
Citation: Zarkadas, S.; Besseris, G.

Using Lean-and-Green

Supersaturated Poly-Factorial Mini

Datasets to Profile Energy

Consumption Performance for an

Apartment Unit. Processes 2023, 11,

1825. https://doi.org/10.3390/

pr11061825

Academic Editor: Kian Jon Chua

Received: 30 April 2023

Revised: 22 May 2023

Accepted: 13 June 2023

Published: 15 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Using Lean-and-Green Supersaturated Poly-Factorial
Mini Datasets to Profile Energy Consumption Performance
for an Apartment Unit
Spyridon Zarkadas 1,2 and George Besseris 1,2,*

1 Mechanical Engineering Department, The University of West Attica, 12241 Egaleo, Greece; spyzas93@hotmail.com
2 Advanced Industrial & Manufacturing Systems Graduate Program, Kingston University, London KT1 2EE, UK
* Correspondence: besseris@uniwa.gr

Abstract: The Renovation Wave for Europe initiative aspires to materialize the progressive greening
of 85–95% of the continental older building stock as part of the European Green Deal objectives
to reduce emissions and energy use. To realistically predict the energy performance even for a
single apartment building is a difficult problem. This is because an apartment unit is inherently
a customized construction which is subject to year-round occupant use. We use a standardized
energy consumption response approach to accelerate the setting-up of the problem in pertinent
energy engineering terms. Nationally instituted Energy Performance Certification databases provide
validated energy consumption information by taking into account an apartment unit’s specific shell
characteristics along with its installed electromechanical system configuration. Such a pre-engineered
framework facilitates the effect evaluation of any proposed modifications on the energy performance
of a building. Treating a vast building stock requires a mass-customization approach. Therefore,
a lean-and-green, industrial-level problem-solving strategy is pursued. The TEE-KENAK Energy
Certification database platform is used to parametrize a real standalone apartment. A supersaturated
mini dataset was planned and collected to screen as many as 24 controlling factors, which included
apartment shell layout details in association with the electromechanical systems arrangements.
Main effects plots, best-subsets partial least squares, and entropic (Shannon) mutual information
predictions—supplemented with optimal shrinkage estimations—formed the recommended profiler
toolset. Four leading modifications were found to be statistically significant: (1) the thermal insulation
of the roof, (2) the gas-sourced heating systems, (3) the automatic control category type ‘A’, and
(4) the thermal insulation of the walls. The optimal profiling delivered an energy consumption
projection of 110.4 kWh/m2 (energy status ‘B’) for the apartment—an almost 20% reduction in energy
consumption while also achieving upgrading from the original ‘C’ energy status. The proposed
approach may aid energy engineers to make general empirical screening predictions in an expedient
manner by simultaneously considering the apartment unit’s structural configuration as well as its
installed electromechanical systems arrangement.

Keywords: energy consumption; apartment unit energy screening; supersaturated datasets; performance
improvement; main effect plot; partial least squares; entropic mutual information

1. Introduction

Improving the energy efficiency of the existing building stock has been given high
priority in the European Green Deal [1]. On track to a climate neutral Europe by 2050, the
‘Renovation Wave for Europe’ initiative [2,3] calls for the progressive greening of 85–95%
of the older building stock by reducing emissions and energy use. The imposing of
such an emphasis on construction processes has transpired because 40% of the energy
consumption and 36% of the energy-related greenhouse gas emissions in Europe are
attributed to buildings [4–6]. Consequently, the ‘Renovation Wave for Europe’s aim is to

Processes 2023, 11, 1825. https://doi.org/10.3390/pr11061825 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11061825
https://doi.org/10.3390/pr11061825
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr11061825
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11061825?type=check_update&version=5


Processes 2023, 11, 1825 2 of 27

campaign for action now in order to improve the energy consumption for a forecasted
number of 35 million inefficient buildings by 2030; the initiative anticipates adherence to
the target of reducing emissions by at least 55%. Meanwhile, the overall decarbonization of
the heating and cooling processes are, of course, in direct alignment to the broader global
sustainability goals as they are promulgated through the United Nations 17 Sustainable
Development Goals (SDGs) [7]. Specifically, the impact of attaining several interlacing
SDGs, such as Goal #7 (affordable and clean energy), Goal #11 (sustainable cities and
communities), Goal #12 (responsible consumption and production), and Goal #13 (climate
action), is envisaged through new-age, digitalized, and smarter home management, which
is prognosticated to enhance the overall quality of life of the population.

Incentivizing green construction through effective government policies has shown
promise through the concept of the Leadership in Energy and Environmental Design
(LEED) certifications [8–14]. The Minimum Energy Performance (MEP) standards for
existing buildings are formalized through the Energy Performance of Building Directive
(EPBD). The Energy Performance Certificates (EPCs) are instituted on a national level; in
essence, they encourage “progressive renovations over the lifetime of a building” through
the establishment of the Building Renovation Passports (BRPs). The EPC is the rating output
from a green-building certification system that assesses an apartment unit’s performance
by employing a lifecycle method that considers specific design, construction, and operation
details, while upholding the emphasis of quality on the environmental and sustainability
perspectives [15].

