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Abstract: Evolutionary Population Dynamics (EPD) refers to eliminating poor individuals in nature, 
which is the opposite of survival of the fittest. Although this method can improve the median of the 
whole population of the meta-heuristic algorithms, it suffers from poor exploration capability to 
handle high-dimensional problems. This paper proposes a novel EPD operator to improve the 
search process. In other words, as the primary EPD mainly improves the fitness of the worst indi-
viduals in the population, and hence we name it the Fitness-Based EPD (FB-EPD), our proposed 
EPD mainly improves the diversity of the best individuals, and hence we name it the Diversity-
Based EPD (DB-EPD). The proposed method is applied to the Grey Wolf Optimizer (GWO) and 
named DB-GWO-EPD. In this algorithm, the three most diversified individuals are first identified 
at each iteration, and then half of the best-fitted individuals are forced to be eliminated and reposi-
tioned around these diversified agents with equal probability. This process can free the merged best 
individuals located in a closed populated region and transfer them to the diversified and, thus, less-
densely populated regions in the search space. This approach is frequently employed to make the 
search agents explore the whole search space. The proposed DB-GWO-EPD is tested on 13 high-
dimensional and shifted classical benchmark functions as well as 29 test problems included in the 
CEC2017 test suite, and four constrained engineering problems. The results obtained by the pro-
posal upon implemented on the classical test problems are compared to GWO, FB-GWO-EPD, and 
four other popular and newly proposed optimization algorithms, including Aquila Optimizer (AO), 
Flow Direction Algorithm (FDA), Arithmetic Optimization Algorithm (AOA), and Gradient-based 
Optimizer (GBO). The experiments demonstrate the significant superiority of the proposed algo-
rithm when applied to a majority of the test functions, recommending the application of the pro-
posed EPD operator to any other meta-heuristic whenever decided to ameliorate their performance. 
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1. Introduction 
Optimization algorithms in evolutionary computation can be divided into two clas-

ses individual-based and population-based. Individual-based algorithms start the optimi-
zation by a single randomly generated search agent in the search space attempting to seek 
and detect the global optimum of the optimization problem. This category of algorithms 
benefits from some advantages and suffers from some disadvantages. The main short-
coming of these algorithms is premature convergence emerging in two different types of 
optimization problems, called uni-modal and multi-modal functions. In uni-modal func-
tions, premature convergence usually occurs when the algorithm’s convergence rate dur-
ing the optimization process is too slow. 

In contrast, the major cause for premature convergence in multi-modal optimization 
problems is known as the local optima entrapment. Individual-based algorithms begin 
the optimization from an initial random point in the search space. Usually, they can only 
search for the optimal solution in the proximity of that initial random point without es-
caping from that region to search for other potentially high-fitness regions in the problem 
domain. On the contrary, the algorithms of type population-based commence the optimi-
zation process by generating a series of random solutions being improved throughout 
iterations. This category of algorithms is less likely to be stuck in the local optima in multi-
modal problems and also benefits from a more rapid search process in uni-modal prob-
lems. However, having more computational costs and needing much more objective func-
tion evaluations are two significant disadvantages; this category suffers compared to the 
individual-based algorithms. 

Among the stochastic population-based optimization algorithms, the Genetic Algo-
rithm (GA) [1], Particle Swarm Optimization (PSO) [2], and Differential Evolution (DE) 
[3] are the pioneers, based on which a vast number of modified and improved algorithms 
have been developed so far and applied to a wide range of the practical problems in the 
science and engineering. There are a lot of nature-inspired and physics-based stochastic 
optimization algorithms in the literature as well, including but not limited to Artificial Bee 
Colony (ABC) algorithm [4], Firefly Algorithm (FA) [5], Bat Algorithm (BA) [6], Gravita-
tional Search Algorithm (GSA) [7], Krill Herd (KH) algorithm [8], Sine Cosine Algorithm 
(SCA) [9], Monarch Butterfly Optimization (MBO) algorithm [10], and Invasive Weed Op-
timization (IWO) algorithm [11]. 

1.1. Hybrid Meta-Heuristic Optimization Algorithms 
An effective way to enhance the performance of the optimization algorithms is the 

combination or hybridization of them with different operators and search mechanisms 
employed in other optimizers. Due to the consolidation of benefits from different algo-
rithms during the hybridization process, many improved versions of the algorithms have 
been proposed so far. Some of these algorithms are described in the following paragraphs. 

Tuba and Bacanin et al. [12] hybridized the ABC with the FA to improve the conver-
gence rate of the ABC and also to well adjust the exploration-exploitation balance in the 
ABC algorithm. Wang et al. [13] introduced the Pitch adjustment operator employed in 
HS into the CS. This operator can act as a mutation operator to increase the cuckoo popu-
lation diversity and compensate for the weakness of the Lévy flight incorporated in the 
CS, as the Lévy flight can lead the CS not to be able to converge to the best-fitted solutions 
whenever the size of the steps taken is too large. As a result, this hybridization can impede 
premature convergence. In order to improve the DE algorithm when attempting to bal-
ance local and global search processes while impeding the time-consuming control pa-
rameter tuning procedure, a new hybrid DE algorithm is proposed by Yi et al. [14]. This 
method divides the population into two sections to apply the most appropriate control 
parameters and mutation operators. Tuba and Bacanin [15] improved the global search 
procedure of the BA by incorporating the onlooker mechanism from the ABC algorithm 
to enhance the exploitation process of BA and applied the hybridized algorithm to solve 
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a multi-objective radio frequency identification network planning problem. A hybrid PSO 
and GSA abbreviated as PSO-GSA was introduced by Das et al. [16], benefiting from a 
cooperative contribution of PSO velocity and GSA acceleration. In this hybridized algo-
rithm, the PSO uses memory to save the best solutions found so far, and this ability is 
added to the ability of GSA to adjust the acceleration using the fitness value. Furthermore, 
in this algorithm, the global best particle of PSO can lead the other particles to move to-
wards the best solution and accomplish exploitation slowly. A hybrid strategy is proposed 
by Abualigah et al. [17], aimed at increasing the KH’s population’s diversity by incorpo-
rating the HS operator using a new parameter named distance factor for fine-tuning the 
positions of the search agents before updating them. Nenavath and Jatoth [18] propose 
the hybridization of the SCA and DE. This hybrid algorithm improves the capability of 
the search agents to escape from the local optima and enhances the convergence speed 
compared to SCA and DE when operating separately. The proposed algorithm was then 
employed to effectively solve an object tracking problem as a real-life optimization prob-
lem. Ghanem proposes a new hybrid approach, and Jantan [19] to alter the butterfly tun-
ing operator used in MBO while utilizing this improved operator in the role of a mutation 
operator to be applied as an alternative to the employee stage of the ABC. Another hy-
bridization process has been carried out between the IWO algorithm and the FA. As any 
hybridization scheme aims at highlighting the best properties of a couple of the other al-
gorithms to compensate for their drawbacks, the hybrid IWO-FA is proposed by Panda et 
al. [20] to improve both algorithms. As there is no known mechanism to hinder the fast 
movements of the search agents in IWO, the FA can also face local optima entrapments 
due to its dependence on the light intensity for attraction, and the IWO-FA can be taken 
into account as an approach to ameliorate these shortcomings simultaneously. Teng et al. 
[21] benefited from the high diversification ability of the GWO and high intensification 
ability of the PSO in local search to propose the hybrid PSO_GWO algorithm. In this al-
gorithm, the best individual position experienced is added to the best wolves to guide the 
search agents in the population. The Tent chaotic sequence was utilized better to diversify 
the wolf pack in the algorithm initialization step. The use of the entire MBO algorithm 
while not using the Lévy flight that typically acts as a crossover operator for DE, proposed 
by Ibrahim and Tawhid [22], is another hybridized scheme named DEMBO. A modified 
version of the KH was proposed by Abualigah et al. [23], in which the genetic operators 
are employed to improve the KH performance highly. In this modified algorithm, the 
crossover and mutation processes are invoked after updating the krill positions because 
the nature of the search space of most optimization problems is ragged and deep. A hybrid 
method combining the SCA and ABC, called SCABC, is proposed by Gupta and Deep 
[24]. In the SCABC, first, the major problem of the SCA is the intensive diversification of 
the solutions in the early iterations while leaving the solutions less diversified in the later 
iterations. Then, this problem was mitigated by modifying its search procedures by inte-
grating memory-based information. Then, the modified SCA search procedures are 
merged to be applied to the employed bee phase to enhance the global and local search 
abilities of the ABC algorithm. A new algorithm hybridizing the PSO and GWO is also 
proposed by Şenel et al. [21]. The hybridized scheme can replace some particles in PSO 
with a small probability by some other improved search agents obtained by GWO. The 
proposed mechanism can hamper the PSO from being trapped in local optima utilizing 
the exploration capability of GWO. Gupta and Deep [25] hybridized the Lévy-flight mech-
anism and the original GWO, yielding GLF-GWO. The Lévy-flight strategy helps better 
local search around the three leading wolves in GWO to enable the wolves to avoid local 
optima. Furthermore, a greedy selection mechanism is employed to prevent the wolves 
from diverging from the promising solutions during the optimization. A new hybrid 
HSCA is proposed by Gupta and Deep [26], mainly to impede the solutions of the SCA to 
skip the fitted regions of the decision space, to prevent the solutions from being trapped 
in local optima, and to balance the exploration-exploitation transition in the classical SCA 
more desirably. In the HSCA, the SCA and simulated quenching algorithm are hybridized 
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to impart the elitism mechanism to the algorithm while easing the transition from explo-
ration to exploitation. Mohammed and Rashid [27] hybridized the WOA with GWO to 
enhance the exploitation capability of the WOA. They found the exploitation capability of 
the GWO much stronger than the mechanism dedicated to exploitation in the WOA. That 
was their motivation to substitute the two mechanisms applied in two algorithms. A hy-
bridization of SMA and AOA was proposed by Zheng et al. [28]. This hybrid algorithm 
replaces the contraction formula employed to perform exploration in the SMA is replaced 
by the multiplication and division operators used in the exploration phase of the AOA, as 
the position of each search agent may tend to zero in the late iterations, which, in ,turn, 
can highly debilitate the performance of the SMA when solving an optimization problem 
with an unknown search space. Rezaei et al. [29] added the velocity term existing in the 
position updating formula of the PSO or some other meta-heuristics into the updating 
procedure of the GWO and proposed the VAGWO algorithm. This hybridized scheme can 
highly improve the exploration capability of the GWO by keeping push the search agents 
to move forwards to detect the high-fitness positions as much as possible. In addition, a 
decreasing radius circle is made around the elite agents to impede the potential drifts to 
occur when the agents are tending to the high-fitness positions. A hybridized Whale and 
Moth-Flame Optimizer, named WMFO, was proposed by Nadimi-Shahraki et al. [30]. The 
goal of this hybridization is enhancing the exploitation capability of the MFO via enforc-
ing the flames in the MFO to move towards an average of the best-so-far agents found by 
the algorithm in the exploitation phase of the hybrid algorithm to expedite the agents’ 
access to the high-fitness region in the search space. 

