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Abstract: Domoic acid (DA) is a neurotoxin mainly produced by Pseudo-nitzschia diatom, which 
belongs to the genera Rhomboida. It can combine with the receptors of glutamate of neurotransmit-
ters, then affecting the normal nerve signal transmission of the organism and causing nervous sys-
tem disorders. However, as a natural marine drug, DA can also be used for pest prevention and 
control. Although the distribution of DA in the world has already been reported in the previous 
reviews, the time and location of its first discovery and the specific information are not complete. 
Therefore, the review systematically summarizes the first reported situation of DA in various coun-
tries (including species, discovery time, and collection location). Furthermore, we update and ana-
lyze the factors affecting DA production, including phytoplankton species, growth stages, bacteria, 
nutrient availability, trace metals, and so on. These factors may indirectly affect the growth envi-
ronment or directly affect the physiological activities of the cells, then affect the production of DA. 
Given that DA is widely distributed in the environment, we summarize the main technical methods 
for the determination of DA, such as bioassay, high-performance liquid chromatography (HPLC), 
enzyme-linked immunosorbent assay (ELISA), biosensor, and so on, as well as the advantages and 
disadvantages of each method used so far, which adds more new knowledge in the literature about 
DA until now. Finally, the DA research forecast and its industrial applications were prospected to 
prevent its harm and fully explore its potential value. 
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1. Introduction 
Domoic acid (DA) is a potent neurotoxin that is produced by some species of the 

diatom genus Pseudo-nitzschia (used to be called Nitzschia multiseries). The large-scale out-
break of harmful algal blooms will pose a serious threat to fishery production, marine 
ecological security, and the health of humans and marine organisms [1–3]. The first re-
ported poisoning event caused by DA goes back to 1987 on Prince Edward Island, Canada, 
for people eating Mytilus edulis [4]. Previous studies have shown that DA exposure has 
toxic effects on an organism’s intestine of nematodes, behavior, and lifespan. Oral expo-
sure to a few milligrams per kilogram of DA elicits gastrointestinal effects, whereas 
slightly higher doses cause neurological symptoms, memory impairment, and limbic sys-
tem degeneration, such as hippocampal degeneration [5–7]. DA can accumulate in shell-
fish and finfish, such as bivalves and some crustaceans, under certain environmental con-
ditions, thus causing poisoning events of aquatic organisms, which seriously threaten sea-
food safety [8–12]. 

Humans and wildlife alike can easily be exposed when consuming DA-contaminated 
seafood, especially for coastal dwelling populations. The excitotoxicity mechanism of DA 
involves a complex signal regulatory network, and a large number of related genes are 
upregulated or suppressed [5,7]. By over-activating glutamate receptors, DA causes intra-
cellular calcium overload, resulting in dysfunction of mitochondria and endoplasmic 
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reticulum, loss or loss of neurons in the hippocampus or amygdala of the brain, and var-
ious degenerative diseases, such as Alzheimer’s disease (Figure 1). 

 
Figure 1. The mechanism of excitatory neurotoxicity of DA. 

DA is an increasingly significant public health concern. Previous studies mentioned 
mainly summarized the structure and biological activity of DA, degradation of seawater, 
ecological and physiological effects, and risk of humans being exposed to DA [13], as well 
as species of the genera Pseudo-nitzschia and Nitzschia and their distribution [14]. In recent 
years, DA exposure has become more widespread due to drastic climate change, environ-
mental pollution, and increased human activity [14]. Therefore, it is an urgent need to 
update the latest information on DA involving factors affecting DA production and the 
technical methods for DA detection. In this review, we characterize the physical and 
chemical properties, production mechanism, detection, and analysis of DA, which is en-
couraging for the research of DA and may prevent its harm and will help to make full use 
of its potential value. 

2. The Discovery of DA and Its Physicochemical Properties 
DA is a kind of neurotoxin that is mainly produced by Pseudo-nitzschia and can cause 

amnesic shellfish toxins (AST) or amnesic shellfish poisoning (ASP). It was first discov-
ered by Takemoto and Diago from chondria armata domoi in Kagoshima Prefecture, Ja-
pan, in 1958, and then named after its Japanese name [15]. It was first isolated from Pseudo-
nitzschia in Prince Edward Island, Canada, in 1987 [16]. As a strong neurotoxic substance, 
it can cause abdominal pain, diarrhea, and vomiting in mild cases and even coma and 
death in severe cases [17,18]. In recent years, new species (P. brasiliana) of Pseudo-nitzschia 
has been that can also produce DA [19]. So far, among the 54 species of Pseudo-nitzschia, 
26 species have been confirmed to produce DA [14,20]. Table 1 shows the research history 
of DA from its discovery to its spread in the coastal countries of the world. Although DA 
poisoning cases have not been reported in some countries, such as China, DA produced 
by Pseudo-nitzschia has still been detected in some coastal areas, such as P. uniseriata and 
P. yuensis [20,21]. 
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Table 1. Geographical distribution of domoic acid accord to the early reports. 