To tackle the many barriers that hinder a realistic and optimized prediction of the
year-round energy consumption of older-building apartment units, innovative solutions
may be facilitated by the introduction of data-centric engineering know-how. Old-building
stock renovation projects rely on suitable retrofitting modeling instruments that usually
address the whole building as a problem [16–24]. From an energy engineer’s point of
view, retrofitting is essentially a screening-and-optimization energy-performance exercise
which is characterized by high complexity. To be pragmatic, the retrofitting optimization
problem’s complexity should be simplified, as it is known to implicate contributions of un-
certainty from the structural details of the examined apartment unit, its electromechanical
systems configuration, the unit’s actual demands on annual local weather conditions, and
indigenous occupant behavior tendencies [25–33]. A sophisticated multicriteria software
tool is often necessitated in order to simulate and analyze improvement opportunities for
various types of energy leaks, such as to prioritize the retrofitting tasks while paying heed
to green considerations [34–43]. Of course, it is anticipated that the energy professional in
charge of the retrofitting project should be skillful and knowledgeable in several areas of
expertise, including designing and computing, to handle empirical modelling and com-
plicated forecasts. Conducting optimization simulations for large buildings is becoming
more common owing to simplification of the apartment unit problem, which allows for
the relaxing of some technical assumptions. On the other hand, the energy-consumption
optimization of micro- and small-scale systems is more perplexing to carry out than larger
ones, because of constraints arising from unit-to-unit differentiation within a building, thus
allowing the technical variability of these systems to be deemed substantial [44]. Moreover,
an apartment renovation task is a more stringent problem to simulate because the energy
efficiency optimization procedure may interrupt the current unit’s energy distribution prac-
tices. Nevertheless, the model calibration may be conducted on a standardized framework
to be convincing and meaningful [45,46]. A major issue that arises from evaluating sus-
tainable retrofits—key to successfully advancing the renovation process—is related to the
optimal profiling of alternative retrofit scenarios [47–51]. The synchronous simplification of
the complexity in the considered energy system is congruent to the extent of customization
at the apartment unit level.

The novelty of this work rests on the notion that screening and optimizing the energy
performance for an apartment unit may be facilitated after adopting the Lean Six Sigma ini-
tiative, a contemporary manufacturing philosophy which is applied to improving products,
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processes, and services by instituting a holistic and datacentric engineering strategy [52,53].
While the green Lean Six Sigma initiatives have been launched in the construction industry,
instructive paradigms for the screening and optimization of energy performance studies
are lacking [54,55]. The examined problem is an excellent paradigm of greening the en-
ergy consumption of a building by customizing the optimization solution at the point of
interest, which is the apartment unit. The proposed tactic fosters a duality that merges lean
thinking and quality improvement [56]. The lean and green aspects of a study are aligned
to effectuate the sustainability aspect in a circular process [57–64]. The lean and green
objectives are accomplished by: (1) screening and optimizing the reduction in an apartment
unit’s energy consumption, and (2) introducing lean thinking into the problem-solving
process itself. The benefits of the former objective are immediately evident: (1) lower
overall energy demand, (2) lower gas emissions, and (3) lower bottom-line energy costs
per apartment unit [65–67]. The latter objective may be viewed as more subtle because it
regards the energy and resource commitment in order to research the problem. The lean
thinking approach is applied in such a fashion as to greatly reduce the amount of work that
is necessary to carry out this project. To be a practical and expedient project, it is necessary
to save time and resources, thus shortening the data collection cycle. This effort appears
innately time-consuming, because year-round data would be necessitated for a building
energy-performance study to be rendered pertinent. Quite possibly, a simulation study
would be valuable in understanding the mechanisms that regulate the energy distribution
within an apartment [68–76]. The complete description of the inherent energy physics that
govern the heat flow and the electricity distribution, across the installed electromechanical
systems in a real apartment unit, would absorb a lot of resources and knowledge because
the multifarious sources of uncertainties should also be accounted. Even so, it would be
meaningful only for that specific single customized case. A more general method that relies
on standardized data is greatly desirable to heed the practical aspect of the application;
method agility and reliability are construed to be attractive features in product/process
improvement studies.

To counter the perceived complexity surrounding the data collection part, the pro-
posed methodology orients toward a strategy that draws valid data from a national Energy
Performance Certification database [77,78]; it is a standardization output that has been
established to track down the decarbonizing progress of existing building stocks. In this
manner, the year-round energy parametrization of residential buildings is accomplished
by considering the customized structural and electromechanical systems requirements,
which are matched to their performances according to standardized specifications. Since
the national Energy Performance Certification database holds an immense amount of
customized and validated operational coefficients and parameters, any ensuing energy
performance analysis is certainly amenable to any residential apartment unit. In Greece, an
EU member state, this is transacted by the mandatory government-instituted Energy Certi-
fication program that permits, through a software platform, the TEE KENAK (1.31.1.19),
the standardized parametrization of existing residential buildings [79,80]. The TEE KE-
NAK software allows energy engineers to extract a vast amount of information in order to
conduct energy studies which can lead to awarding an official certification of the energy
consumption status to any residential apartment unit. It is on the TEE KENAK database
that the energy consumption reduction will be carried out in this investigation.

