hereinabove.

5. Conclusions

The present study demonstrates that electric fields are constantly observed in reservoir
systems. Given that electromagnetic, electric, and magnetic fields are similar in the physical
sense, it can be speculated that natural electromagnetic fields have an impact on the geo-
chemical behavior of oil. It was discovered herein that the geochemical characteristics of oil,
as evaluated by gas chromatography, underwent changes due to electromagnetic exposure,
whereas the concentrations of paramagnetic centers in the samples, as determined by the
electron paramagnetic resonance method, remained unchanged. In addition, the present
study has hypothesized that natural geomagnetic fields can influence the geochemical
evolution processes of oil, but this hypothesis requires a deeper study into characteristics
of natural geomagnetic fields.
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