Country 
Sampling 

Date  Sampling Area Specimen References 

Japan 1957 Tropical and sub-tropical waters Chrondria armata [15] 

  Natori estuary, Ishigaki Island, Oki-
nawa  [22] 

American 1961 Capitola, California   

 1991 Monterey Bay, California 
Washington State beaches 

Pseudo-nitzschia australis [23,24] 

  Florida (Gulf of Mexico)  [25] 

Canada 1987 Estuaries on the eastern coast of 
Prince Edward Island 

Pseudo-Nitzschia pungens [16,26] 

Mexico 1992 Gulf of Mexico Nitzschia pungens f. multi-
series 

[27] 

Portugal 1995 Not mentioned Not mentioned [28] 
Spain 1996 Ria de Vigo, Galicia Pseudo-nitzschia multiseries  [29] 

New Zealand 1992/1993 Not mentioned  [30] 
Vietnam 1997 Do Son Nitzschia navis-varingica [31] 

France 1998 CoÃtes d’Armor (English 
Channel) 

P. pseudodelicatissima [32] 

Ireland 1999 Southwest Ireland Pseudo-nitzschia australis [33] 

Scotland 1999 wild and cultivated molluscs waters 
in Scottish 

Pseudo-nitzschia 
maximus (mainly) 

[34] 

Italy 2000 
the Gulf of Naples 

(Mediterranean Sea) Pseudo-nitzschia multiseries  [35] 

China 2001 
The Bohai Sea and the lakes rivers 

polluted by algae in the South Pseudo-nitzschia simulans [36,37] 

Greece 2002 Greek coasts along Thermaikos Gulf 
genus Pseudo-nitzschia (P. 

pungens f.pungens, P. pseudo-
delicatissima) 

[38] 

Namibia 2004 Inshore and offshore stations P. australis and P. pungens [39] 

Philippines 2004 
Manila Bay, San Pedro Bay, South Su-

lawesi Pseudo-Nitzschia pungens [40] 

Croatia 2006 the Croatian coast of the Adriatic Sea Pseudo-nitzschia spp. [41] 

Morroco 2007 
M’diq Bay, west Mediterranean coast 

of Morocco 

P. multistriata, P.cuspidata, P. 
galaxiae,  

P. multiseries, P. pseudodelica-
tissima, P. pungens var. avei-

rensis,  
P. Calliantha, P. fraudulenta. 

[42] 

Tunisia 2008 Bizerte Lagoon  [43] 
Thailand 2006 12°38′ N, 100°53′ E Pseudo-nitzschia multiseries [44] 

Chile 2004–2006 Bahı’a Inglesa (27°7′ S, 70°52′ W) and 
Bahı’a Tongoy (30°15′ S, 71°20′ W) 

Pseudo-nitzschia species (P. 
Australis, P. calliantha, P. sub-

fraudulenta) 
[45] 

Turkey 2010 Sea of Marmara 
P. delicatissima, P. fraudu-

lenta, and P. pungens [11] 

Bulgaria 2011 North Black Sea Pseudo-nitzschia [46] 

Australia 2012 
Tasmania, Victoria, South Australia, 
Western Australia, New South Wales 

Pseudo-nitzschia delicatissima, 
P. multiseries, and P. australis [47] 
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Indonesia 2010 
Panyula in South Sulawesi, Jakarta 
Bay, Lampung Bay, and Sangihe Is-

land 
Pseudo-nitzschia strains [48,49] 

Tunisia 2014 Bizerte Lagoon Nitzschia bizertensis sp. nov. [50] 
Malaysia 2015 Johor, Negeri Sembilan, Kelantan Nitzschia navis-varingica [51] 

Domoic acid is chemically expressed as [2S-[2 α, 3 β, 4 β (1Z, 3E, 5R)]-2-carboxyl-4-
(5-carboxyl-1-methyl-1,3-hexadiene)-3-pyrrolidine acetic acid, with a molecular formula 
of C15H21NO6 and a molecular weight of 311.34. The pure product of DA is a solid white 
powder with a melting point is 223~224 °C. It is soluble in water (8 mg mL−1) and slightly 
soluble in methanol (0.6 mg mL−1). In the ultraviolet region, its maximum absorption 
wavelength is 242 nm. DA can remain stable for about one year [21]. To a certain extent, 
the structure of DA is similar to that of excitatory amino acids glutamic acid and kainic 
acid. It can directly activate the kainate receptor and AMPA (α-amino-3-hydroxy-5-me-
thyl-4-isoxazolepropionic acid) receptor to mediate excitatory neurotoxicity and cause 
nerve tissue damage [41,52,53]. However, its toxic effect is 2–3 times higher than that of 
kainic acid and more than 100 times stronger than that of glutamic acid. In recent years, 
isodomoic acids A, B, C, D, E, and F have been discovered, which are homologous com-
pounds of DA [54–56]. 