An energy performance improvement study is a difficult task to undertake because
there are, intrinsically, many controlling factors that should be considered. This is easily
comprehended by merely interacting with the Energy Performance Certification software,
which expects many building layout and operation parameters to be fed into the pro-
gram [14]. Consequently, a design of experiments (DOE) plan [81,82] should involve a large
number of controlling factors that are usually not convenient to program. Further, there is
an enormous number of parameter setting combinations that should be organized which,
in turn, is followed by the serial execution of the resulting factorial recipes on the Energy
Performance Certification software. If this software is to be a realistically useful tool to an
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energy engineer, who regularly embarks on such renovation improvement studies, a more
sophisticated data planning approach should be deployed. Industrial-level trial scheduling
which allows for the implementation of an efficient DOE sampling scheme becomes imper-
ative in such a situation [83,84]. Supersaturated factorial samplers, which are often used
in large industrial studies, are very appealing because they allow for the disproportional
screening of many controlling factors by extracting information from a modest number of
data points which is much less than the number of screened factors [85–90].

Interestingly, it was suggested that it may be practical to pace the retrofitting process
of older residential buildings by examining them on an apartment unit basis [91]. By taking
advantage of the construction-design modularity and the comprehensive information on
the electromechanical systems configuration, which are stored in the national building
certification register platforms, EPC-generating software packages may be utilized to
conveniently screen and optimize the energy-consumption performance of any residential
apartment unit. Besides granting a green energy-efficiency rating to a residential structure,
an EPC authentication is also accompanied with a MEP standard, which is a customized
estimation for the particular apartment unit. Therefore, MEPs may be taken as consistent
improvement yardsticks that could guide the apartment unit’s future renovation actions.
MEPs summarize the yearly-weighted energy performance of a residential structure in a
single estimation. A recently published case study on the retrofitting of an apartment unit
in a residential building has demonstrated the usefulness on implementing EPC-created
information to advance design of experiments (DOE) in order to screen a sizable number of
exclusively electromechanical-system controlling factors [91]. The intention was to research
a single apartment in a residential building, in which case each floor corresponded to a single
apartment unit. The main objective was the minimization of the energy consumption of the
single apartment unit which was situated at the highest floor. It became evident that it is a
difficult task to successfully simulate an approximate distribution of the energy demands
of an apartment unit under year-round realistic operating conditions. By considering the
factual structural layouts and electromechanical systems operating information, simulations
may be additionally hampered by the inherent high complexity of the problem which relies
heavily on the interplay of the specifics of the installed electromechanical systems against
the apartment unit’s real architectural details. To circumvent the exigent task of screening
as many as 24 electromechanical controlling factors, Rousali and Besseris [91] developed an
empirical tool that facilitated the estimation of the contributions of the screened strong factors
from their regression analysis after pre-treating all of the factors according to their location
and dispersion tendencies, using a modified Matrix Data Analysis Chart (MDAC) tool; the
MDAC shortened the initial list of factors to a mere few that statistically outperformed the
rest.

The challenge for this work is three-fold in terms of the newly introduced case study
features: (1) attempt a screening study on a real single-family home, (2) introduce building
shell components in the controlling factor list, (3) use tools that are directly accessible from
mainstream statistical software packages, (4) extend the data analysis to implicate more
advanced statistics. In comparison to the study by Rousali and Besseris [91], this proposal
has several novelties. Firstly, it utilizes the latest version of the TEE KENAK software,
since the previous publication was based on a software version which is now a decade
old. This means that the updated version, which is utilized for this work, is commensurate
to the current reality of using and operating a more modern apartment unit. Thus, there
will be access to a more mature EPC platform in synergy with a more comprehensive and
accurate database. Second, the study by Rousali and Besseris [91] ignored contributions
from the unit’s shell properties. This weakness is remedied in this new attempt. Third, the
overall type of building structure that will be studied here is significantly different from the
apartment building studied in reference [91]. This means that a new and challenging case
study is added in a very critical research area that now has commenced to investigate how to
improve building’s energy performance—an objective that is highly prioritized by the EU.
Finally, a new analysis methodology is suggested to alleviate the customized approach that
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was presented by Rousali and Besseris [91]. This means that only simple techniques are used
which are immediately available to commercial and freeware statistical analysis software.

The developments of this paper are organized as follows. Next, the Materials and
Methods section elucidates the technical description of the shell structural details and
the installed electromechanical systems of the modeled apartment unit, along with the
supersaturated data planning, collection, and analysis steps that also describe the computa-
tional support toolbox. The Results section provides the collected supersaturated dataset
which was obtained by manipulating the apartment unit parameters on the TEE-KENAK
platform. Subsequently, the factorial screening and optimization solutions are presented
in a cooperative application of response graphs/tables and linear regression techniques.
In the Discussion section, a peripheral analysis is appended to explore the validity of the
predictions using partial least squares, analysis of variance, entropic representations, and
hierarchical clustering treatments. Descriptive statistics, correlation analysis, and nonpara-
metric comparisons complete the prediction validation of the proposed methodology. In
the Conclusion section, the key findings are summarized and recommendations for further
research are provided.