No Free Lunch (NFL) theorem [31] allows new evolutionary algorithms to be pro-
posed, as based on this theory, all algorithms have the same performance when applied 
to a vast range of optimization problems. As a result, an algorithm may show too effective 
performance when solving a series of problems but suffers from serious shortcomings 
when going over solving other problems. Consequently, creating new effective algorithms 
via hybridizing them with the other ones or equipping them with some efficient operators 
can highly improve the performance of such algorithms to better solve a series of optimi-
zation problems the other optimizers have difficulty handling. 

Selection, combination, and mutation are usually considered the widely used evolu-
tionary operators incorporated into the meta-heuristics to enhance their performance, as 
illustrated by Lewis et al. [32]. However, another evolutionary operator, Evolutionary 
Population Dynamics (EPD), has been found to manipulate the whole population. EPD is 
inspired by the theory of Self-Organizing Critically (SOC), first introduced by [33]. Based 
on this theory, the critical state in nature can be reached dynamically. For instance, small 
perturbations can make operations precisely balance different features of the population 
while not imposing any external force on them. Extremal Optimization (EO), proposed by 
Boettcher and Percus [34], is a meta-heuristic inspired by the self-organizing critical model 
utilizing EPD. In EO, the worst solutions in the population are eliminated and reposi-
tioned around the best ones. This process can evolve the worst solutions found during the 
optimization course, in contrast to the typical process in the Genetic Algorithm (GA), 
where the best solutions are always combined and evolved during the optimization. 

1.2. The Contribution of This Study 
In this paper, we propose a novel EPD operator addressing the other side of the good-

ness of an individual in the population of the EPD-based evolutionary algorithms. In the 
original version of EPD, the worst individuals are considered low-fitness individuals, re-
quired to be improved by removing and repositioning them around the best (high-fitness) 
individuals. However, the other side of the goodness/fitness of an individual can also be 
interpreted as the diversity of that individual in the search space. Having this another side 
for fitness, we can evolve and improve the best (high-fitness) individuals by eliminating 
a number of them and then repositioning them around the most diversified individuals 
in the search space. In this way, the best individuals are getting better, not in their fitness, 
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but in their diversity as the other aspect of fitness that is very important to address, espe-
cially in solving complex and large-scale optimization problems. Our novel EPD-based 
mechanism, which we name Diversity-Based EPD (DB-EPD), is applied to the Grey Wolf 
Optimizer (GWO) in this paper, and the results are compared to the original GWO and 
the GWO-EPD proposed by Saremi et al. [35], which is addressing the application of the 
traditional EPD, which we name the Fitness-Based EPD (FB-EPD), to improve the GWO. 

The organization of the rest of this paper is as follows. Section 2 presents the meth-
odology, in which we first introduce the theory of GWO and then formulate the FB-EPD 
for GWO. Then we introduce our novel DB-EPD mechanism and its application to im-
prove the GWO in Section 3. Section 4 presents the results and some analyses of them. 
Section 5 concludes the paper and summarizes the main contributions of this paper. 

2. Methodology 
This section introduces the traditional grey wolf optimization and Fitness-Based EPD 

for GWO. 

2.1. Original Grey Wolf Optimization (GWO) Algorithm 
The GWO algorithm was proposed by Mirjalili et al. in 2014 [36]. This algorithm im-

itates the hunting behavior and hierarchical leadership of grey wolves in nature. The 
GWO initializes the optimization process by randomly producing a population of the so-
lutions (wolves). At each iteration, the three best-fitted wolves, named alpha, beta, and 
delta, are identified as the guide for the other wolves named omega. Afterward, the omega 
wolves encircle their guides to find the high-fitness regions in the search space. The 
wolves are named the search agents in the concept of swarm-intelligence optimization 
techniques. As every omega wolf encircles the three best-fitted agents, its final position 
can be obtained by simply averaging the updated positions of the alpha, beta, and delta 
wolves. This procedure may boost the exploratory ability of the algorithm due to adopting 
more than one search agent as the guide to the other agents. The mathematical formula-
tion of updating the omega wolves is as follows: 

D ����⃗  =  �C��⃗ .Xp(t) �����������⃗ −  X(t)�������⃗ � (1) 

X(t + 1) ����������������⃗  = Xp(t) �����������⃗ −  A���⃗ .D���⃗  (2) 

where t is the current iteration; A���⃗  = 2r1���⃗ .a�⃗  −  a�⃗ ; C��⃗  = 2r2���⃗ ; Xp(t)����������⃗  is the position vector of the 
prey; X(t)�������⃗  is the position vector of a grey wolf. Moreover, r1���⃗  and r2���⃗  are two random vec-
tors in [0, 1]. Furthermore, a�⃗  is linearly decreased from 2 to 0 by lapse of iterations. The 
factor A���⃗  facilitates the optimization process by controlling a safe and reliable transition 
from the exploration to the exploitation phases of the algorithm. Moreover, C��⃗  is multi-
plied by the guiding vector to help the exploration process more precisely. 

The position of each omega wolf is updated through several equations formulated 
below: 

Dα�����⃗  = �C1����⃗ .Xα�����⃗  −  X��⃗ � (3) 

Dβ�����⃗  = �C2����⃗ .Xβ����⃗  −  X��⃗ � (4) 

Dδ�����⃗  = �C3����⃗ .Xδ����⃗  −  X��⃗ � (5) 

X1����⃗  = Xα�����⃗  −  A1�����⃗ .Dα�����⃗  (6) 

X2����⃗  = Xβ����⃗  −  A2�����⃗ .Dβ�����⃗  (7) 

X3����⃗  = Xδ����⃗  −  A3�����⃗ .Dδ�����⃗  (8) 
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X(t + 1) �����������������⃗ = 
X1����⃗  + X2 �����⃗ + X3����⃗

3
 (9) 

As Mirjalili et al. (2014) expressed, in GWO, the first half of the iterations are assigned 
to the exploration process when �A���⃗ � > 1, and the second half is allocated to the exploita-
tion phase of the optimization process, when �A���⃗ � < 1. 

2.2. Fitness-Based EPD for GWO (FB-GWO-EPD) 
In this approach proposed by Saremi et al. [35], half of the worst search agents are 

detected and eliminated from the population. Then, the omitted agents are re-initialized 
around the best agents in terms of fitness. This process evolves the low-fitness solutions 
instead of the best-fitted ones. The procedure of repositioning the worst agents around 
the four random positions with equal probability can be implemented via Equations (10)–
(13). 

X(t + 1)���������������⃗  = Xα(t)����������⃗  ± ��ub�����⃗  −  lb���⃗ � .r1���⃗  + lb���⃗ � ; if 0 ≤ r5 ≤ 1/4 (10) 

X(t + 1)���������������⃗  = Xβ(t)���������⃗  ± ��ub ������⃗ −  lb���⃗ � .r2 ����⃗ + lb����⃗ � ; if 1/4 < r5 ≤ 1/2 (11) 

X(t + 1)���������������⃗  = Xδ(t)���������⃗  ± ��ub�����⃗  −  lb���⃗ � .r3 ����⃗ + lb���⃗ � ;if 1/2 < r5 ≤ 3/4 (12) 

X(t + 1)���������������⃗  = ��ub�����⃗  −  lb���⃗ � .r4���⃗  + lb���⃗ � ;           if 3/4 < r5 ≤ 1 (13) 

where, Xα(t)����������⃗ , Xβ(t)���������⃗  and Xδ(t)���������⃗  are the alpha, beta, and delta wolf positions; ub�����⃗  indicates 
the upper bound vector of the search space; lb���⃗  denotes the lower bound vector of the 
search space, and r1���⃗  to r5���⃗  are five uniformly distributed random vectors in [0, 1]. Equa-
tions (10)–(12) formulate the repositioning process of the worst solutions around the best 
ones, and Equation (13) formulates repositioning the worst solutions around randomly 
positions around the search space to maintain the diversity among the diversified worst 
solutions to promote the exploration and avoid missing a large number of suitable solu-
tions when the algorithm approaches the leading solutions. 

3. Proposed Method 
As discussed in the previous subsection, the fitness-based GWO-EPD aims at elimi-

nating the worst (low-fitness) individuals instead of evolving the best ones. This process 
is well done when reproducing the worst individuals around the three elite ones in GWO: 
alpha, beta, and delta. However, repositioning the low-fitness individuals around the 
high-fitness areas in the search space can, in turn, intensify the risk of engagement in 
premature convergence. In other words, the low-fitness individuals may benefit from be-
ing located in the high-diversified positions in the search space, in contrast to those in the 
low-diversified regions in the search space. The process of repositioning the worst indi-
viduals around the best ones can further exacerbate the diversity of the solutions in the 
search space when knowing that the best (high-fitness) individuals are being rapidly gath-
ered in a closed region, leading the search space to lose its diversity. Since population 
diversification is a key phase in any stochastic population-based optimization algorithm, 
such as the GWO, there is an urgent need to diversify the solutions produced by the algo-
rithm. 