3. Factors Affecting DA Production 
At present, preliminary results of the DA biosynthesis pathway have been obtained 

based on the functional annotation of genes in the DA transcriptome library [57]. The first 
step of DA biosynthesis may be that geranyl pyrophosphate (GPP) reacts with L-glutamic 
acid (Glu) to form N-geranyl-l-glutamic acid (l-NGG) under the catalysis of terpene 
cyclase. Then, the subsequent reaction takes place under the catalysis of a-ketoglutarate-
dependent dioxygenase and cytochrome P450 [57]. However, the biological, physiologi-
cal, and biochemical molecular mechanism of DA production is still unclear. It is worth 
mentioning that Pseudo-nitzschia of different or the same algal species with different 
strains have different interspecific and intraspecific toxin production capacities [58]. 
Based on the findings of existing research, the toxicity production and level of Pseudo-
nitzschia species are closely related to the species/strains, physiological status, and related 
ecological and environmental factors (Figure 2; Table 2) [59–61]. 

 
Figure 2. Factors affecting the production of DA. 
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3.1. Species and Life Stages of Algae 
Different species or strains of Pseudo-nitzschia have varying abilities to produce DA 

at different life stages. Early studies found that P. multilocularis almost did not produce 
DA in the exponential growth phase, but in the stationary phase, it produced a significant 
quantity of DA [62]. Some species, on the contrary, such as P. vulgaris and P. australis, 
gradually increase cellular DA concentrations from the exponential growth period to the 
stationary period and finally discharge them into the water [33,63]. Moreover, compared 
with the nutrient limitation, the exponential growth period enables algae to produce the 
maximum net DA yield [63]. In the process of culturing four strains of Pseudo-nitzschia 
isolated from the field, it was found that DA was detected in all strains on the 25th day of 
culture (stationary period), and the amount of DA produced by P. australis strain 
PLY1St.52B was significantly higher than that of the other three strains [64]. It can be seen 
that under the same cultural environments, different species or strains of Pseudo-nitzschia 
have different abilities to produce DA. Even for the same species, DA production will also 
change with growth rate and cell morphology due to different growth environments 
[13,14,65]. 

3.2. Nutrients Supply 
Many studies have shown that DA production of Pseudo-nitzschia significantly in-

creases under a limited supply of nutrients [66,67]. Among the nutrients, silicon (Si), ni-
trogen (N), and phosphorus (P) had the most obvious effect on DA production by Pseudo-
nitzschia. 

Some studies have shown that P. seriata produced DA under limited P and Si availa-
bility, and DA production further increased when the algae were in the stationary period. 
Silicon deficiency was comparatively more prominent than P for enhancing DA produc-
tion [68]. Through the analysis of transcriptome data, the gene expression activity of DA 
synthesis significantly upgraded under phosphorus deficiency [58]. This could be at-
tributed to the fact that cells can preferentially promote the gene expression of toxin syn-
thesis by reducing their own basic metabolic activity, thus promoting the production of 
DA [65]. DA production also increased when the N:P ratio was high (that is, the content 
of phosphorus was low) and silicon was not limited. Moreover, its production also in-
creased when other basic metabolisms, such as carbon, nitrogen, phosphorus, silicon, and 
other absorption levels, were decreased [69]. 

The content and type of nitrogen source also affected DA production. Studies have 
shown that when nitrogen existed as a macroelement, the DA content of P. cuspidata in the 
exponential growth period was significantly higher than that in the stationary period [70]. 
When the content of the nitrogen source was the same, organic nitrogen promoted algae 
to increase DA production more than inorganic nitrogen. For example, compared with 
inorganic nitrogen sources, when urea was used as a nitrogen source, the amount of DA 
in the exponential growth period was significantly increased [71]. Martin-Jézéquel found 
that for P. multilocularis, under urea application as a nitrogen source, the DA production 
was the highest, but for P. australis, DA production reached the maximum when gluta-
mate was added as a nitrogen source, confirming that the DA production was also de-
pendent on the type of nitrogen source and algae species [72]. 

3.3. Trace Metals 
DA may be a kind of chelate of some trace metals such as iron (Fe) and copper (Cu). 

Pseudo-nitzschia can selectively combine with trace elements to produce DA. Thus, the 
concentration of trace elements is closely related to the production of DA in seawater [73]. 