2. Materials and Methods
2.1. Technical Description of the Studied Building Apartment Unit
2.1.1. Basic Location and Energy Consumption Status Information for the Building
Apartment Unit

The residential building that is modelled for this study is located in a suburban area
in proximity to the city of Athens (Greece). The construction was erected in the year 2004.
Regionally, the district is situated within Climate Zone “B” in Greece. For the particular
apartment unit, the thermal space that will be examined has been projected to be a surface
area of 174.90 m2. Based on the national cumulative statistics from the estimations on the
issued Energy Performance Certificates, 83.82% of the residential buildings which have
been constructed before the year 1980 (55% of the total available building stock) have been
awarded an energy consumption status of ‘H’. Even for more contemporary buildings such
as the one that will be analyzed in this work, the majority of the energy performance ratings
have been categorized as either a ‘C’ or ‘D’ class. The particular apartment unit was certified
to require a year-round primary energy consumption of 133.8 kWh/m2. This was compared
against a (theoretical) reference-building energy demand of 129.2 kWh/m2. The ratio of the
two energy consumption estimations (the former over the latter) provides a measure for
the energy efficiency. Since the estimated energy efficiency corresponds to the standardized
interval (1.00, 1.41), it was awarded a rating status of ‘C’. This study is meaningful because,
to reach the desired transitory ‘yellow zone,’ the energy efficiency score should lie within
the standardized interval (0.75, 1.00), which corresponds to an energy consumption grade
of ‘B’. The top rating (class ‘A+’) is awarded for energy efficiency scores lower than 0.33.
However, the ‘green’ status for a residential building is awarded upon certification after
attaining at least a ‘B+’ rating, which corresponds to an energy efficiency standardized
interval of (0.50, 0.75). Therefore, any recommended improvement interventions should
lead, at least, to climbing up to the ‘yellow zone’ scale, before any apartment renovation
gains become substantial enough to contribute to the ‘greener outlook’ of the building’s
energy performance. Ostensibly, the respective intervention costs, the financial status of
the apartment owners/occupants, and any potential government incentives may affect the
pace of progress toward reaching an enhanced green building status.

2.1.2. Apartment Unit Structural Details

The complete layout for the apartment unit structure has been drawn in Figure 1
(AutoCAD, Autodesk, San Francisco, CA, USA). The building shell details have been
tabulated in Table 1 [92]. They are required inputs for the software package TEE-KENAK
(1.31.1.19) [79,80], which evaluates the energy consumption compared to a reference build-
ing, such that an energy performance certification can be issued. The case study is typical of
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a single-family (raised) residential unit with six rooms; two rooms (#1 and #2) are assessed
as a single compartment. There are available windows in all of rooms; four out of five
have exactly the same window surface area. Similarly, there are ventilation ductways for
all rooms, with middling variations among them. For energy consumption estimates to
be realistic, even moderate differentiations in the dimensions of the structural elements
in the four sides of the construction (Figure 2) may become critical in rendering valid
evaluations. The dimensional parameters (column, window, and brick wall surfaces) of all
four apartment sides are also entered (Table 2) in the TEE-KENAK software package.
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4 18 2.99 1.26
5 18 2.99 1.26
6 24.3 2.99 1.7
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Table 2. Apartment unit shell structural elements details.

Structural Elements
Side A

Surface Area
(m2)

Side B
Surface Area

(m2)

Side C
Surface Area

(m2)

Side D
Surface Area

(m2)
Columns 16.3 21.1 12.3 16.2
Windows 11.5 7.6 2.2 0
Brick wall 19 17.2 22.7 21

In Table 3, shell elements are parametrized in terms of wall and window inputs, which
are appropriately coded for orientation, surface area (F), and thermal permeability (k)
properties. In Table 4, there is indicative information regarding the input unit block data,
given the fact that the structure is raised such that the ground floor level can be used as a
parking space as well as to support other auxiliary building facilities.

Table 3. Apartment unit shell energy transfer data.

Shell Element Element Coding Orientation (o) Surface F
(m2) k (kcal/m2)

Walls W1 346 35.3 0.61
W2 166 38.3 0.61
W3 76 35 0.58
W4 256 37.2 0.59

Windows F1 346 11.5 2.6
F2 166 7.6 2.6
F3 76 2.2 3
F4 256
S 167.1

Table 4. Apartment unit block data.

Surface Area (m2) 174.9
Volume (m3) 570.25

Concrete Height Level (m) 3.25
Final Height Level (m) 3.3

2.1.3. Electromechanical and Renewable Energy Systems

In Table 5, the basic characteristics of the electromechanical systems that were in
operation during this study are listed. Natural gas was used as a heating source—the
boiler power capacity was set at 25 kW. Refrigerant heat transfer was regulated by heat
pumps with a total power capacity of 9 kW. Domestic hot water generation was attained
by utilizing both solar and electricity resources. Renewable energy systems were solely
based on solar panels that stored water in a building roof tank. The respective details for
the renewable energy system characteristics are listed in Table 6.

Table 5. Electromechanical systems data for the apartment unit.

System Source Distribution Network of Thermal Medium Season Power (kW)
Heating Natural Gas Yes Winter 25
Cooling Electricity No Summer 9

Hot Water Solar/Electricity No Year-round 5

Table 6. Renewable energy systems data for the apartment unit.