In the proposed diversity-based evolutionary population dynamics for GWO, not 
only the best-fitted solutions are repositioned around the highly diversified areas in the 
search space, but also all the solutions continue to converge to the three (alpha, beta, and 
delta) optimal solutions found at each iteration. This way, the solutions are frequently 
gathered inside the high-fitness region and dispersed outside of this region so that the 
solutions can be circulated across the search space. In this process, the poor-fitted solu-
tions move to the best-fitted ones, on the one hand, and the best-fitted solutions are moved 
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to the diversified areas, on the other hand. This process can better maintain the balance 
between the exploration capability of the GWO, in which the solutions are to be diversi-
fied to fully cover the search space, and the exploitation capability, in which the solutions 
must intensify, moving to the best regions in the search space to converge to the optimum 
of the optimization problem finally. 

In the proposed diversity-based version of the GWO-EPD algorithm, we first elimi-
nate half of the best individuals in terms of fitness and then reposition them around the 
three highly diversified solutions identified in the solution space. It is noteworthy that the 
alpha, beta, and delta agents are maintained in the algorithm’s memory to guide search 
agents. However, they are repositioned around the highly diversified agents if involved 
in the current population. The diversity of the solutions can be numerically calculated 
through Equation (14). 

di = min
j
�fi(x) −  fj(x)� (14) 

where i = 1, 2, …, N; j Є {1, …,i −  1, i + 1, …, N}; N is the population size; fi(x) = objective 
(fitness) function value for the ith solution, and fj(x) = objective (fitness) function value 
for the jth solution. In addition, di is the diversity index of the ith solution. As can be seen 
in Equation (14), the differences between the fitness value of each solution from the fitness 
values of the other solutions in the population are all calculated, and then, the minimum 
of these differences is taken as the intersection of them to result in the di index. On the 
one hand, the differences in the fitness value of a solution from the other solutions’ can 
properly reflect how different that solution is from the other solutions and so how diver-
sified it is across the search space. On the other hand, the higher the intersection of several 
values, the higher all of these values will be, as their intersection can always be regarded 
as those values in common. Hence, the more the di value, the higher the diversity of the 
ith search agent will be. The three individuals of the swarm denoted by the three highest 
values of di are then identified as the most diversified individuals and considered to 
guide half of the best-fitted individuals in the search space. Suppose that the three most 

diversified individuals at the tth iteration are denoted by Xα
div(t)�������������⃗ , Xβ

div(t)�������������⃗ , and Xδ
div(t)�������������⃗ . 

Then, half of the best-fitted solutions are to be repositioned around these solutions with 
equal probability based on Equations (15)–(17), as follows: 

X(t + 1)���������������⃗  = Xα
div(t)��������������⃗  ± ��ub�����⃗  −  lb���⃗ � .r1���⃗  + lb���⃗ � ;if 0 ≤ r4 ≤ 1/3 (15) 

X(t + 1) ����������������⃗ = Xβ
div(t)�������������⃗  ± ��ub�����⃗  −  lb���⃗ � .r2 ����⃗ + lb���⃗ � ;if 1/3 < r4 ≤ 2/3 (16) 

X(t + 1) ����������������⃗ = Xδ
div(t) ���������������⃗ ± ��ub�����⃗  −  lb���⃗ � .r⃗3 + lb���⃗ � ;if 2/3 < r4 ≤ 1 (17) 

where, ub�����⃗  is the upper bound vector of the search space, lb���⃗  denotes the lower bound 
vector of the search space, and r1���⃗  to r3���⃗  are three uniformly distributed random vectors 
in [0, 1]. r4 is also a random number in [0, 1], delineating which equation to be used to 
generate X(t + 1) as the new position of a solution included in the first half of the best-
fitted solutions. In generating X(t + 1), the Equations (15)–(17) are to be used. The random 
number r4 is first generated for each solution e. g. X(t)�������⃗  that is included in the first half of 
the best-fitted solutions, and then only one of these three equations is utilized to reposition 
that solution. Each equation is composed of two terms, including one of the three most-
diversified solutions in the search space as the first term and a randomly generated solu-
tion in the search space as the second term. Note that the probability of choosing one of 
these three equations to reposition the focused solution is just the same as the r4 is a uni-
formly distributed random number and has just the same probability of being chosen 
when its ranges are equal in length, just as considered in Equations (15)–(17). It is notice-
able that in the proposed DB-GWO-EPD algorithm, the critical factor a�⃗ , introduced in 
Subsection 2.1, is linearly decreased from 2 to 0, such as the original GWO algorithm. As 
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the last modification applied to the proposed approach, the factor C��⃗  is eliminated. It is 
worth noticing that the factor C��⃗  is used in the updating formulae in the original GWO 
algorithm to multiply the positions of the prey (alpha, beta, or delta wolves) and redirect 
the search agents to the random positions away from the accurate positions of the prey. 
This can help the GWO not to consider the fitness of the prey positions so certain and 
precise that it can, in turn, contribute to the search agents getting more diversified across 
the search space and avoiding local optima entrapments. The elimination of such a factor 
in the proposed DB-GWO-EPD algorithm is because of the well-maintaining of diversity 
in this algorithm, not necessitating the algorithm to take random positions around the 
alpha, beta, and delta wolves at each step of the optimization process, unlike the original 
GWO and the fitness-based GWO-EPD (FB-GWO-EPD). The rest of the calculations and 
updating equations are similar to the original GWO algorithm. Furthermore, since the 
proposed approach intrinsically maintains diversity over the whole search space, a ran-
dom re-initialization process performed on the solutions in the FB-GWO-EPD is unneces-
sary. Eliminating this re-initialization process in the proposed DB-GWO-EPD can reduce 
the proposed algorithm’s complexity and runtime, at least when handling global optimi-
zation problems with slightly expensive objective function evaluations. The pseudo-code 
of the proposed DB-GWO-EPD algorithm is described in Algorithm 1. Moreover, the 
flowchart of the DB-GWO-EPD is depicted in Figure 1. 

 
Figure 1. Flowchart of DB-GWO-EPD. 
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Algorithm 1 Pseudo-code of the DB-GWO-EPD algorithm 

1: 
Initialize the DB-GWO-EPD parameters, a = [2, 0], population size (N), and the maximum number of iterations 
(M) 

2: while t < M do 
3: if t = 1 then 
4: for (j = 1:N) do 
6: Initialize random positions for the jth solution at the first iteration as follows: 

7: 
Xj���⃗ = �ub�����⃗  −  lb���⃗ � .rj��⃗ +lb; �����⃗ ub�����⃗  and lb���⃗  are the upper and lower bounds of each dimension and rj��⃗  is a 
random vector 

8: end for 
9: else 
10: for (j = 1:N) do 
11: Calculate X1����⃗ , X2����⃗ , and X3����⃗ , as the guiding solutions of the jth solution, using Equations (6)–(8) 
12: Calculate X��⃗  as the arithmetic average of X1����⃗ , X2����⃗ , and X3����⃗ , using Equation (9) 
13: Adopt X��⃗  as the newly updated position of the jth solution at the tth itertaion 
14: end for 
15: end if 
16: Calculate the fitness function value for each solution 

17: 
Sort the fitness function values and their corresponding solutions in an ascending order for minimization 
purpose 

18: Identify the first half of the solutions in the solutions sorted as the ones to be repositioned 
19: Identify three best-fitted solutions (Xα(t)����������⃗ , Xβ(t)���������⃗  and Xδ(t)���������⃗ ), and save them in the memory of the algorithm  
20: Save Xα(t)����������⃗  as the best-fitted solution found so far and name it Xbest���������⃗  
21: Calculate the diversity index (di) for each solution using Equation (14)  
22: Appoint three solution positions with the highest di values, as the Xα

div(t)�������������⃗ , Xβ
div(t)�������������⃗ , and Xδ

div(t)�������������⃗  

23: Reposition the first half of the best-fitted solutions around Xα
div(t)�������������⃗ , Xβ

div(t)�������������⃗ , and Xδ
div(t)�������������⃗ , randomly, using 

Equations (15)–(17)  
24: Adopt the repositioned solution positions as their new positions 
25: t = t + 1 
26: end while 
27: Return Xbest���������⃗  as the final result of the optimization process 

The Pros and Cons of the Proposed DB-GWO-EPD and Its Computational Complexity 
As comprehensively explained in the previous sub-section, the main advantage of 

the DB-GWO-EPD against the FB-GWO-EPD and the original GWO may be hidden in its 
highly enhanced exploration capability, as the search agents are frequently pushed to-
wards the high-fitness region and pulled out of this region to be diversified and be ena-
bled to discover much more good candidate positions in the search space. Another ad-
vantage is the elimination of the factor C��⃗  may be so interesting to be applied to this algo-
rithm, unlike the FB-GWO-EPD and the original GWO. This elimination is of higher im-
portance when the runtime of these algorithms is discussed, especially when imple-
mented on global optimization problems. The proposal also suffers from some weak-
nesses, the most important of which is difficulty in the intensification of the search pro-
cess, especially at the later iterations of the optimization, which may result from the un-
balanced contribution of the random auxiliary positions added to the diversified solutions 
in the repositioning procedure. This problem may be mitigated by setting an emotional 
weight for these random positions that highly decreases over the course of iterations. 

The computational complexity of the DB-GWO-EPD is the summation of the com-
plexity of the algorithm in four items: (1) initialization process, (2) mechanism for sorting 
the elite solutions, (3) calculation of the diversity each solution has in the search space, 
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and (4) position updating procedure of the solutions. The complexity of the initialization 
process is O(N × D), and the complexity of the elites’ sorting mechanism as well as the 
diversity calculation are O(M×  N2). Finally, the complexity of the updating procedure of 
the solutions is O(M × N × D). Consequently, the total computational complexity of the 
proposed algorithm is O�M × N2) + O(M × N × D� + O(N × D) = O(M × N × (N + D)). It is 
worth noticing that M is the maximum number of iterations, N is the population size, 
and D is the variable decision size. 

4. Results and Discussion 
4.1. Benchmark Functions 

To test the competence of the proposed DB-GWO-EPD algorithm in solving optimi-
zation problems, a set of 13 shifted classical benchmark functions, as well as all the test 
functions, included in the technical report of the 2017 IEEE Congress on Evolutionary 
Computation (CEC), called CEC2017 test suite are adopted, and the proposal and its com-
petitors are all implemented on these problems [37,38]. The proposed method was delib-
erately applied to these two sets of high-dimensional benchmark functions with shifted 
global optima to examine how well it can handle large-scale and hard-to-solve optimiza-
tion problems compared to its competitors. The CEC2017 test suite was also chosen as 
another test bed to assess the competence of the optimizers to solve such hard-to-solve 
problems that can toughly challenge any optimizer when tackling them. 