Maldonado et al. studied the relationship between DA production and the iron and 
copper content of P. multilocularis and P. australis. They found that its production in intra-
cellular and extracellular increased due to iron deficiency or copper toxicity during the 
exponential growth period [74]. However, its intracellular production was increased, 
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accompanied by the increase in iron in P. multilocularis [14]. In addition to iron content, 
extracellular production of DA also varied with life stages, showing that there is a maxi-
mum DA production under iron deficiency in the exponential growth stage and decline 
stage, while the result is the opposite in the stationary stage [14]. This may happen due to 
the regulation of electron transfer reactions (such as photosynthesis and respiration) by 
Fe, which indirectly affects the production of DA [75]. Early studies have also found that 
a high concentration of lithium could significantly promote DA production by Pseudo-
nitzschia [76]. This could be due to the smaller radius and higher polarity of lithium, which 
is easier to replace cations such as sodium and potassium ion, thus affecting the normal 
operation of the ion pump in the plasma membrane; moreover, lithium can combine with 
various ligands to form aggregates and play a role in cells [75,76]. 

3.4. Temperature and Irradiance 
Temperature and irradiance are very important environmental and ecological fac-

tors. Their effects on DA may be worked by directly affecting the physiological activity of 
a single cell (such as enzyme activity) or indirectly affecting the algal’s density (such as 
growth rate). Therefore, the interaction of temperature and light can significantly affect 
the yield of DA during the cultivation of P. australis [77]. 

Under the same culture conditions, the effect of temperature on the toxicity of Pseudo-
nitzschia varied with species. Generally, high temperature promotes DA production. DA 
production by the P. australis S7 strain was below the detection limit at temperatures <20 
°C but increased exponentially from 23 to 30 °C [78]. It should be noted that this is not the 
case for all algae, as in the P. multilocularis strain PM4, the intracellular DA production at 
27 °C was much lower than that at 18 °C in a specific temperature range [79]. This may be 
caused by different physiological and ecological reaction mechanisms in algae. 

Irradiance can affect DA content by the change of photoperiod and light intensity. 
Early studies found that under a long photoperiod (18 h light: 6 h dark), DA production 
of P. tenuifolia significantly increased [80]. Although DA can be produced under weak 
irradiance, the yield of DA under strong light is much higher compared to weak light. 
Moreover, under strong light, DA production further increases with increasing light in-
tensity [64,77]. The reason for the irradiance effect on DA production may be photosyn-
thesis provides the energy required for DA production. 

3.5. Bacteria 
Single bacteria or bacterial communities can also affect the DA production process of 

Pseudo-nitzschia. In the study of P. multilocularis, it was found that the production of DA 
was closely related to the presence of bacteria [81,82]. Early studies showed that although 
algae treated with antibiotics grew well, their toxin production capacity would be 8–10 
times lower than that of bacteria, and their DA production would be 2–95 times higher 
than a single strain of the added original bacteria. In other words, the presence of extra-
cellular bacteria can effectively promote the production of DA [81]. Later research also 
confirmed this view; that is, in the presence of living bacteria, the production of DA by 
algae was significantly higher than that in a sterile environment [82]. 

However, there is not a single corresponding relationship between DA production 
and bacteria, and their toxigenicity differs with species of the diatom Pseudo-nitzschia. For 
example, the physiological activity of P. pseudodelicatissima is not toxic and does not affect 
the absence of original bacteria or the presence of foreign bacteria, and it never produces 
DA, while P. multiseries is toxic, growing rapidly under sterile conditions while growing 
slowly when co-cultured with foreign bacteria and producing a small amount of DA [83]. 
Research showed that the existence of DA affected the composition and structure of the 
bacterial community to a certain extent, and there is a mutual association between DA and 
bacteria [84]. Further studies are needed to find out the relationship between the genus of 
Pseudo-nitzschia and bacteria. 
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3.6. Other Factors 
The production of DA is not only affected by nutrients, light, and temperature but 

also by other substances and factors such as: 
(1) Clay and Germanic acid: In early studies, Yu et al. found that both clay minerals and 

Germanic acid could inhibit the production of DA by P. multilocularis. Germanic acid 
completely inhibited the production of DA when the Ge/Si ratio was 35 [85,86]. The 
reason may be that the high concentration of clay affects the photosynthesis and nu-
tritional environment of cells and thus affects the production of DA, while Germanic 
acid may destroy or even interrupt the normal silicification in cells, destroying the 
respiration, nucleic acid synthesis, and protein compounds of algae, thus inhibiting 
DA production. 

