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Abstract: ABTS (2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid) is a widely used compound
for determining the total antioxidant capacity (TAC) of plant extracts, food, clinical fluids, etc. This
photometric assay is based on the reduction by the presence of antioxidant compounds of a well-
known metastable radical (ABTS•+) which can be formed via several different approaches and be
used in many different determination methodologies such as automated photometric measures in
microplates, clinical robots, valuable titrations, and previous liquid chromatographic separation. An-
other interesting aspect is that, in some cases, the ABTS/TAC method permits sequential hydrophilic
and lipophilic antioxidant activity determinations, obtaining total antioxidant activity values through
the summatory data of both types of antioxidants. In this work, we present a review of several aspects
of the ABTS/TAC, highlighting the major achievements that have made this method so widely used,
e.g., ABTS radical formation in hydrophilic or lipophilic reaction media, measurement strategies,
automatization, and adaptation to high-throughput systems, as well as the pros and cons. Moreover,
some recent examples of ABTS/TAC method applications in plant, human, and animal samples are
discussed.

Keywords: ABTS assay; antioxidants; antioxidant activity; clinical samples; plant extracts; TAC; total
antioxidant capacity

1. Introduction

One of the most common analyses carried out on plant extracts, food, clinical fluids,
and other sources is that of antioxidant capacity. The 2,2’-azino-bis-(3-ethylbenzothiazoline-
6-sulfonic acid, ABTS) method (ABTS/TAC or ABTS/TEAC) is one of the most widely
used in different research areas such as food science technology, agriculture, plant science,
and nutrition. Its widespread use in many aspects of research has resulted in an increasing
in the numbers of citation over the years (Figure 1).

ABTS was initially used in the detection of fecal occult blood [1] and as a reagent in
the determination of glucose [2] in a glucose oxidase/peroxidase assay. ABTS was also
used in the determination of peroxidase activity and by kinetic studies [3–6]. The reaction
product of ABTS is a radical cation of the oxidized form of ABTS (ABTS•+), which was
later used in the determination of the antioxidant capacity of biological samples.

The ABTS/TAC assay is a spectrophotometric method that uses the oxidized ABTS
radical cation (ABTS•+) to react with antioxidants to reduce the ABTS radical and lose its
bluish green color. ABTS•+ has several characteristics that make it suitable for colorimetric
assays; it has several absorbance peaks at different wavelengths [3,7], it has a high extinction
coefficient, its solubility in water is high, and it is also soluble in organic media [8]. The
redox potential (Eo′) for ABTS/ABTS•+ is 0.68 V [9], high enough to react with most
antioxidant compounds [10,11]. There are two main mechanisms involved in the reaction
between radicals and antioxidants, the hydrogen atom transfer reaction (HAT) involving
a single-step movement of a hydrogen atom [12–14], and the electron transfer reaction
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(SET) where a single electron is transferred to reduce a compound [13–15]. The ABTS assay
mainly follows the SET mechanism, although HAT can also be applied [12].
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The first widely recognized use of ABTS•+ as a reactive to measure the antioxidant
capacity of a sample or pure compound was by Miller et al. [16] using the reaction of
myoglobin/H2O2 to produce the bluish green ABTS•+, although there were some previ-
ously published procedures from other authors (see below). Subsequently, the method was
modified in certain aspects, such as the form of ABTS•+ generation and the parameter to
estimate [7].

In this study, we review several aspects of the ABTS/TAC method, from ABTS radical
generation to the different strategies used to determine photometric measurements. The
major achievements that have led to this method being so widely applied, such as the
possibilities of ABTS radical generation in hydrophilic or lipophilic reaction media, the
possible automatization and adaptation to a high-throughput system, and several recent
examples in different biological materials are discussed. Lastly, the pros and cons of these
methods are analyzed.

2. Different Strategies for the ABTS/TAC Method

The generation of ABTS•+ can be achieved via different strategies, but enzymatic
and chemical methods are the most widely used (Figure 2). Miller et al. [16] used the
myoglobin/H2O2 system to oxidize ABTS; this procedure encloses many steps and is
laborious to perform. Previously, the ABTS radical (ABTS•+) was generated using a
H2O2/peroxidase (HRP) system for the determination of the flavonoid naringin [17] and
indole-3-carbinol (indole-3-methanol) [18,19], but the method was not presented until
1996 by Arnao et al. [20]. Here, ABTS•+ was generated using a faster, easier, and a more
controllable method, whereby the reaction medium is controlled by the H2O2 quantities
present due to the well-known stoichiometry of the reaction (2 mol ABTS•+ per mol
H2O2) [3,6]. Table 1 shows a chronological perspective of the ABTS/TAC method and its
different approaches.