The mathematical formulation of the uni-modal and multi-modal shifted classical 
benchmark functions, as well as the CEC 2017 test suite, along with their optimal fitness 
values, can be seen in Tables 1‒3. In these tables, n denotes the number of dimensions of 
the corresponding problem. The global optima of these functions are all shifted from the 
center of the domain to a position away from the center to make these problems more 
challenging and complex to solve and more realistic for any optimizer when solving them. 
The shifted positions adopted for the global optima of the classical functions are all set 
similar to the same in extensive experiments conducted in the literature [35,39]. 

Table 1. The shifted uni-modal benchmark functions. 

Benchmark Function Range Shifted Position fmin 

F1(X) = ∑ xd
2n

d = 1   [−100, 100]n  [ − 30, − 30, …, − 30]  0 
F2(X) = ∑ |xd|n

d = 1 +∏ |xd|n
d = 1   [−10, 10]n  [ − 3, − 3, ..., − 3]  0 

F3(X) = ∑ �∑ xj
d
j = 1 �

2n
d = 1   [−100, 100]n  [ − 30, − 30, …, − 30]  0 

F4(X) =  max
d

{|xd|,1 ≤ d ≤ n}  [−100, 100]n  [ − 30, − 30, …, − 30]  0 

F5(X) = ∑ �100(xd + 1 − xd
2 )2+(xd − 1)2�n−1

d = 1   [−30, 30]n  [ − 15, − 15, …, − 15]  0 
F6(X) = ∑ (⌊xd + 0.5⌋)2n

d = 1   [−100, 100]n  [ − 750, − 750, …, − 750]  4.225 × 105× n 
F7(X) = ∑ dxd

4n
d = 1 +random [0,1)  [−1.28, 1.28]n  [ − 0.25, − 0.25, …, − 0.25]  0 

Table 2. The shifted multi-modal benchmark functions. 

Benchmark Functions Range Shifted Position fmin 

F8(X) = ∑  − xdsin�|xd|n
d = 1   [−500, 500]n  [ − 300, − 300, …, −

300]  −418.9829 × n 

F9(X) = ∑ �xd
2  −  10 cos(2πxd)  + 10�n

d = 1   [−5.12, 5.12]n  [ − 2, − 2, …, − 2]  0 

F10(X) = − 20 exp�−0.2�1
n
∑ xd

2n
d = 1 � − exp �1

n
∑ cos(2πxd)n

d=1 �  + 20 + e  [−32, 32]n  [ − 16, − 16, …, − 16] 0 

F11(X) = 1
4000

∑ xd
2n

d = 1 −∏ cos( xd

√d
)n

d = 1  + 1  [−600, 600]n  [ − 400, − 400, …, −
400]  0 

F12(X) = π
n
�10sin(πy1) + ∑ �yd − 1�

2n−1
d = 1 �1 + 10sin2(πyd + 1)� + (yn − 1)2�  + ∑ u(xd, 10, 100, 40)n 

d = 1   [−50, 50]n  [ − 30, − 30, …, − 30]  0 

yd = xd + 1
4

  

u(xd,a, k, m) = �
k(xd − a)m                         xd > a
0                              − a < xd < a

k( − xd − a)m                  xd < − a
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F13(X) = 0.1{sin2(3πx1) + ∑ (xd − 1)2�1 + sin2(3πxd + 1)� + (xn − 1)2n
d = 1 �1 + sin2(2πxn)� + 

∑ u(xd, 5, 100, 4)n
d = 1   

[−50, 50]n  [ − 100, − 100, …, −
100]  * 

* The minimum of this function varies as the dimensionality (n) varies, however, if n = 100, then fmin 
= 4.1006 × 1010. 

Table 3. Summary of the CEC2017 test functions. 

Description NO. Function fmin 

Uni-modal Functions 
1 Shifted and Rotated Bent Cigar Function 100 
2 Shifted and Rotated Sum of Different Power Function * 200 
3 Shifted and Rotated Zakharov Function 300 

Simple 
Multi-modal Functions 

4 Shifted and Rotated Rosenbrock’s Function 400 
5 Shifted and Rotated Rastrigin’s Function 500 
6 Shifted and Rotated Expanded Scaffer’s F6 Function 600 
7 Shifted and Rotated Lunacek Bi_Rastrigin Function 700 
8 Shifted and Rotated Non-Continuous Rastrigin’s Function 800 
9 Shifted and Rotated Levy Function 900 

10 Shifted and Rotated Schwefel’s Function 1000 

Hybrid Functions 

11 Hybrid Function 1 (N = 3) 1100 
12 Hybrid Function 2 (N = 3) 1200 
13 Hybrid Function 3 (N = 3) 1300 
14 Hybrid Function 4 (N = 4) 1400 
15 Hybrid Function 5 (N = 4) 1500 
16 Hybrid Function 6 (N = 4) 1600 
17 Hybrid Function 6 (N = 5) 1700 
18 Hybrid Function 6 (N = 5) 1800 
19 Hybrid Function 6 (N = 5) 1900 
20 Hybrid Function 6 (N = 6) 2000 

Composition Functions 

21 Composition Function 1 (N = 3) 2100 
22 Composition Function 2 (N = 3) 2200 
23 Composition Function 3 (N = 4) 2300 
24 Composition Function 4 (N = 4) 2400 
25 Composition Function 5 (N = 5) 2500 
26 Composition Function 6 (N = 5) 2600 
27 Composition Function 7 (N = 6) 2700 
28 Composition Function 8 (N = 6) 2800 
29 Composition Function 9 (N = 3) 2900 
30 Composition Function 10 (N = 3) 3000 

Search Range: [−100,100]D; D is the dimensionality of the test problems 
* F2 has been excluded because it shows unstable behavior, especially for higher dimensions, and 
significant performance variations for the same algorithm implemented in Matlab, C. 

All of the test functions are to be minimized. The shifted classical benchmark test 
problems are assumed to be high-dimensional, with the dimensionality set to 100. In ad-
dition, the CEC2017 test functions are adopted to be 50-dimensional to increase the diffi-
culty the algorithms may face when solving such hard-to-handle and complex optimiza-
tion problems. All of these settings are made to examine better the proposed algorithm’s 
real strength against the other comparative algorithms. The first test bed consists of two 
categories of uni-modal functions (F1-F7) and multi-modal functions (F8-F13). The first 
one challenges the exploitation capability of the algorithms and tests their convergence 
rate of them when finding out the global optimum of the problems, and the second one 
tests the exploration capability of the algorithms, investigating if the optimization algo-
rithms can avoid local optima entrapments and detect all the possible good candidate 
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solutions in the search space. The CEC2017 test suite encompasses a variety of composi-
tion, hybrid, uni-modal, and multi-modal functions. Thus, it can suitably benchmark the 
maximum ability of the examined algorithms to solve a wide range of problems providing 
great difficulties to an optimizer when attempting to search for the optimum of such prob-
lems. 

4.2. Comparison with Other Well-Known Algorithms 
The proposed DB-GWO-EPD was compared with the FB-GWO-EPD and the original 

GWO along with four other popular and newly-proposed algorithms, including Aquila 
Optimizer (AO) [40]; Flow Direction Algorithm (FDA) [41]; Arithmetic Optimization Al-
gorithm (AOA) [42]; and Gradient-based Optimizer (GBO) [43]. The parameter settings of 
all the competitive algorithms are presented in Table 4. 

Table 4. Parameter settings of the DB-GWO-EPD and its competitive algorithms. 

Algorithm Parameter Settings 
AO r1∈[1, 20]; U = 0.00565; D1 = D; ω = 0.005; α = δ = 0.1; G2 = [2, 0] 

FDA β = 1 
AOA α = 5; µ = 0.5 
GBO βmin = 0.2; βmax = 1.2; pr = 0.5 
GWO a = [2, 0] 

FB-GWO-
EPD 

a = [2, 0] 

DB-GWO-
EPD 

a = [2, 0] 

All algorithms were run 30 independent times, and the average and standard devia-
tion of the final results achieved during all runs, abbreviated as “Ave” and “Std”, respec-
tively, are adopted as the performance criteria and reported in Tables 5 and 6. The results 
corresponding to the best-performing criteria are emboldened in these tables. The conver-
gence curves of the algorithms, when implemented on the shifted benchmark functions, 
are also plotted in Figures 2 and 3. Furthermore, for a fair and unbiased comparison, the 
population size of all the algorithms is set to 30 for the first benchmark function set and 
adopted to be 50 for the CEC2017 test suite. In addition, all the algorithms were imple-
mented for 1000 iterations at each runtime. The stopping criterion is also considered ful-
filled after reaching the maximum number of iterations. 

  
0 200 400 600 800 1000

Iteration

10 0

10 2

10 4

10 6

A
ve

ra
ge

 b
es

t-s
o-

fa
r

F1

AO

FDA

AOA

GBO

GWO

FB-GWO-EPD

DB-GWO-EPD

0 200 400 600 800 1000

Iteration

10 0

10 20

10 40

10 60

A
ve

ra
ge

 b
es

t-s
o-

fa
r

F2

AO

FDA

AOA

GBO

GWO

FB-GWO-EPD

DB-GWO-EPD



Processes 2022, 10, 2615 13 of 27 
 

 

  

  

 
Figure 2. Convergence curves plotted for the algorithms on the uni-modal shifted benchmark func-
tions. 
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Figure 3. Convergence curves plotted for the algorithms on the multi-modal shifted benchmark 
functions. 

Table 5. Results of the DB-GWO-EPD and its rivals on the shifted benchmark functions, with n = 
100. 