(2) pH: Lundholm et al. found that DA produced by P. multilocularis in the late exponen-
tial period significantly increased with the increase in pH (9.3~9.8) in the laboratory 
[87]. In the field observation, the water body of P. multilocularis usually had higher 
pH (about 9 or even 10), which suggested that this water body might be polluted 
with lots of DA. The effect of pH on DA production may be realized by affecting 
enzyme process, carbon content, metal toxicity, or bacterial structure. pH in natural 
water is not easy to regulate and mainly depends on the water’s ecosystem self-heal-
ing. If it is a specific area, such as fish ponds, there are relevant methods of equilib-
rium pH. Therefore, pH can affect the production of DA, but whether DA will affect 
pH, in turn, needs further research. 

(3) pCO2: Increasing of pCO2 can promote the production of DA in two different Pseudo-
nitzschia, especially under phosphorus [88] or silicon deficieny [89]. Even if the nutri-
ents are enough, the intracellular DA production of some algae, such as P. multilocu-
laris, increased due to the increased pCO2 [90]. The expression of intracellular DA 
synthesis gene upregulated with the increased pCO2 [57]. With global warming and 
ocean acidification, it is of great practical significance to study the impact of pCO2 on 
algae. 

(4) Predator: Several studies have shown that the toxicity of toxic diatoms such as P. 
seriata increased under the direct or indirect existence of calanoid copepods, indicat-
ing that toxic diatoms may resist predation by producing poison [91]. For zooplank-
ton, there was no obvious selection tendency in the predation of toxic and nontoxic 
diatoms, and the predation of toxic diatoms had no obvious effect on itself. Therefore, 
zooplankton is more likely to act as a carrier to realize the transfer or transformation 
of DA indirectly in the marine food web by predating toxic diatoms [92,93]. 

Table 2. Factors affecting the production of domoic acid (DA) by Pseudo-nitzschia spp. 

Factors Effects on DA Production Related Species Reference 
Biotic factors    

Strains/Species DA production varies in different strains P. australis [64] 

Life stages 
Produce lots of DA in stationary phase while 

noting on exponential growth phase P. multilocularis  [62] 

 
Intracellular DA production increased from 
the exponential growth period to stationary 

period 

P. vulgaris and P. aus-
tralis 

[33,63] 

Bacteria Effectively promote the production of DA P. multiseries [80,82] 

Predator 
DA production increased up to 3300% when 

exposed to grazing copepodites P. seriata [94] 

 DA production induced in nontoxic species P. obtusa [94] 
Abiotic factors    

Irradiance  DA production increases with increasing irra-
diance 

P. australis [77] 
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Temperature 
DA production was below the detection limit 
at temperatures <20 °C, but increased expo-

nentially from 23 to 30 °C 
P. australis [78] 

 The intracellular DA production at 27 °C was 
much lower than that at 18 °C P. multilocularis [79] 

pH 

Elevated pH induced production of domoic 
acid 

DA production in the late exponential growth 
period increased significantly with pH (9.3–

9.8) in the laboratory 

P. multilocularis [87] 

pCO2 Increase due to the increased pCO2 P. multilocularis [89] 

Nitrogen 
Higher DA production when grown on NO3− 

or NH4+ than on urea during exponential 
growth 

P. cuspidata [95] 

 Highest DA production on urea and NO3− P. multiseries  [72] 
 DA production on urea > than on NO3−, NH4+ P. multiseries  [96] 

 Highest DA production on glutamate and 
NH4+ 

P. australis [72] 

Silicon (Si) DA production increased when stressed by Si 
limitation during the stationary phase  

P. seriata [64] 

Copper (Cu) increased due to the excessive copper during 
exponential growth period 

P. multilocularis and 
P. australis 

[74] 

Phosphorus (P)  DA synthesis was significantly upregulated 
under phosphorus restriction  

P. multiseries [57,65] 

Iron (Fe) Increased due to the lack of iron or excessive 
copper during exponential growth period 

P. multiseries and P. 
australis 

[74] 

 Intracellular DA production increased, ac-
companied by increase in iron 

P. multilocularis [14] 

Lithium (Li) Significantly promote DA production P.multiseries [76] 

Salinity 

DA production rates varied significantly 
with salinity; they were low and similar at sa-
linities of 5–15 (2.56–3.12 ng mL−1 day−1) and 
increased with increasing salinity, highest in 

35 

P. pungens [97] 

Clay (halloysite) Inhibit the production of DA Psuedonitzschia 
pungens f. multiseries 

[85] 

Germanic acid Completely inhibit the production of DA 
when the Ge/Si ratio was 35 

P. pungens [86] 

4. Detection Methods of DA 
Detection methods can be divided into algae DA concentration, water DA concentra-

tion, and shellfish DA concentration determination according to the detecting subject. 
Each detection method, biological, chemical, and physical, has its own advantages and 
limitations. In this paper, the main detection and analysis methods are introduced. Table 
3 summarizes the current main methods for DA detection. 
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Table 3. Characteristics of main DA detection methods. 