Subsequently, different chemical oxidative reagents have been used for the ABTS
radical generation such as MnO2 [21], potassium persulfate [22–24], PbO2 [25], 2,2’-azobis-
(2-amidopropane) (ABAP) [26], or H2O2 at low pH [27]. Other ABTS•+ generation methods
include electrochemical oxidation [28,29] and peroxidase-like nanozyme [30,31].
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Table 1. Milestones in the development of the ABTS/TAC method.

Year Milestone Ref.

1990

Horseradish peroxidase (HRP)/H2O2 generation method.
First use of ABTS•+ for determining antioxidant activity of the flavonoid
naringin.
End-point strategy.

[17]

1992
HRP/H2O2 generation method.
ABTS•+ used to estimate antioxidant activity of indole-3-carbinol.
End-point strategy

[18,19]

1993 Myoglobin/H2O2 generation method.
Kinetic strategy: reaction inhibition at fixed time. [16]

1996 HRP/H2O2 generation method.
Kinetic strategy: lag time. [20]

1996
ABTS methods for carotenoid determination.
MnO2 oxidation method.
End-point strategy.

[21]

1999
Microassay using microplate reader.
HRP/H2O2 generation method.
Kinetic strategy: reaction inhibition at fixed time.

[32]

2000

Direct generation of ABTS•+ in lipophilic media.
HRP/H2O2 generation method.
End-point strategy.
Adaptation of lipophilic ABTS•+ to a microplate reader.

[8]

2001

Total antioxidant activity (TAA) as a combination of hydrophilic antioxidant
activity (HAA) and lipophilic antioxidant activity (LAA)
TAA = HAA + LAA.
Use of ABTS•+ in both hydro- and lipophilic media.

[33]

2001 Adaptation of ABTS•+ to HPLC technique. [34]
2001 Adaptation of ABTS•+ to stopped-flow technique. [35]
2002 Electrochemical generation of ABTS•+. [28]
2003 Adaptation of ABTS•+ to flow injection technique. [36]
2004 ABTS•+ generation at low pH with H2O2. [27]
2019 Paper-based device for ABTS•+ assay. [37]
2022 Smartphone-based ABTS•+ assay, nanozyme use. [30,31]

ABTS•+ generation is the first step in this antioxidant assay, which can be achieved
either in the presence of the antioxidant or before antioxidant addition. These different
ways of generating the ABTS•+ lead to two different ways to quantify the antioxidant
capacity: (i) kinetic and (ii) end-point approach [7]. In the ABTS method of Miller et al. [16],
a kinetic approach was used, where the inhibition of the reaction due to the presence of
the antioxidant is measured after a fixed time. Arnao et al. [17,20] also used this approach
to determine the lag-time but recorded the delay in the appearance of the steady-state
generation of ABTS•+. Thus, not only was the antioxidant capacity of the samples deter-
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mined, but the possible inhibitory effects on the reaction by some compounds present in
the samples were also evaluated [20].

In order to simplify the kinetic strategy measurements, several end-point methods
were developed, in which media with preformed ABTS•+ were used [17–19]. In this case,
the subsequent addition of the sample containing antioxidants produced a decoloration
(bleaching) of the ABTS•+ [22,38,39]. This approach results in the method easiest to
perform, eliminating the interaction of the antioxidant with the reactant enzymes, and
making it suitable for high-throughput analysis. Although the end-point strategy has
solved some of the problems observed in kinetic assays, new difficulties have arisen, such
as the different reaction speeds of the different antioxidants present in the samples with
ABTS•+, obtaining fast- and slow-reacting antioxidant types [40,41]. Recently, some novel
and practical procedures to determine the antioxidant capacity have been proposed to
improve ABTS/TAC determination through the estimation of exponential curve-fitting [24],
inhibition percentage [27], or redox titration [25].

3. ABTS/TAC Methods for Hydrophilic and Lipophilic Antioxidants

Initially, the ABTS/TAC assay was developed for hydrophilic determination, estimat-
ing hydrophilic antioxidants such as organic acids, amino acids, glutathione, and phenols,
among other antioxidants that can be solubilized in water. In this situation, fat-soluble
antioxidants would apparently be dispersed in the aqueous medium, in a manner in
which they could not be accurately measured. The development of a lipophilic method
for determining these fat-soluble antioxidants was proposed by Miller [21] to measure the
antioxidant capacity of carotenoids, using an ABTS radical generated in aqueous medium
after dissolving carotenoid samples in hexane/acetone. Using the ability of horseradish
peroxidase (HRP) to act in organic media, Cano et al. [8] proposed a modified ABTS/TAC
method to generate ABTS•+ directly in organic media, where different organic solvents
were tested for peroxidase reactivity and ABTS•+ stability.