 Criteria AO FDA AOA GBO GWO 
FB-GWO-

EPD 
DB-GWO-

EPD 
F1 Ave 6.6579 × 102 9.2465 × 10 8.1744 × 104 4.2565 2.6986 × 104 5.0429 × 102 8.3539 × 10−1 

 Std 3.7689 × 102 2.7576 × 10 3.5185 × 103 1.8961 4.6165 × 103 1.4285 × 102 3.0210 × 10−1 
F2 Ave 6.2467 × 10 1.2532 × 10 8.2193 × 1046 7.1612 1.5454 × 102 1.0983 × 102 1.9838 

 Std 1.0766 × 10 1.2938 × 10 1.4548 × 1047 2.5304 1.7258 × 10 2.2135 × 10 1.7873 
F3 Ave 6.2975 × 105 5.1412 × 104 5.2178 × 107 5.0863 × 104 6.5265 × 104 4.5943 × 104 2.8288 × 104 

 Std 3.3353 × 105 1.2203 × 104 3.0106 × 107 1.1385 × 104 1.2188 × 104 2.3826 × 103 4.5466 × 103 
F4 Ave 6.4199 5.7145 × 10 3.0010 × 10 3.0000 × 10 3.0000 × 10 3.0001 × 10 1.0698 × 10 

 Std 1.0959 3.2665 1.0620 × 10−2 0 1.4235 × 10−5 1.1221 × 10−3 2.7652 
F5 Ave 7.1099 × 105 2.6441 × 104 4.2934 × 108 2.4430 × 103 8.4413 × 107 1.7271 × 103 7.9457 × 102 

 Std 2.3792 × 105 1.0748 × 104 4.8797 × 106 1.0962 × 103 1.3821 × 107 6.9398 × 102 9.8350 × 102 
F6 Ave 4.7087 × 107 4.2455 × 107 5.4015 × 107 4.2315 × 107 4.5852 × 107 4.2609 × 107 4.3322 × 107 

 Std 1.1035 × 106 2.0457 × 105 5.9905 × 105 0 3.4135 × 105 1.4011 × 105 1.1990 × 105 
F7 Ave 5.9662 × 10−2 1.8381 1.9591 × 10 5.2178 × 10−1 7.6576 2.0676 2.3332 × 10−1 

 Std 8.1757 × 10−2 2.3114 × 10−1 6.6384 × 10−2 1.1624 × 10−1 9.3946 × 10−1 4.0188 × 10−1 6.7209 × 10−2 
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F8 Ave −4.0026 × 104 −4.0001 × 104 −1.6152 × 104 −4.6366 × 104 −3.0043 × 104 −3.1018 × 104 −2.9074 × 104 
 Std 5.0202 × 103 2.8268 × 103 1.4243 × 103 3.3289 × 103 2.0813 × 103 6.5483 × 103 1.0665 × 104 

F9 Ave 6.4745 × 10 4.8795 × 102 3.9917 × 102 3.7281 × 102 3.5234 × 102 3.7875 × 102 4.2068 × 102 
 Std 2.4065 × 10 5.6871 × 10 3.0287 × 10−2 7.5392 1.5079 × 10 3.7176 × 10 2.7046 × 102 

F10 Ave 9.2096 1.9712 × 10 1.9185 × 10 1.0791 × 10 1.7895 × 10 1.1858 × 10 1.1055 
 Std 8.7246 × 10−1 2.6169 × 10−1 4.3534 × 10−6 2.2658 9.7602 × 10−1 7.1181 3.0835 × 10−1 

F11 Ave 2.0904 × 102 1.9947 × 10 2.1440 × 103 1.0766 5.7018 × 102 2.1362 4.9285 × 10−1 
 Std 2.5256 × 102 8.7853 1.2316 × 102 7.3605 × 10−2 1.3720 × 102 6.0558 × 10−1 7.3081 × 10−2 

F12 Ave 9.2327 × 102 1.2972 × 103 1.5442 × 109 1.4721 × 10 2.0258 × 108 1.2536 × 10 1.5566 
 Std 2.7363 × 103 1.4015 × 103 2.8499 × 107 4.6852 3.6813 × 107 4.0517 6.3168 × 10−1 

F13 Ave 4.7531 × 1010 4.1006 × 1010 7.9630 × 1011 4.1006 × 1010 1.8052 × 1011 4.2906 × 1010 5.3127 × 1010 
 Std 1.5675 × 1010 0 1.2203 × 1010 0 3.8026 × 1010 1.6574 × 108 1.0299 × 109 

Table 6. Results of the DB-GWO-EPD and its rivals on the 50-dimensional CEC2017 test functions. 

 Criteria AO FDA AOA GBO GWO FB-GWO-EPD DB-GWO-EPD 
F1 Ave 1.6838 × 109 3.8271 × 104 1.0679 × 1011 7.2920 × 103 8.2896 × 109 5.8980 × 107 1.8071 × 104 

 Std 6.2457 × 108 4.4200 × 104 1.0241 × 1010 8.4348 × 103 4.2006 × 109 2.0039 × 107 9.2804 × 103 
F3 Ave 2.0248 × 105 2.7961 × 104 1.6642 × 105 3.9352 × 104 1.0484 × 105 6.6347 × 104 5.0470 × 104 

 Std 4.4288 × 104 8.9157 × 103 2.0180 × 104 9.7975 × 103 1.6965 × 104 1.3566 × 104 1.2134 × 104 
F4 Ave 1.0630 × 103 5.4393 × 102 3.0754 × 104 5.5786 × 102 1.1238 × 103 6.6857 × 102 5.9875 × 102 

 Std 1.9549 × 102 5.8808 × 10 7.7284 × 103 5.3041 × 10 2.3977 × 102 4.1381 × 10 5.2919 × 10 
F5 Ave 8.6665 × 102 8.2013 × 102 1.1525 × 103 8.1004 × 102 7.2367 × 102 6.7674 × 102 6.5307 × 102 

 Std 3.3186 × 10 6.2431 × 10 4.0010 × 10 4.9971 × 10 2.7447 × 10 4.7522 × 10 9.5217 × 10 
F6 Ave 6.6537 × 102 6.5096 × 102 6.9011 × 102 6.3725 × 102 6.1746 × 102 6.1596 × 102 6.0456 × 102 

 Std 5.3658 × 10 8.7769 5.1072 9.7671 5.4024 5.9317 2.9473 
F7 Ave 1.5161 × 103 1.4326 × 103 1.9341 × 103 1.2644 × 103 1.0724 × 103 1.0822 × 103 9.7839 × 102 

 Std 1.2247 × 102 1.1392 × 102 6.3770 × 10 9.4996 × 10 5.9392 × 10 4.4810 × 10 1.5911 × 102 
F8 Ave 1.1804 × 103 1.1620 × 103 1.4717 × 103 1.1110 × 103 1.0259 × 103 1.0124 × 103 9.1755 × 102 

 Std 3.4016 × 10 4.3580 × 10 4.7283 × 10 5.6324 × 10 5.7317 × 10 9.3255 × 10 2.7887 × 10 
F9 Ave 2.1934 × 104 1.0603 × 104 2.8784 × 104 7.4002 × 103 8.0871 × 103 6.2582 × 103 1.5274 × 103 

 Std 3.8379 × 103 2.4207 × 103 4.3133 × 103 2.4743 × 103 3.3907 × 103 2.5762 × 103 1.2381 × 103 
F10 Ave 9.1459 × 103 8.4369 × 103 1.3462 × 104 7.8672 × 103 7.5159 × 103 9.8846 × 103 8.1947 × 103 

 Std 9.7917 × 102 1.0053 × 103 7.8133 × 102 9.4913 × 102 1.7420 × 103 4.0438 × 103 3.5965 × 103 
F11 Ave 2.2437 × 103 1.3379 × 103 2.2605 × 104 1.3879 × 103 4.3152 × 103 1.5887 × 103 1.4279 × 103 

 Std 2.7895 × 102 7.0421 × 10 3.8152 × 103 8.3613 × 10 1.5839 × 103 1.0617 × 102 8.1144 × 10 
F12 Ave 6.1213 × 108 2.2862 × 106 6.8321 × 1010 2.6664 × 106 5.9699 × 108 1.5015 × 108 2.3364 × 107 

 Std 4.0105 × 108 1.4679 × 106 1.5355 × 1010 2.2857 × 106 6.4348 × 108 8.5096 × 107 1.7026 × 107 
F13 Ave 2.3863 × 107 6.1931 × 103 3.9481× 1010 1.2570 × 104 4.1420 × 108 8.5343 × 105 8.4775 × 104 

 Std 3.8111 × 107 7.0134 × 103 1.2296 × 1010 9.9819 × 103 8.8631 × 108 4.4079 × 105 4.8870 × 104 
F14 Ave 4.8743 × 106 3.1987 × 104 5.2754 × 107 3.9591 × 104 1.0451 × 106 3.7271 × 105 1.9834 × 105 

 Std 4.3827 × 106 3.1930 × 104 4.4620 × 107 3.9226 × 104 1.2344 × 106 2.3847 × 105 9.5941 × 104 
F15 Ave 6.1620 × 105 1.0266 × 104 4.4614 × 109 1.2206 × 104 1.8441 × 107 1.4188 × 105 4.2204 × 104 

 Std 3.6634 × 105 6.4333 × 103 2.6802 × 109 7.4912 × 103 3.2540 × 107 1.8065 × 105 2.4322 × 104 
F16 Ave 4.3612 × 103 3.6774 × 103 7.9190 × 103 3.4870 × 103 3.2102 × 103 2.9626 × 103 2.8461 × 103 

 Std 5.3030 × 102 5.1378 × 102 1.2332 × 103 4.9718 × 102 4.4746 × 102 4.1833 × 102 3.4984 × 102 
F17 Ave 3.6432 × 103 3.3813 × 103 9.1957 × 103 3.0819 × 103 2.9329 × 103 2.8919 × 103 2.8425 × 103 

 Std 3.8545 × 102 3.7707 × 102 2.4943 × 103 3.4783 × 102 3.4609 × 102 3.9359 × 102 4.1003 × 102 
F18 Ave 9.1232 × 106 2.2535 × 105 1.0356 × 108 2.1870 × 105 4.4394 × 106 2.9262 × 106 2.3528 × 106 

 Std 6.4256 × 106 1.5052 × 105 4.8975 × 107 1.3210 × 105 5.2595 × 106 1.9711 × 106 2.3575 × 106 
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F19 Ave 2.2803 × 106 1.8197 × 104 2.7898 × 109 1.8302 × 104 4.1561 × 106 1.4102 × 106 8.0552 × 105 
 Std 2.1570 × 106 1.0490 × 𝟏𝟏𝟏𝟏𝟒𝟒 1.4850 × 109 1.1745 × 104 8.5345 × 106 1.0476 × 106 5.9277 × 105 