Panel Angle (o) Panel Surface Area (m2) Shade Coefficient Orientation (o)
45 4 0.8 180

2.1.4. The Energy Efficiency Certification Software Package TEE-KENAK

The TEE-KENAK (1.31.1.19) software was developed by the Energy Saving Team of
the Institute for Environmental and Sustainable Development Research of the National
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Observatory of Athens in cooperation with the Technical Chamber of Greece [79,80]. This
software applies appropriate algorithms for the valid calculation of the energy efficiency
performance of buildings in Greece. It is based on a methodology that is outlined in the
European-adopted energy performance standards (EN ISO 13790), as well as the relevant
national standards for heating and cooling spaces, in conjunction with the Technical Guides
of the Technical Chamber of Greece. According to the assessed output report from the TEE-
KENAK software, a building apartment is officially certified to an energy efficiency class.
The TEE-KENAK software requires entering basic factual information about the building
characteristics. Formal input information includes the owner identification, the ownership
status, the building address, and the year of issuance of the building permit. Technical
details regarding the surfaces and volumes of the building (total surface area, heated
surface area, cooled surface area, etc.) as well as information about the energy sources
of the building are also keyed-in online. Opaque elements of the building are described
by providing information on the orientation, the surface area, the coefficient of thermal
permeability, and the pertinent shadowed area pattern. Dimensioning of the opaque
surfaces with respect to the building foundations also involves lower and upper height
details for each relevant structural element. Data for the transparent building surfaces
additionally include glazing conditions, thermal break options, pane gap details, etc. The
TEE-KENAK software package is compartmentalized to receive factual information with
regards to the installed electromechanical systems in the apartment unit by considering
energy demands for heating, cooling, and domestic hot water generation equipments,
while also opting for renewable energy sources such as solar energy collection systems. The
input data indicate the electromechanical system power demands/consumption, which are
supplemented with their associated efficiency performance ratings. To estimate the solar
collector contribution, specific details such as the usage rate, the effective surface area, and
the optimal tilt and orientation angles are also submitted.

2.2. The Statistical Analysis Approach

The TEE-KENAK software platform permits a large number of relevant parameters
to be synchronously investigated, whenever the scope of a study is to undertake energy-
consumption reduction recommendations. This provision makes it impractical to test
the energy consumption response by either a trial-and-error or a full factorial method.
In fact, it was remarked [91] that succeeding in modeling the energy performance of an
apartment unit is not adequate, if the modelling aspect is restricted solely to the installed
electromechanical systems. It would not be convenient to carry out the resulting simulated
estimations without resolving the drawback of voluminous (poly-factorial) combinatorial
computations. Simulated predictions ought to be practical to allow for obtaining them
on a per project basis and as part of an engineer’s daily routine if they are to be deemed
helpful. It should be reiterated that this difficulty stemmed from the fact that, in attempting
to simultaneously screen the tendencies of as many as 24 electromechanical controlling
factors [91]—each factor minimally adjusted to two settings—the trial volume demand
blew up (224 = 16,777,216 trials). The experimental tactic of resorting to supersaturated
designs befits the condition to drastically compress the trial schedule. Therefore, the 14-run,
24-parameter supersaturated design of Williams [87], with its versatile parameter screen-
ing acceleration properties [89], which was implemented for the lean experimental data
collection of Rousali and Besseris [91], is determined to be an attractive sampling planner
for this work, as well. The adopted supersaturated design class is modified factorial half-
fractions [88], which may also include the special case of half-split Plackett–Burman [93]
design matrices. The 24 controlling factors which will be accommodated in the 14-run,
24-parameter supersaturated screening design have been tabulated in Table 7.
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Table 7. Controlling factors and their settings for influencing the energy consumption of the
residential unit.

Coded Factors Natural Gas
Boiler(−)

Petroleum
Boiler(−)

Natural Gas
Boiler(+)

Petroleum
Boiler(+)

F1 Automation for hot water no yes
F2 Category of automatic control A D
F3 Number of ceiling fans 0 5
F4 Energy source for heating systems gas petroleum
F5 Efficiency of power generation of heating systems 0.977 0.9 0.955 0.84
F6 Passage of distribution network of heating systems externally internally
F7 Efficiency of terminal units of heating systems 0.89 0.93
F8 Type of cooling systems air cooled water cooled
F9 Power of cooling systems (KW) 6 9

F10 Efficiency of power generation of cooling systems (EER) 2.5 5.3
F11 Efficiency of terminal units of cooling systems 0.9 0.96
F12 Recirculation of distribution network (yes or no) yes no
F13 Efficiency of domestic hot water storage system 1 0.98 0.98 0.93
F14 Type of solar panels Simple Vacum
F15 Surface area of solar panels 2 4
F16 Utilization rate of solar radiation for domestic hot water 0.344 0.38
F17 Thermal insulation of walls yes no
F18 Installation of awnings yes no
F19 Presence of shutters yes no
F20 Thermal insulation of roof yes no
F21 Type of window’s frame wooden metallic
F22 Air gap between glasses 6 mm 12 mm
F23 Percentage of window frame 30% 20%
F24 Type of exit door Thermal Insulation No thermal insulation

For the stepwise regression analysis procedure [94], the basic model is defined by
the predictor matrix, X = {Xij}, of size n × m, where the number of the supersaturated
design explanatory variables is m and the number of supersaturated design recipes is n.
Then, the response matrix Y, of size n × r, where the number of responses is r = 1 for this
work (energy consumption), and in conjunction with the prescribed condition for design
supersaturation in m regressors, i.e., m > n + 1, is written as:

Yi = βo + ∑m
j=1 β jXij + εi

where βo and βj, with 1 ≤ j ≤ m, symbolize the coefficients of regression and εi is denoted
as the error term for 1 ≤ i ≤ n, which is assumed to be an independent and identically dis-
tributed random normal variable. The stepwise regression method uses forward sequences
of F-test applications, but the model selection technique alternatives will include assess-
ments which consider: (1) the adjusted coefficient of determination (adj R2), (2) the Bayesian
information criterion [95], and (3) the Mallow’s Cp metric [96] for best subsets regression.