The importance of obtaining a method which was capable of measuring both antiox-
idant capacities (hydrophilic and lipophilic) using the same reactive chromogen led to
the possibility of the determination of the total antioxidant activity (TAA) as a combina-
tion of hydrophilic antioxidant activity (HAA) and lipophilic antioxidant activity (LAA)
(TAA = HAA + LAA) (Figure 3). This was demonstrated in our studies in different plant
material such as lettuce [42], tomato [43], grapes [44], citrus fruits [45,46], spinach [47],
lupin [48], cereals [49], artichoke [50], Quercus tree [51], and chamomiles [52], as well as in
foodstuffs such as vegetable soups [33], wine [53,54], and beers [38], and in animal material
such as rat [55–57], canine [58], and human plasma [59], in addition to kidney, liver, and
brain organs [56,60], and boar seminal samples [61]. Table 2 shows some of the obtained
values using the ABTS/TAC method for different products, with a relative classification
according to their antioxidant capacity.
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Table 2. High, moderate, and low TAC ranking of different products according to published values.

Sample Type TAC a Ref.
Coffee Beverage 47.16 [36,62]

Grape, black Fruit 35.93 [36,44,63]
Blackberry Fruit 20.24 [36]
Red wine Beverage 18.85 [36,54,62,64]
Raspberry Fruit 16.79 [36]
Artichoke Vegetable 15.03 [36,50]
Black olive Fruit 14.73 [36]
Redcurrant Fruit 14.05 [36]
Blueberry Fruit 13.09 [36]

Strawberry Fruit 11.05 [36,63]
Pork Meat 3.50 [65]

Grapefruit Fruit 3.43 [36,45,63]
Radish Vegetable 3.22 [36]

Orange juice Beverage 2.90 [36,66,67]
Beef Meat 2.90 [65]

Zucchini Vegetable 2.86 [36]
Grapefruit juice Beverage 2.75 [36,66,67]

Bean kidney Vegetable 2.70 [63]
Lemon Fruit 2.68 [45]

Chicken Meat 2.56 [65]
Banana Fruit 0.64 [36]

Flavored water Beverage 0.50 [68]
Celery Vegetable 0.49 [36]
Carrot Vegetable 0.44 [36]

Cucumber Vegetable 0.43 [36]
Fennel Vegetable 0.43 [36]

Iceberg lettuce Vegetable 0.32 [42]
Endive Vegetable 0.30 [36]

Baby head lettuce Vegetable 0.24 [42]
Soft drink Beverage 0.07 [68]

a TAC: total antioxidant capacity, expressed as mmol Trolox/kg FW (mean values).

4. Adaptation of the ABTS Assay to Different Techniques

The increase in the use of the ABTS/TAC assay for determining the antioxidant
capacity and the rise in studies on the relationship between structure compound and
antioxidant capacity led to the adaption of the different methods discussed for use in
high-throughput systems. Adaptations have been made for several techniques such as
microplate readers, high-performance liquid chromatography (HPLC), flow-injection assay
(FIA), stopped-flow techniques, and automated analysis equipment (Figure 4).
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A microplate adaptation was developed by Laigth et al. in 1999 [32] for measuring
antioxidant activity in rat plasma. The microplate assay was adapted to the preformed
ABTS radical strategy [8,33] or in-well microplate ABTS radical generation [69]. Cano
et al. [8] adapted the lipophilic ABTS/H2O2/HRP end-point method to a microplate reader
for determining the antioxidant capacity of lipophilic α-tocopherol and β-carotene.

The ABTS/H2O2/HRP generation method was also adapted to an HPLC system,
in a post-column ABTS radical reaction [70,71], and applied to both hydrophilic and
lipophilic antioxidants. In this case, a better understanding of the peak separate compounds
with antioxidant capacity was obtained, while quantifying the compound content and its
respective hydro- or lipophilic antioxidant activity.

Recently, two new interesting adaptations have been developed, one using a paper
device as support for the antioxidant determination using ABTS assay together with the
Folin–Ciocâlteu and CUPRA assays [37], and the other using a peroxidase-like nanozyme to
generate ABTS•+ [30], measuring the level of TAC with a portable device, while promoting
a large-scale measurement of antioxidant activity using a smartphone [31].