F20 Ave 3.2709 × 103 3.4256 ×  103 3.5912 × 103 3.2025 × 103 2.9462 × 103 3.1085 × 103 2.9489 × 103 
 Std 2.6175 × 102 3.3007 × 102 2.6817 × 102 4.0586 × 102 3.6343 × 102 5.4458 × 102 4.7087 × 102 

F21 Ave 2.7043 × 103 2.6240 × 103 3.0782 × 103 2.5662 × 103 2.5173 × 103 2.4638 × 103 2.4115 × 103 
 Std 6.3075 × 10 6.1326 × 10 8.5153 × 10 5.1954 × 10 5.5484 × 10 5.0296 × 10 2.3648 × 10 

F22 Ave 1.0965 × 104 9.9308 × 103 1.5926 × 104 9.4638 × 103 9.6836 × 103 1.0955 × 104 8.7319 × 103 
 Std 1.6841 × 103 8.3742 × 102 7.0190 × 102 1.6273 × 103 2.0126 × 103 3.9900 × 103 3.0635 × 103 

F23 Ave 3.4393 × 103 3.1004 × 103 4.4239 × 103 3.0558 × 103 2.9820 × 103 2.9274 × 103 2.8798 × 103 
 Std 9.2377 × 10 8.1408 × 10 2.3112 × 102 7.8350 × 10 6.3290 × 10 8.7578 × 10 6.8065 × 10 

F24 Ave 3.5218 × 103 3.2665 × 103 4.9199 × 103 3.1724 × 103 3.1932 × 103 3.0855 × 103 3.0343 × 103 
 Std 1.2135 × 102 9.9971 × 10 3.1459 × 102 6.0068 × 10 1.1563 × 102 1.2804 × 102 7.5755 × 10 

F25 Ave 3.4327 × 103 3.0855 × 103 1.5444 × 104 3.0855 × 103 3.5262 × 103 3.2034 × 103 3.0668 × 103 
 Std 8.8058 × 10 2.3492 × 10 1.3989 × 103 2.3553 × 10 2.1484 × 102 5.9425 × 10 2.6992 × 10 

F26 Ave 8.6249 × 103 9.0556 × 103 1.6923 × 104 7.0615 × 103 6.3760 × 103 5.8852 × 103 5.0518 × 103 
 Std 2.4721 × 103 1.8166 × 103 1.2165 × 103 2.4977 × 103 5.2971 × 102 8.0009 × 102 3.4836 × 102 

F27 Ave 4.0141 × 103 3.6061 × 103 6.7731 × 103 3.5950 × 103 3.6165 × 103 3.4305 × 103 3.4253 × 103 
 Std 1.9720 × 102 1.5115 × 102 7.3983 × 102 1.3302 × 102 1.2148 × 102 5.3921 × 10 6.6431 × 10 

F28 Ave 4.2899 × 103 3.3315 × 103 1.2297 × 104 3.3326 × 103 4.2560 × 103 3.4948 × 103 3.3136 × 103 
 Std 2.7492 × 102 2.9990 × 10 1.3466 × 103 2.7941 × 10 4.0559 × 102 8.1306 × 10 2.5638 × 10 

F29 Ave 6.1689 × 103 4.7010 × 103 3.6559 × 104 4.6781 × 103 4.6299 × 103 4.3602 × 103 4.2874 × 103 
 Std 6.9454 × 102 4.4253 × 102 2.9085 × 104 3.7906 × 102 2.8006 × 102 2.8032 × 102 3.0278 × 102 

F30 Ave 1.2248 × 108 1.1529 × 106 5.8046 × 109 1.0718 × 106 1.1702 × 108 9.2911 × 107 3.9885 × 107 
 Std 4.9406 × 107 2.9984 × 105 2.6383 × 109 2.1165 × 105 5.0559 × 107 2.0213 × 107 7.6628 × 106 

4.2.1. Comparing the Algorithms on the Uni-Modal Functions 
The results of applying the algorithms to the uni-modal benchmark functions show 

that the DB-GWO-EPD highly outperforms the original GWO and the FB-GWO-EPD as 
the improved version of the GWO. While the FB-GWO-EPD is slightly better than the 
GWO on almost all uni-modal functions, the DB-GWO-EPD performs much better than 
both other algorithms on the entire test functions falling in this category except for F6. 

The DB-GWO-EPD can reach the slightest standard deviations among its competitors 
on F1, F2, F3, and F7. This can guarantee the use of this algorithm without any need to run 
the algorithm frequently. In other words, the user of the proposed algorithm can rely 
much more on the results of the DB-GWO-EPD compared to the other version of GWO. 
The proposed algorithm is superior to all the examined algorithms, including the four 
newly-proposed algorithms on F1, F2, F3, and F5. The closest rival of the proposed DB-
GWO-EPD is the AO algorithm, outperforming its competitors on F4 and F7. Overall, the 
proposal is superior to the other algorithms on 6 out of 14 (43%) of the entire performance 
criteria (average and standard deviations of the best-achieved solutions). In comparison, 
each of the other examinees is superior to the others on a maximum of only 2 out of 14 
(14%) criteria. 

The main reason behind the superior results of the proposed algorithm is hidden in 
having a high exploration capability which, in turn, can impede the stagnation of the so-
lutions in the search space by frequently diversifying them to accelerate the process of 
finding the optimal solutions across the search space and speed up the convergence of the 
proposal when implemented on such a high-dimensional uni-modal function set. 

4.2.2. Comparing the Algorithms on the Multi-Modal Functions 
The results of the multi-modal functions indicate the superiority of the proposed DB-

GWO-EPD algorithm to the FB-GWO-EPD and the original GWO on most of the 
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benchmark functions. The high capability of the proposed algorithm in the diversification 
of the search agents takes effect, especially when solving F10, F11, and F12. Compared 
with the other examined algorithms, including the popular and newly-proposed ones, the 
DB-GWO-EPD shows its superiority on 5 out of 12 (42%) of the total criteria, demonstrat-
ing its high efficacy in solving this set of problems. 

Knowing that the multi-modal functions with many dimensions, as examined in this 
study, have a lot of local optima in their search space, an algorithm should have a power-
ful exploration capability to overcome these natural difficulties the multi-modal functions 
offer. Moreover, in all of the benchmark functions employed in this study, the optimal 
solution is shifted in all dimensions, and this alteration applied to these functions can 
make them significantly harder to solve. It can be inferred from the results obtained that 
the proposed DB-GWO-EPD algorithm is versatile and robust, tackling the difficulties 
mentioned for the high-dimensional multi-modal functions as the most realistic represent-
atives of real-world optimization problems. 

4.2.3. Comparing the Algorithms on the CEC2017 Test Suite 
The CEC2017 benchmark functions are rated as a test bed that can challenge any op-

timization algorithm comprehensively. The problems in this set seem more realistic and 
more similar to the real-world optimization problems as compared to those in the first 13-
problem set used to examine the eligibility of the proposed algorithm and its rivals. This 
test suite comprises a variety of composition, hybrid, uni-modal, and multi-modal func-
tions. Here, all the functions included in the CEC2017 test suite are set to be 50-dimen-
sional to challenge further the capabilities of the proposal to handle such large-scale and 
complex optimization problems. 

As the results suggest, the proposed DB-GWO-EPD significantly outperforms the 
other comparative algorithms on F21-F29 problems. These problems are known as the 
composition functions comprising a variety of shifted, rotated, and biased multi-modal 
functions, representing them as the most challenging category of the test problems in-
cluded in the CEC2017 benchmark functions. As a result, the superiority of the proposal 
on these functions can affirm the power of this algorithm to solve hard-to-solve optimiza-
tion problems. Although the proposed DB-GWO-EPD performs much better than the FB-
GWO-EPD and the original GWO algorithms on 10 out of 10 (100%) of the F11-F20 prob-
lems, the proposal loses the competition in solving these problems to the FDA algorithm 
having 60% outperformance rate that overtakes the DB-GWO-EPD with an outperfor-
mance rate of 15% on the F11-F20. This problem set is called the hybrid functions, the 
second most challenging category in the CEC2017 test suite. The proposal also outper-
forms both the original GWO and the FB-GWO-EPD on the first ten functions of this test 
bed that can technically be divided into uni-modal and multi-modal functions. 

The proposal is also superior to all rivals on 5 out of 9 (56%) of the F1-F10 problems. 
Note that none of the algorithms is tested on F2, as recommended by the creators of the 
CEC2017 test suite. FDA is rated as the second-best algorithm outperforming the other 
examinees on 2 out of 9 (22%) of these problems. Overall, the proposed algorithm can 
achieve the best average objective function values on 16 out of 29 (55%) criteria in the 
CEC2017 test bed. In addition, the DB-GWO-EPD tackles its rivals in 23 out of 58 (40%) 
cases, including the average and standard deviation of the best-reached results by the op-
timizers on this test suite. 

The main reason for the high competence of the proposed DB-GWO-EPD algorithm 
may be the strong capability of the proposed algorithm to preserve the diversity of the 
solutions during the whole optimization process, which especially matches the nature of 
this test problems suite. This property incorporated into the proposal can make this algo-
rithm tackle its competitors when facing many local optima in the search space of multi-
modal problems. In this case, the proposed algorithm explores the search space as much 
as possible as a result of being enabled to escape from such a large number of local optima 
and finds the best-fitted region and, finally, the optimal solution to the problem, especially 
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when handling complex optimization problems. Preserving diversity not only guarantees 
reaching the optimal solution of a multi-modal problem but could also accelerate the con-
vergence in solving the uni-modal problems when their global optimum is shifted to the 
corner of the problem domain, similar to the cases examined in this paper. 