Methods 
Detection Limi-

tation Merits Limitations Reference 

Bioassay     

Mouse bioassay >20 μg·g−1 Universal detection, easy to 
perform, cheap 

Ethical pressure; poor repeatabil-
ity; interference of extracts and 

salts; long operation time and ina-
bility to distinguish toxins types; 
high detection limit; error % high 

[98] 

Receptor bioassay 0.001 ng·g−1 Sensitive Difficult to obtain the receptor [99] 

HPLC   
Needs standards, needs toxicol-
ogy information for each toxin  

HPLC-UV 20 ng·mL−1 

High versatility, high sensi-
tivity, easy to use, simple 

maintenance, low equipment 
cost, can detect a large num-

ber of samples 

Low sensitivity to compounds 
with poor UV absorption 

[9] 

HPLC-UV&SPE 0.04 ng·mL−1 
High sensitivity, automatic 
analysis, suitable precision 

(<5%) 

Special instrument, professional 
operation [100] 

HPLC-FLD 
0.2 ng·mL−1 

(1.5 pg·mL−1 for 
seawater) 

High sensitivity, automatic 
analysis, less clutter interfer-

ence 

Most of the derivatization rea-
gents are expensive and unstable, 

and the reagent’s deterioration 
may lead to toxin’s incomplete 

derivatization 

[11] 

HPLC-MS/MS 0.02 ng·mL−1 

No need for derivative rea-
gent and toxin standard, 

wide detection range, high 
sensitivity, fast speed, and 

the operation is simple 

The equipment requirements are 
high, and can not be used for a 

large number of grass-roots day-
to-day monitoring 

[9] 

HPLC/ESI-IT-MS 0.02 ng·mL−1 

High sensitivity, high selec-
tivity, can carry on the mass 
examination. Can provide 
chemical structure infor-

mation 

High requirements for sample 
pretreatment [101] 

LC-MS <1 pg·mL−1 Allows quantification sensi-
tive 

Slow, complex, expensive, needs 
standards 

[102] 

LAESI-HRMS 0.24 μg·g−1 

Realized high-throughput 
screening or quantitation of 
DA in a variety of shellfish 

matrices 

Low accuracy, suit to screening 
than direct quantitation [103] 

LC-HRMS 0.12 ng·mL−1 

Less solvent consumption, 
low cost, the absence of the 
evaporation step, and short 

time requirement. 

High requirements for pH, the 
number of aspirating/dispensing 
cycles, and the type and volume 

of eluent 

[104] 

ELISA     
ELISA 0.02 ng·mL−1 High sensitivity, easy to use Unable to detect all individuals. 

Expensive DA standards, profes-
sional microplate instruments, 
small molecular weight of DA, 

[105] 

CEEIA 0.02 ng·mL−1 Rapid detection and high 
sensitivity 

[106] 
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difficulties in preparation of im-
mune antigen  

ICS 5 ng·mL−1 
Fast, sensitive, quantitative, 

easy to use 

Need enough toxin to obtain anti-
body 

Expensive 
[107] 

Other methods     

cITP-CZE 1.5 ng·mL−1 
Simple to use, low cost, and 
portability. High sensitivity 

High requirement for pH value, 
poor repeatability 

[108] 

SERS 

0.1 μg·mL−1 (in 
pure water) 

0.01μg·mL−1 (in 
seawater) 

Lower limit of detection, 
rapid detection of DA in dif-

ferent situations 

Sensitivity and accuracy are far 
less than those of HPLC and 

ELISA 
[109] 

4.1. Bioassay Methods 
Mouse bioassay (MBA) is a classical method for most marine toxins, except for do-

moic acid. It mainly uses mice of a certain age, size, and weight to detect the toxicity of 
algal toxins and finally uses half-lethal doses to evaluate the toxicity. This method was 
first used for DA detection in 1987 [4]. However, subsequently, it was found that there 
were many uncertain factors (such as the size of experimental animals, physiological state, 
operation technology, and experimental time) in using this method, and the detection 
limit was high (suitable for DA concentration >20 μg·g−1). This method has been gradually 
replaced by new detection methods due to some other defects such as poor repeatability, 
long operation time, and inability to distinguish toxins types, but it still plays an irreplace-
able role in toxicology research [98]. Besides the mouse model, zebrafish (Danio rerio) as 
a translational model is also used extensively for toxicological studies. The contemporary 
Bibliography is replete with studies of “fish embryo toxicity tests” for the study of envi-
ronmental contaminants (pollutants, drugs, and toxins) in which zebrafish larvae are used 
as indicators of toxicity. For example, dexamethasone sodium phosphate (DEX) exposure 
could affect the survival and hatching rate, morphology score, and body length in 
zebrafish larvae, especially disturbing the antioxidant defense system [110]. Several my-
cotoxins, such as Aflatoxin B1 (AFB1) and Fumonisin B1 (FB1), both exerted negative ef-
fects on zebrafish (Danio rerio) embryos [111]. 