To use the latent variable approach in the partial least squares (PLS) model [97,98], the
number of the supersaturated design explanatory variables remains in the formalism m,
the number of responses is r (r = 1), and the number of supersaturated design recipes is n.
Then, the predictor matrix X, of size n × m, and the response matrix Y, of size n × r, are
prescribed for m > n + 1:

X = CLX
T+EX

Y = DLY
T+EY

The projection matrices of X and Y are defined as C and D, respectively, and they
are both of size n × p. The orthogonal loading matrices LX and LY correspond to the
matrices X and Y, with dimensions m × p and r × p, respectively. The error terms, EX and
EY, corresponding to the respective X and Y matrix models, are assumed to be independent
and identically distributed random normal variables. The subsequent maximization of the
covariance of the matrices C and D permits the decomposition of the matrices X and Y.

2.3. The Computational Aids

Descriptive statistics (median, interquartile range, skewness, and kurtosis) were com-
puted per a factorial-setting basis using the ‘Frequencies’ selection from the IBM SPSS (v.29)
software package. The ‘stepwise’ regression analysis was used to create a model summary
with the statistically strong controlling factors using the probability of the F-distribution to
sieve through the effects while adjusting the stepping method criteria for entry and removal
at the α levels of 0.05 and 0.10, respectively. The model coefficients were supplemented
with estimates of the coefficients of determination, collinearity diagnostics, Durbin–Watson
residuals testing [99], and P-P plot residuals assessment.
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To obtain the main effects plot for the 24-factor, 14-run supersaturated
energy-consumption response dataset, the function ‘maineffectsplot()’ (MATLAB (R2022b)
software package) was utilized after individually entering the poly-factorial combinations
through the function ‘table2array()’ of the statistical freeware platform R [100].

The data analysis included the factorial coefficient predictions that were obtained from the
partial least squares treatment (IBM SPSS v.29), which offer additional information such as the
proportion of the explained variance by the investigated regressors, while testing the variable
importance in the latent factorial projection. The selection cut of the strong predictors was also
assessed using the Mallow’s Cp metric. Therefore, the best-subsetting factorial combinations of
the supersaturated energy consumption dataset were determined using the linear regression
outcomes from two R-packages (v.4.1), ‘leaps()’ (v.3.1) and ‘StepReg()’ (v.1.4.4).

The clustering analysis (IBM SPSS v.29) was implemented to refine the grouping
tendency of the four summary estimators (median, interquartile range, skewness, and
kurtosis) of the supersaturated dataset using an unsupervised classifier [101]. Correlation
results (Spearman’s ρ coefficient [102]) among the four measures were pre-screened (IBM
SPSS v.29). The goodness of clustering was obtained by estimating the gap statistic [103],
using the function ‘clusGap()’ from the R-package ‘cluster()’ (v.2.1.2). Furthermore, to affirm
the optimal cluster size, the auto-clustering method of the Schwarz’s Bayesian Criterion
(BIC) was also employed (IBM SPSS v.29). The BIC change, the ratio of the BIC changes,
and the ratio of the distance measures were computed. Hierarchical cluster sequence
identifications were provided through a dendrogram. The statistical significance of the
clustered groups of the four summary estimators was computed using the Mann–Whitney
test [104] (IBM SPSS v.29).

The entropic screening of the predominant effects was carried out using the bin-
discretization of the supersaturated energy-consumption dataset per a factorial setting basis.
After partitioning in bins using the function ‘discretize2d()’ from the R-package ‘entropy()’
(v.1.3.1), the empirical (Shannon) mutual information [105] between same factor setting
pairs was computed using the function ‘mi.empirical()’ from the R-package ‘entropy()’
(v.1.3.1). Supplementary information corrections, via the optimal shrinkage intensity
estimations, were completed by implementing the function ‘entropy.shrink()’ from the
R-package ‘entropy’ (v.1.3.1)).

2.4. The Methodological Outline

The methodology may be recapitulated in brief in the following steps:

(1) Gather the required building apartment unit structural layout designs, along
with the information for the installed electromechanical and renewable energy
equipment information.

(2) Determine which featured characteristics will be investigated for the selected apart-
ment unit.

(3) Determine the range values for the featured apartment unit characteristics and code
them into controlling factor levels.

(4) Select an appropriate supersaturated screening design to accommodate the large
number of controlling factors from steps 2 and 3.

(5) Execute the supersaturated plan runs by inputting each time trial recipe information
(from step 4) into the TEE-KENAK software package.

(6) Record the energy consumption (real and reference) estimates from each supersatu-
rated trial run.

(7) Prepare the response table and response graph for the energy consumption estimates.
(8) Conduct stepwise regression analysis and evaluate the model summary results.
(9) Determine the active controlling factors from step 8 and suggest a possible solution

for the factorial settings.
(10) Confirm the energy consumption performance improvement by inputting the optimal

solution into the TEE-KENAK software package.
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(11) Assess and discuss the overall solution using other known methods such as PLS,
entropic, and hierarchical clustering comparisons on key descriptive estimators of the
energy consumption response.