4.3. Statistical Analysis 
In statistical analysis, the Wilcoxon rank-sum test is used as a non-parametric test to 

determine whether a couple of solutions follow the same probability distribution function 
(García et al. 2008). This test finally renders an output named p-value. If the p-value < 0.05 
for an algorithm, it is assumed to be statistically significantly different compared to its 
competitor. This difference can appear in both cases of superiority and non-superiority in 
the algorithms’ results. The test results are presented in Tables 7 and 8. In these tables, the 
expression N/A mentioned in each row denotes that the algorithm ahead of that row is 
“Not Applicable” in the test, meaning this algorithm cannot be compared. On the shifted 
classical benchmark functions, the proposed DB-GWO-EPD is assigned a p-value more 
significant than the level of 5% significance versus AO and GBO, despite being superior 
to them on a vast majority of the functions. The critical point is that the DB-GWO-EPD 
cannot achieve a p-value less than 0.05 when facing the FB-GWO-EPD. However, the p-
value that the test produces for DB-GWO-EPD versus the original GWO is much less than 
that the test offers for the FB-GWO-EPD versus GWO, implicitly demonstrating that the 
results of the proposed DB-GWO-EPD are more significantly superior to the FB-GWO-
EPD. While on the CEC2017 test problems, the proposed DB-GWO-EPD is significantly 
superior to all its rivals, as the p-values generated pairwise for this algorithm against the 
others clearly suggest. Since the CEC2017 test suite is a more appropriate  bed for evaluat-
ing the overall performance of an algorithm, having significant superiority to a set of pop-
ular algorithms can properly delineate the high competence of the DB-GWO-EPD in solv-
ing optimization problems. 

Table 7. p-values calculated for the shifted classical functions (p-values ≥ 0.05 have been under-
lined). 

Algorithms AO FDA AOA GBO GWO FB-GWO-EPD DB-GWO-EPD 
AO N/A       

FDA 7.7641 × 10−1 N/A      
AOA 1.0217 × 10−3 2.5245 × 10−3 N/A     
GBO 4.6500 × 10−2 3.2649 × 10−2 3.9261 × 10−5 N/A    
GWO 1.5966 × 10−2 1.4304 × 10−2 5.1522 × 10−2 8.1663 × 10−5 N/A   

FB-GWO-EPD 8.4754 × 10−1 8.7630 × 10−1 9.8442 × 10−4 4.6674 × 10−2 1.4854 × 10−2 N/A  
DB-GWO-EPD 1.2496 × 10−1 1.2324 × 10−1 3.3946 × 10−4 9.1839 × 10−1 9.5116 × 10−4 1.9343 × 10−1 N/A 

Table 8. p-values calculated for the CEC2017 benchmark functions (p-values ≥ 0.05 have been un-
derlined). 

Algorithms AO FDA AOA GBO GWO FB-GWO-EPD DB-GWO-EPD 
AO N/A       

FDA 4.4360 × 10−3 N/A      
AOA 5.4935 × 10−15 4.0441 × 10−17 N/A     
GBO 2.5666 × 10−3 8.0087 × 10−1 3.2827 × 10−16 N/A    
GWO 9.3737 × 10−2 2.2604 × 10−1 3.9835 × 10−17 1.1853 × 10−1 N/A   

FB-GWO-EPD 4.7753 × 10−3 3.5684 × 10−1 1.6881 × 10−15 3.8885 × 10−1 1.5497 × 10−1 N/A  
DB-GWO-EPD 4.5442 × 10−10 7.3072 × 10−3 4.8602 × 10−18 5.4212 × 10−4 8.7465 × 10−8 1.5154 × 10−6 N/A 
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4.4. Comparative Results on Engineering Design Problems 
An optimization algorithm may face some optimization problems having different 

difficulties, which in turn, can make these problems too hard-to-solve. The DB-GWO-EPD 
is implemented on four constrained engineering problems to validate further the proposal 
to tackle these difficulties. For constraint handling in these problems, the penalty function 
approach was adopted. In addition, 50 wolves, and 1000 iterations, are set for the DB-
GWO-EPD algorithm when solving this problem set. The algorithm is run 30 times, and 
the best-achieved results are reported versus those of the other comparative algorithms. 
It is worth mentioning that the results found by the best-performing algorithm are em-
boldened in the tables showing the results of the optimization conducted on these prob-
lems. 

4.4.1. Welded Beam Design Problem 
This problem aims to minimize the construction cost of a welded beam. This problem 

is a high-constrained one, imposing several restrictions on the beam properties such as 
bending stress (σ), shear stress (τ), deflection at the end of the beam (δ), buckling load on 
the bar (P), and several other constraints. Four design components considered as the de-
cision variables of the problem are illustrated in Figure 4 as h(x1), l(x2), t(x3), and b(x4). 
The problem formulation is as follows. 

Minimize f(x�⃗ ) = 1.10471x1
2x2 + 0.04811x3x4(14 + x2) (18) 

Subject to: 

g1
(x�⃗ ) = τ(x) −  τmax ≤ 0 (19) 

g2
(x�⃗ ) = σ(x) −  σmax ≤ 0 (20) 

g3
(x�⃗ )=x1 − x4≤0 (21) 

g4
(x�⃗ ) = 0.10471x1

2 + 0.04811x3x4(14 + x2) −  5 ≤ 0 (22) 

g5
(x�⃗ ) = 0.125 −  x1≤  0 (23) 

g6
(x�⃗ ) = δ(x) −  δmax ≤ 0 (24) 

g7
(x�⃗ ) = P −  Pc(x) ≤ 0 (25) 

0.1 ≤ xi ≤ 2, i = 1, 4 (26) 

0.1 ≤ xi ≤ 10, i = 2, 3 (27) 

where 

τ(x) = �(τ’)2 + 2τ’τ’’
x2

2R
 + (τ’’)2 , τ’ = 

P
√2x1x2

, τ’’ = 
MR

J
 (28) 

M = P �L + 
x2

2
� , R = �

x2
2

4
+ �

x1 + x3

2
�

2
, J = 2 �√2x1x2 �

x2
2

12
 + �

x1 + x3

2
�

2
�� (29) 

σ(x) = 
6PL
x4x3

2 , δ(x) = 
4PL3

Ex3
3x4

, Pc(x) = 
4.013E��x3

2x4
6/36�

L2 �1 −
x3

2L
� E

4G
� (30) 

P = 26.698 KN, L = 35.56 cm, E = 2.07 × 104 
KN
cm2 , G = 8270 

KN
cm2 (31) 

τmax = 9.38 
KN
cm2 , σmax = 20.7 

KN
cm2 , δmax = 6.35 mm (32) 
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Table 9 shows the design variables and optimal cost to spend for designing such a 
welded beam when calculated by the proposed algorithm and its competitors. The results 
reveal that the DB-GWO-EPD can find the least cost among the other algorithms whose 
results are from the literature. 

 
Figure 4. Welded beam scheme [44]. "Reprinted from Publication Reptile Search Algorithm (RSA): A 
nature-inspired meta-heuristic optimizer, vol. 191, 1–32, Copyright (2022), with permission from Elsevier."  

4.4.2. Three-Bar Truss Design Problem 
This problem aims to minimize the weight of a three-bar truss subject to stress, de-

flection, and buckling constraints. A scheme of this problem is depicted in Figure 5. The 
truss focused on this problem has three cross-section areas denoted by A1, A2, and A3, 
out of which A1 is just equal to A3. Thus, there are only two areas to be optimized, which 
are denoted by x1 and x2 as the decision variables in the problem, formulation are illus-
trated below. 

Minimize f(x�⃗ ) = �2√2x1 + x2� × l (33) 

Subject to: 

g1
(x�⃗ ) = 

√2x1 + x2

√2x1
2 + 2x1x2

P −  σ ≤ 0 (34) 

g2
(x�⃗ )=  

x2

√2x1
2 + 2x1x2

P −  σ ≤ 0 (35) 

g3
(x�⃗ ) = 

1
√2x2 + x1

P −  σ ≤ 0 (36) 

0 ≤ x1,  x2 ≤ 1 (37) 

where 

l = 100 cm, P = 2
KN
cm2 , σ = 2

KN
cm2   (38) 

Table 10 shows the results of numerous algorithms attempting to solve this problem. 
As can be seen in the table, the results found by the first five algorithms in the table violate 
the constraint g1. Hence, their optimal objective function values are overridden. All the 
constraints violated are underlined in the table. Among the remaining algorithms, the 
proposed DB-GWO-EPD offers the best objective value. 
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Figure 5. Three-bar truss structure [42]. 

Table 9. Results of solving the welded beam design problem. 

Algorithm x1 x2 x3 x4 fmin 

SIMPLEX [45] 0.279200 5.625600 7.751200 0.279600 2.530700 
DAVID [45] 0.243400 6.255200 8.291500 0.244400 2.384100 

APPROX [45] 0.244400 6.218900 8.291500 0.244400 2.381500 
GA [46] 0.248900 6.173000 8.178900 0.253300 2.430000 
HS [47] 0.244200 6.223100 8.291500 0.240000 2.380700 

CSCA [48] 0.203137 3.542998 9.033498 0.206179 1.733461 
CPSO [49] 0.202369 3.544214 9.048210 0.205723 1.728020 

RO [50] 0.203687 3.528467 9.004233 0.207241 1.735344 
WOA [51] 0.205396 3.484293 9.037426 0.206276 1.730499 
GSA [7] 0.182129 3.856979 10.000000 0.202376 1.879950 

MVO [52] 0.205463 3.473193 9.044502 0.205695 1.726450 
OBSCA [53] 0.230824 3.069152 8.988479 0.208795 1.722315 

AOA [42] 0.194475 2.570920 10.000000 0.201827 1.716400 
GWO 0.205711 3.254161 9.035520 0.205794 1.695653 

FB-GWO-EPD 0.205486 3.259422 9.036860 0.205771 1.696094 
DB-GWO-EPD 0.205699 3.253667 9.036660 0.205729 1.695281 

4.4.3. Cantilever Beam Design Problem 
The goal of this problem is the minimization of the weight of a cantilever beam made 

of five hollow blocks with constant thicknesses and variable heights, as depicted in Figure 
6. Thus, the blocks’ heights are the decision variables to be optimized, denoted by x1 to 
x5. The problem formulation is as follows. 