4.2. High-Performance Liquid Chromatography (HPLC) 
Although the use of HPLC requires special instruments and the cost is relatively 

high, HPLC is recognized as the most effective method among detection methods such as 
liquid chromatography, thin layer chromatography, capillary electrophoresis, amino acid 
analysis, receptor analysis, and many other methods, due to its rapid detection, suitable 
repeatability, high accuracy [112]. Among shellfish toxins analyzed by HPLC, DA analysis 
is the most successful one, which has been listed as the national standard method in many 
countries. According to Chinese national standards, the content of DA in marine bivalves 
and their products (excluding salted products) should be detected by reverse-phase high-
performance liquid chromatography (RP-HPLC) with a detection limit of 1.0 μg. 

Combined with HPLC, a series of new detection methods have been developed, such 
as high-performance liquid chromatography ultraviolet detection (HPLC-UV), high-per-
formance liquid chromatography fluorescence detection (HPLC-FLD), high-performance 
liquid chromatography tandem mass spectrometry (HPLC-MS/MS) and high-perfor-
mance liquid chromatography electrospray ion trap mass spectrometry (HPLC/ESI-IT-
MS) and so on (see Table 3), to determine residues of residues in shellfish in the past 20 
years [9–12,112]. Subsequently, some optimized LC-MS techniques were applied to DA 
detection. For example, solid solvent extraction combined with LC-MS technology can be 
used to detect DA at a trace level (<1 pg·mL−1) [102]. DA of 5 μg·g−1 can be detected in fresh 
scallops tissue samples by laser ablation electrospray ionization high-resolution mass 
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spectrometry (LAESI-HRMS), which is a quarter of the detection limit [103]. In contrast, 
the detection limit of DA in urine can reach 0.12 ng·mL−1 by liquid chromatography high-
resolution mass spectrometry (LC-HRMS) [104]. 

As the most mature technology for DA detection, HPLC is generally stable and sen-
sitive for the determination of samples. It is less affected by operational and environmen-
tal factors. HPLC technology has the advantages of stable sample determination, high 
sensitivity, and less affected by the operation and environmental factors, but it has weak-
nesses in efficiency, quantity, and cost of determination. 

4.3. Enzyme-Linked Immunosorbent Assay (ELISA) 
ELISA is a kind of analytical method that uses the principle of specific binding be-

tween enzyme-linked antigens and antibodies. Now, it has become the most widely used 
immunological detection technology because of its convenience, high specificity, low de-
tection limit, easy qualitative and quantitative, and no need for special equipment. 

DA was detected and quantitatively analyzed by specific antibodies against shellfish 
toxin when using ELISA. The detection limits of DA could reach 0.02 [105], 0.15 [113], and 
0.15 [114] ng·mL−1 when using direct competition of polyclonal antibody, indirect compe-
tition of polyclonal antibody, and indirect competition of monoclonal antibody, respec-
tively. 

ELISA has high sensitivity and can be used for rapid DA detection. At present, a 
variety of ELISA methods and kits for DA detection have been developed [105,115–118]. 
Among them, the development of colloidal gold technology has grown rapidly. This tech-
nique is to develop a colloidal gold immunochromatographic strip by using competitive 
immune reaction and labeled monoclonal antibodies to detect DA. Tsao et al. used mon-
oclonal antibodies from hybridoma cell line 9F1F11 to prepare a colloidal gold immuno-
chromatographic strip (ICS). The detection time of DA was reduced to less than 10 min, 
and the sensitivity was increased to 5 ng·mL−1. The rapid and batch detection of DA was 
realized [107]. 

Some improved ELISA techniques have emerged and highlighted their own ad-
vantages, such as capillary electrophoresis-based enzyme immunoassay (CEEIA), which 
can detect DA in shellfish samples within 5 min by electrochemical method, and the sen-
sitivity is 16 times higher than that of traditional ELISA [106]. In addition, a multi-func-
tional detection technology-flow cytometry microsphere array, which combines three im-
munological methods (solid-phase microsphere method, flow cytometry, and Luminex 
xMAP Technology), has also been applied to the detection of DA, and the half inhibitory 
concentration (IC50) can reach (1.9 ± 0.1) ng·mL−1 [119]. 

Although the ELISA method has many advantages in use, the expensive DA stand-
ards, professional microplate instruments, small molecular weight of DA, difficulties in 
the preparation of immune antigen, and field operation all limited its application in DA 
analysis to a certain extent. 