3. Results

The results from executing the 14 poly-factorial recipes are tabulated in Table 8 in
terms of the energy consumption response, along with its respective energy class. The
energy consumption values ranged from 105.9 (trial #12) to 321.7 (trial #13) kWh/m2. Mean-
while, the corresponding energy classification ratings varied from status categories of ‘B’
(0.75–1.0 ratio to the reference building’s energy consumption) to ‘Z’ (2.27–2.73 times the
reference building’s energy consumption). In Table 9, the energy demands and consump-
tion details are indicatively tabulated for the first trial of the supersaturated trial-design
schedule; they result from loading the software platform TEE KENAK 1.31.1.19 with the
input from the prescribed recipe. From the ensuing response table (Table 10), it is observed
that the factorial variability of the energy consumption performance declines from 102.8 (F4)
to 2.11 (F16) kWh/m2. The two leading factors which contributed to the magnitude of
the variability are: (1) the energy source for heating system’s power generation (F4), and
(2) the thermal insulation of the roof (F20). This behavior becomes more transparent in the
response graph (Figure 3 (MATLAB R2022b)), where the optimal settings are identified at
the lower levels of both factors. Factor F4, adjusted at the ‘gas’ setting, reduces the energy
consumption estimation down to as low as 171.07 kWh/m2 (an intra-factorial difference
of 102.8 kWh/m2). Similarly, the ‘insulated roof’ option of factor F20 reduces the energy
consumption to 179.87 kWh/m2 (an intra-factorial difference of 85.2 kWh/m2). From the
response graph, it is apparent that factors such as F2, F3, F5, F17, F21, and F22 might also
be statistically assessed for their contributing effects to the overall improved performance
of the energy consumption response.

Table 8. The response output for energy consumption (EC) in kWh/m2 and its energy classifica-
tion status.

Run # 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Energy Consumption Response 252.1 115.1 257.1 292 299.8 268.6 227.3 144.9 157.6 247.8 230.1 105.9 321.7 194

Class E B E E Z E D C C E D B Z D
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Figure 3. Response graph (MATLAB R2022b) for the poly-factorial profiling of the energy consump-
tion (EC) in kWh/m2.
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Table 9. Energy demands and consumption results for the first simulation trial according to the
supersaturated design schedule.

Energy Demand (kWh/m2) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total
Heating 44.1 35.3 26.3 4.6 0 0 0 0 0 0 17.8 37.2 165.3
Cooling 0 0 0 0 1 11.7 24.3 20.4 1.5 0 0 0 58.9

Hot Water 2.1 1.9 2.1 1.8 1.6 1.3 1.2 1.2 1.3 1.6 1.8 2 19.9
Energy Consumption

(kWh/m2)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

Heating 55.6 44.5 33.1 5.8 0 0 0 0 0 0 22.5 46.8 208.3
Cooling 0 0 0 0 0.1 1.3 2.6 2.2 0.2 0 0 0 6.4

Hot Water 1.7 1.5 1.5 1.2 1 0.7 0.5 0.5 0.7 1 1.3 1.6 13.2
Hot Water

(from solar) 0.4 0.4 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.5 0.4 0.3 6

Total 57.7 46.4 35.1 7.5 1.7 2.6 3.7 3.3 1.5 1.5 24.2 48.7 233.9

Table 10. Response table for the factorial profiling of the energy consumption (EC) in kWh/m2.

Factor/
Setting F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

1 217.47 195.56 197.95 171.07 200.58 228.28 235.03 228.13 217.24 223.81 230.61 229.03
2 227.47 249.39 246.9 273.87 244.36 216.66 209.91 216.81 227.7 221.13 214.32 215.91

Range 10 53.83 48.95 102.8 43.78 11.62 25.12 11.32 10.46 2.68 16.29 13.12
Rank 20 3 5 1 6 15 9 17 19 22 11 13

Factor/
Setting F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24

1 223.53 224.85 210.86 223.52 200.61 214.38 228.29 179.87 240.39 246.9 228.21 227.7
2 221.41 220.1 234.1 221.41 244.3 230.43 216.66 265.07 204.56 198 216.73 217.23

Range 2.12 4.75 23.24 2.11 43.69 16.05 11.63 85.2 35.83 48.9 11.48 10.47
Rank 23 21 10 24 7 12 14 2 8 4 16 18