5. Recent Applications of the ABTS/TAC Assay

Since the first use of this assay for determining the antioxidant capacity (see Table 1) it
has become one of the most used methods, only surpassed by the DPPH method [45]. Many
research fields have used the ABTS/TAC method in their studies, such as food technology,
agriculture, plant science, nutrition, and clinical [7]. Some of the latest studies in different
fields of research are discussed below.

In a study carried out in dogs, different ABTS/TAC methods including the method of
Miller et al. with metmyoglobin [16], the method of ABTS•+ generated at low pH [27], and
the method of Arnao et al. with peroxidase [38] were compared in terms of total antioxidant
capacity determinations in the canine serum of healthy and inflammatory bowel disease-
affected dogs [58]. The three ABTS/TAC methods assayed showed acceptable results, with
an imprecision of less than 15%, but only the H2O2/peroxidase assay showed significant
differences between the two dog samples, along with a higher correlation between observed
and expected antioxidant activities in the canine sample dilution assay. After validation of
the methods for their use in canine serum, the authors recommended metmyoglobin and
peroxidase methods for ABTS radical generation [58].

A study on gestational diabetes mellitus in rats used the ABTS/TAC assay of Arnao
et al. [38] for determining the hydrophilic antioxidant capacity in serum samples, describ-
ing a direct correlation between treatment and an increase in HAA, confirmed by a low
oxidative marker [57,59].

The ABTS/TAC assay was used in the characterization and comparison of wild
chamomile plants [52], using the hydrophilic and lipophilic determination of the peroxidase
method [8]. In this study, differences between different studied chamomile plants in root,
stem, leaf, and flower extracts were described, with relevant differences in HAA and
LAA depending on the organ and the chamomile species [52]. Furthermore, an excellent
correlation between the antioxidant capacities (HAA, LAA, and TAA) and the phenol and
flavonoid content (aqueous, organic, and total) was found.

In another interesting study, the antioxidant activity of six byproducts from artichoke
industrial processing was analyzed and compared [50]. These biowastes are very rich in
phytochemicals with potential health benefits to humans and animals [72]. The content
of phenols and flavonoids, and the antioxidant capacities, amongst other parameters,
were analyzed, with selective thermal treatment in artichoke hearts and bracts; the most
promising byproducts were found closest to the artichoke heart. In this type of study, the
ABTS/TAC method was demonstrated to be a fast and reliable technique, in terms of the
processing line, the antioxidant properties of food, and its byproducts.

In the last few years, some reviews on antioxidant activity assays have been published,
where some controversies and limitations of different antioxidant assay approaches were
discussed [7,13,73,74]. Certain problems in the use of persulfate for ABTS oxidation, and
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difficulties in the kinetic approach for antioxidants with multiple hydroxyl groups have
been described [13]. Apak et al. provided a list of desirable characteristics for an ideal
antioxidant assay [13,14], most of which are accomplished by the ABTS/TAC assay using
peroxidase. These characteristics include physiological pH (the ABTS assay can be run at
different pH), stable and reproducible probes (the ABTS radical is a metastable radical with
a peroxidative controlled reaction), activity against aqueous and organic antioxidants (the
ABTS assay is compatible with both aqueous (HAA) and lipophilic (LAA) antioxidants),
absorption in the visible spectrophotometric region, preferably beyond 500–700 nm to avoid
interference from chlorophylls and anthocyanins (ABTS•+ has various spectral maxima at
414, 734, and 800 nm in the visible region), and optimal redox potential (ABTS•+ is able to
oxidize the most important antioxidants) [13,14].

The important role of antioxidants in the response to oxidative stress in biological
material and, therefore, in the prevention of many diseases and dysfunctions has increased
the search for new antioxidant compounds, as well as the evaluation of their antioxidant
activity in vitro. Obviously, these assays must be contrasted with other in vivo antioxidant
studies. For example, some studies comparing the in vitro and in vivo antioxidant activities
between different antioxidant assays were recently presented, highlighting the priority to
determine the in vivo effect of antioxidants and its correlation with the in vitro antioxidant
activity in interesting nutrients [75].

6. Conclusions

Despite some disadvantages observed using the ABTS/TAC method, which are shared
with the commonly used DPPH method (not a natural physiological radical, large size, and
slow vs. fast antioxidant reaction) [45], this method is still useful. The ABTS/TAC method
is fast, with minimal processing, it is extremely versatile against different pH, different
wavelengths can be selected to avoid spectrophotometric interferences, it can be used both
for hydrophilic and lipophilic measurement, and it is easily adaptable to high-throughput
methods (microplate, HPLC, etc.), thereby satisfying almost all requirements for an ideal
antioxidant assay.
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