4.4. Other Detection Methods 
In addition to the commonly used methods such as HPLC and ELISA, other detection 

methods, such as biosensors, capillary electrophoresis, and neural receptor binding detec-
tion, have also been applied to detect DA. 

Biosensor is a kind of easy and cheap DA detection and quantification technology. 
This technology can transform biological reaction information into electrical signals, then 
output those quantitatively processed electrical signals so as to determine substances’ con-
centration. In the past 20 years, various biosensor has been widely used in the detection 
of chemical pollutants or pathogens [120,121]. For example, when using surface plasmon 
resonance (SPR) technology to detect DA in food, the semi-inhibitory concentration can 
reach 4.8–6.9 ng·L−1 and 2.3–6.0 ng·L−1, respectively, when using monoclonal antibody and 
polyclonal antibody [122]. 
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Capillary electrophoresis (CE) is one of the earlier methods applied to separate and 
detect marine biotoxins because of its simplicity to use, low cost, and portability. CE is 
based on the principle that differently charged particles have different migration rates in 
the electric field, then separate the objects [123]. The detection limit can reach 1.5 μg/L by 
a coupled capillary isotachophoresis–capillary zone electrophoresis (cITP-CZE) method 
for the determination of domoic acid in shellfish [109]. 

With the development of technology, other new DA detection methods, such as pure 
or amino-functionalized Ag nanoparticles and surface-enhanced Raman scattering 
(SERS), are emerging, which gradually realized the rapid and accurate detection of DA in 
different situations [108]. However, the sensitivity and accuracy of the above methods are 
far less than those of chromatography and immunology, so the application scope is still 
limited. 

The detection methods of DA production shall be improved. With the development 
of research, more toxic algae and their toxins are expected to be discovered and studied. 
At present, there are many methods to detect DA, but there are still some limitations in 
their use. HPLC has the advantages of rapid detection, suitable repeatability, and high 
accuracy, which is recognized as the most effective method. However, in recent years, 
ELISA kits have attracted more and more attention for the merits of being easy to carry 
and can be used for on-site monitoring, and some rapid detection strips are also becoming 
a new research direction. We can grasp the geographical distribution of DA through the 
detection of DA and establish appropriate models to predict the generation and migration 
of DA in the ecosystem so as to prevent potential DA disasters. 

5. Conclusions 
As a neurotoxin, on the one hand, DA pose a potential threat to aquatic organisms 

and human, while, on the other hand, it has a significant insecticidal and bactericidal role. 
Therefore, the research on DA has very important practical significance. At present, glob-
ally, a new Pseudo-nitzschia has been found, but the research on DA and Pseudo-nitzschia 
is still very limited. In addition to summarizing the distribution, species composition, and 
toxin production of Pseudo-nitzschia in various sea areas, the authors think the following 
three aspects need further scientific research. 

The research on the DA production mechanism must be strengthened to understand 
the effects of specific environmental and biological factors on its production and distribu-
tion. At present, the up and down-regulated related to DA production, enzymes involved 
in DA synthesis, and possible mechanisms have been found by using advanced molecular 
biology and genetic methods [57,124,125]. On this basis, the use of enzyme inhibitors, gene 
knockout, or gene silencing techniques may increase or inhibit the production of DA in 
algae. In addition, the research can be carried out in the genus Pseudo-nitzschia rather than 
just for a certain species so as to ensure the universality of the previous findings. 

Although there are many DA detection methods and corresponding products, the 
detection methods need further improvement. Through the update of technology or the 
combination of multiple methods, DA detection will be much simpler, faster, and more 
efficient. The application prospect of DA needs to be further explored. As a natural marine 
drug, DA has obvious advantages over organic synthetic chemicals; for example, it can be 
used as a useful reagent for neurophysiological research. People could make full use of its 
biological activity, such as the insecticidal ability of DA, and develop and utilize insecti-
cides [126]. Autism spectrum disorder (ASD) features deficits in social interaction and 
communication and includes repetitive behaviors and circumscribed interests. Research 
has shown that the behaviors and neuropathology resulting from prenatal exposure to 
DA are strikingly similar to those in ASD. In addition, the geographic distribution of ASD 
suggests the possibility that exposure to toxic chemicals in seafood might contribute to 
the prevalence of some forms of autism. Infant rats exposed to DA express long-term so-
cial withdrawal in adults [127]. Therefore, more fully monitor of DA is needed for coastal 
human and non-human mammalian populations. Product development based on the 
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characteristics of DA is an effective way to develop a green industry. In view of this, we 
can use gene recombination and other means to screen and cultivate high DA-producing 
strains so as to carry out the scientific and controllable production and application of DA. 
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