Minimize f(x�⃗ ) = 0.06224(x1 + x2 + x3 + x4 + x5) (39) 

Subject to: 

g(x�⃗ ) = 
61
x1

3  + 
27
x2

3  + 
19
x3

3  + 
7
x4

3  + 
1
x5

3  −  1 ≤ 0 (40) 

0.01 ≤ x1,  x2,  x3,  x4,  x5 ≤ 100 (41) 

Table 10. Results of solving three-bar truss design problem. 

Algorithm x1 x2 g1 g2 g3 fmin 
DEDS [54] 0.788675 0.408248 1.777971 × 10−8 −1.464102 −0.535898 263.895841 
SSA [55] 0.788665 0.408276 1.247906 × 10−8 −1.464070 −0.535930 263.895842 

MBA [56] 0.788565 0.408560 1.418869 × 10−7 −1.463748 −0.536252 263.895834 
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PSO-DE [57] 0.788675 0.408248 1.427175 × 10−7 −1.464102 −0.535898 263.895825 
Tsa [58] 0.788000 0.408000 1.636731 × 10−3 −1.463566 −0.534798 263.680057 

Rai and Saini [59] 0.795000 0.395000 −3.375515 × 10−3 −1.480901 −0.522474 264.359956 
CS [60] 0.788670 0.409020 −5.733901 × 10−4 −1.463512 −0.537062 263.971562 

MFO [61] 0.788245 0.409467 −1.190244 × 10−9 −1.462717 −0.537283 263.895980 
AOA [42] 0.793690 0.394260 −1.103007 × 10−5 −1.480113 −0.519898 263.915432 

GWO 0.788398 0.409034 −8.468448 × 10−7 −1.463210 −0.536791 263.896012 
FB-GWO-EPD 0.788911 0.407583 −5.171678 × 10−7 −1.464858 −0.535143 263.895952 

DB-GWO-EPD 0.788539 0.408634 −5.484502 × 10−14 −1.463663 −0.536337 263.895857 

As the results in Table 11 suggest, both the DB-GWO-EPD and GWO reach the lowest 
weight of the cantilever beam compared to those of their competitors. 

 
Figure 6. Cantilever beam problem [44]. "Reprinted from Publication Reptile Search Algorithm (RSA): 
A nature-inspired meta-heuristic optimizer, vol. 191, 1–32, Copyright (2022), with permission from Else-
vier."  

4.4.4. Gas Transmission Compressor Design Problem 
This problem is designed to minimize the cost of delivering 100 million cft gas daily. 

The decision variables x1, x2, and x3 are the gas transmission parameters, including the 
distance between the two compressors, compression ratio value, and value of the gas pipe 
inside diameter. A scheme of this problem is shown in Figure 7. The problem formulation 
is presented as follows. 

Minimize f(x�⃗ ) = 3.69 × 104 × x3 + 7.72 × 108x1
−1x2

0.219 −  765.43 × 106 × x1
−1 + 8.61 × 105 × x1

1
2x2�x2

2 −  1�−
1
2x3

−2
3 (42) 

Subject to: 

10 ≤ x1 ≤ 55 (43) 

1.1 ≤ x2 ≤ 2 (44) 

10 ≤ x3 ≤ 40 (45) 

As seen in Table 12, the proposal can calculate the least value for the gas transmission 
cost, stressing the high capabilities of the DB-GWO-EPD to win such a highly close com-
petition in solving this design problem. 

Table 11. Results of solving cantilever beam design problem. 

Algorithm x1 x2 x3 x4 x5 fmin 
MFO [61] 5.98487 5.31673 4.49733 3.51362 2.16162 1.33999 
SOS [62] 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996 
CS [60] 6.00890 5.30490 4.50230 3.50770 2.15040 1.33999 

MMA [63] 6.01000 5.30000 4.49000 3.49000 2.15000 1.34000 
GCA1 [63] 6.01000 5.30000 4.49000 3.49000 2.15000 1.34000 
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GCA2 [63] 6.01000 5.30000 4.49000 3.49000 2.15000 1.34000 
GWO 6.02059 5.31527 4.48660 3.50436 2.14698 1.33653 

FB-GWO-EPD 6.00974 5.31982 4.48908 3.51235 2.14305 1.33654 
DB-GWO-EPD 6.00305 5.30003 4.50193 3.51318 2.15568 1.33653 

 
Figure 7. Gas transmission compressor design problem [64]. "Reprinted from Publication Reptile 
Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer, vol. 191, 1–32, Copyright (2022), 
with permission from Elsevier."  

Table 12. Results of solving gas transmission compressor design problem. 

Algorithm x1 x2 x3 fmin 

ECS-AGQPSO [64] 53.446716 1.190101 24.718579 2,964,375.495330 
RCSOMGA [65] 53.446827 1.190101 24.718580 2,964,375.495330 

SOMA [65] 53.347298 1.190142 24.737115 2,964,378.729000 
RCGA [65] 53.520217 1.190361 24.723656 2,964,375.725000 

PSO [66] 55.000000 1.195410 24.774900 2,964,460.000000 
DE [66] 51.985700 1.183350 24.719500 2,964,480.000000 

DE-PSO [66] 53.447400 1.190100 24.718600 2,964,375.503101 
GP [67] 52.600000 1.187000 24.800000 2,964,419.625000 
GWO 53.444416 1.190075 24.719897 2,964,375.499725 

FB-GWO-EPD 53.440728 1.190088 24.717434 2,964,375.498014 
DB-GWO-EPD 53.446720 1.190101 24.718583 2,964,375.495329 

5. Conclusions 
This paper introduced a novel EPD operator for improving the performance of the 

Grey Wolf Optimization (GWO) algorithm. In the main version of EPD, half of the worst 
search agents are eliminated from the search space and repositioned around the best ones 
to evolve the worst individuals, while in our proposed EPD method, the best agents are 
eliminated and repositioned around the most diversified agents. The main reason justify-
ing this new approach to applying EPD is the low-diversity nature of the best agents in 
the search space. Indeed, in any meta-heuristic, the best agents are gradually gathered 
around each other, such that the region the best individuals are placed in is becoming 
increasingly closed, and thus the diversity could be soon lost in the search space. Losing 
diversity could contribute to premature convergence. Hence, in the proposed Diversity-
Based EPD (DB-EPD) mechanism, the enhanced diversity plays a major role in conducting 
the other search agents and accomplishing the exploration phase. It is worth mentioning 
that the three best-fitted alpha, beta, and delta wolves are always kept in the algorithm’s 
memory and appointed to guide the other wolves (agents), even if they are eliminated 
from the current population. In this paper, the proposed approach was applied to the 
GWO, and so the resulting algorithm was named DB-GWO-EPD . 

The results of applying the proposed DB-GWO-EPD and its competitors to the high-
dimensional shifted classical benchmark problems, as well as the CEC2017 challenging 
test bed, indicated that the proposed algorithm is highly superior to the original GWO 
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and the GWO equipped with the EPD operator in its original definition, named Fitness-
Based GWO-EPD (FB-GWO-EPD), as well as four other newly proposed optimization al-
gorithms. The superior performance of the proposed DB-GWO-EPD algorithm is mainly 
due to its ability to desirably maintain diversity in the search space during the optimiza-
tion process, helping the proposal to find as many candidate solutions in the search space 
as possible. This ability could help the proposed algorithm rapidly reach the single opti-
mum in uni-modal functions while impeding the proposal from being trapped in local 
optima to explore as many optima as possible in the search space to find the fittest solution 
of the optimization problem finally. 

In future work, we aim to apply the DB-EPD operator to other meta-heuristics to 
validate the proposed approach further to use such an EPD. The application of the DB-
GWO-EPD in solving the more recently created and more complicated problems could be 
another field of interest through which the merits or shortcomings of the proposed algo-
rithm may be better highlighted. 
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Nomenclature 
a�⃗  Acceleration coefficient varying from 2 to 0 
A���⃗  Acceleration factor randomly generated for every leading wolf 

C��⃗  
Multiplier of the leading wolves that are randomly generated (Equations (1) and 
(2)) 

D���⃗  Distance between each wolf and the leading wolves (Equations (1) and (2)) 
Ai����⃗  Acceleration factor randomly generated for ith leading wolf (Equations (6)–(8)) 
Ci���⃗  Multiplier of the ith leading wolf that is randomly generated (Equations (3)–(5)) 
Di����⃗  Distance between each wolf and the leading wolves (Equations (6)–(8)) 
Xp(t)����������⃗  Prey position at the tth iteration (Equation (2)) 
X(t)�������⃗  Position of a wolf (solution) at the tth iteration (Equation (1)) 
X(t + 1)���������������⃗  Position of a wolf (solution) at the (t + 1)th iteration 
X��⃗  Position of a wolf (solution) 

Xi���⃗  
Position appointed for guiding a wolf on behalf of the ith leading wolf (Equa-
tions (6)–(8)) 

Xα�����⃗  Position of the alpha wolf (solution) (Equations (3)–(8)) 
Xβ����⃗  Position of the beta wolf (solution) (Equations (3)–(8)) 
Xδ����⃗  Position of the delta wolf (solution) (Equations (3)–(8)) 
Dα�����⃗  Distance between each wolf and the alpha wolf (Equations (6)–(8)) 
Dβ�����⃗  Distance between each wolf and the beta wolf (Equations (6)–(8)) 
Dδ�����⃗  Distance between each wolf and the delta wolf (Equations (6)–(8)) 
ub�����⃗  Upper bound vector of the decision variables (Equations (10)–(13)) 
lb���⃗  Lower bound vector of the decision variables (Equations (10)–(13)) 
fi(x) Fitness function value of the ith solution (i = 1, 2, …, N) (Equation (14)) 
fj(x) Fitness function value of the jth solution (j = 1, …,i-1, i+1, …,  N) (Equation (14)) 
di Diversity index for the ith solution (Equation (14)) 
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Xα
div(t)�������������⃗  

The first (alpha) most diversified wolf (solution) at the tth iteration (Equations 
(15)–(17)) 

Xβ
div(t)�������������⃗  

The second (beta) most diversified wolf (solution) at the tth iteration (Equations 
(15)–(17)) 

Xδ
div(t)�������������⃗  

The third (delta) most diversified wolf (solution) at the tth iteration (Equations 
(15)–(17)) 

ri��⃗  
ith uniformly distributed random number generated for giving a random posi-
tion 
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