A typical linear regression analysis for the supersaturated dataset is presented
in Table 11 (IBM SPSS v.29). The ‘stepwise’ method was selected with entry and
removal probabilities—to pace the stepping criteria—for the F-test values, at
cutoff points of 0.05 and 0.10, respectively. The model summary indicates that four
factors should be retained in the active factor group (F2, F4, F17, and F20); these
adequately account for 96.2% of the total variation, according to the adjusted coefficient
of determination (adj R2). Adding the last influence, F17, to the model corrected the
prediction by only 0.041%; the factor F17 was found to be statistically significant at
a level of 0.05. Overall, the four-factor prognostication is also statistically significant
at a Bonferroni-corrected familywise error rate of 0.05. The two statistically stronger
factors, F4 and F20, contributed 60% and 29% to the total variation, respectively. The
Durbin–Watson statistic was estimated at a value of d = 3.17 (>dU = 2.296); it does not
provide any hint that the successive error terms might be positively autocorrelated.
Moreover, the alternative estimation, 4-d (= 0.833), is within the critical value interval
(0.505, 2.296), as computed for the test parameters n = 14, k’ = 5, and α = 0.05. Hence,
the test for the presence of a negative autocorrelation is inconclusive. The normal P–P
plot (IBM SPSS v.29) of the regression-analysis standardized residuals (Figure 4) does
not reveal any detectable abnormalities. The model coefficient and collinearity statistics
(IBM SPSS v.29) are listed in Table 12. The unstandardized/standardized coefficients of the
four active factors are statistically significant to at least an error rate of 0.01. Moreover, the
variance inflation factor (VIF) has been estimated to a maximum value of 1.35. Thus, there
seem to be no apparent multicollinearity tendencies across effects, with respect to the two
leading factors (F4 and F20) in particular.

Table 11. Stepwise-regression model summary (IBM SPSS v.29) for selecting statistically strong
controlling factors.

Model e R R2 Adjusted R2 Std. Error of the Estimate
Change Statistics

Durbin-WatsonR2 Change F Change df1 df2 Sig. F Change
1 0.775 a 0.600 0.567 45.30 0.600 18.024 1 12 0.001
2 0.943 b 0.889 0.868 24.97 0.288 28.485 1 11 <0.001
3 0.966 c 0.933 0.912 20.38 0.044 6.516 1 10 0.029
4 0.987 d 0.974 0.962 13.41 0.041 14.100 1 9 0.005 3.167

a Predictors: (Constant), F4; b Predictors: (Constant), F4, F20; c Predictors: (Constant), F4, F20, F2; d Predictors:
(Constant), F4, F20, F2, F17; e Dependent Variable: EC.



Processes 2023, 11, 1825 14 of 27

Processes 2023, 11, x FOR PEER REVIEW 15 of 28 
 

 

Table 12. Stepwise-regression model summary coefficients and collinearity statistics (IBM SPSS 
v.29) for the statistically active controlling factors. 

Model a 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

95.0% Confidence 
Interval for B 

Collinearity 
Statistics 

B Std. Error Beta 
Lower 
Bound 

Upper 
Bound Tolerance VIF 

1 
(Constant

) 222.471 12.107  18.375 <0.001 196.092 248.851   

F4 51.400 12.107 0.775 4.245 0.001 25.021 77.779 1.000 1.000 

2 

(Constant
) 

222.471 6.674  33.332 <0.001 207.781 237.162   

F4 46.258 6.744 0.697 6.860 <0.001 31.416 61.101 0.980 1.021 
F20 35.992 6.744 0.543 5.337 <0.001 21.149 50.834 0.980 1.021 

3 

(Constant
) 222.471 5.447  40.842 <0.001 210.335 234.608   

F4 39.014 6.192 0.588 6.300 <0.001 25.217 52.811 0.774 1.292 
F20 39.285 5.653 0.592 6.950 <0.001 26.690 51.880 0.929 1.077 
F2 15.806 6.192 0.238 2.553 0.029 2.009 29.603 0.774 1.292 

4 

(Constant
) 222.471 3.584  62.074 <0.001 214.364 230.579   

F4 35.781 4.164 0.539 8.593 <0.001 26.361 45.201 0.741 1.350 
F20 38.207 3.730 0.576 10.242 <0.001 29.769 46.646 0.923 1.083 
F2 19.039 4.164 0.287 4.572 0.001 9.619 28.459 0.741 1.350 
F17 14.007 3.730 0.211 3.755 0.005 5.569 22.446 0.923 1.083 

a Dependent Variable: EC. 

 
Figure 4. Normal P–P plot of the regression standardized residuals for the dependent variable EC 
(IBM SPSS v0.29). 

In Table 13, the optimal setting recommendations—in conjunction with the results of 
Figure 3—are summarized in terms of the four leading recommended modifications: (1) 
the thermal insulation of the roof, (2) the gas-sourced heating systems, (3) the automatic 
control category type ‘A’, and (4) the thermal insulation of the walls. The remaining 20 
weaker factors may be adjusted by also considering practical/economic implications, or left 
at their original conditions. A complete final profiled-factor solution is shown in Table 13. 
At this point, it is worthwhile to assess the results by comparing the ‘before and after’ ben-
efits that may be realized from this rudimentary study. The original (certifiable) energy con-
sumption performance, as it was computed by the TEE KENAK 1.31.1.19 software program, 
was found to be 133.8 kWh/m2 (energy status ‘C’), and was to be contrasted against a refer-
ence building estimation of 129.2 kWh/m2. After completing the screening/optimization 

Figure 4. Normal P–P plot of the regression standardized residuals for the dependent variable EC
(IBM SPSS v0.29).

Table 12. Stepwise-regression model summary coefficients and collinearity statistics (IBM SPSS v.29)
for the statistically active controlling factors.

Model a
Unstandardized Coefficients Standardized Coefficients

t Sig.
95.0% Confidence Interval for B Collinearity Statistics

B Std. Error Beta Lower Bound Upper Bound Tolerance VIF
(Constant) 222.471 12.107 18.375 <0.001 196.092 248.8511 F4 51.400 12.107 0.775 4.245 0.001 25.021 77.779 1.000 1.000
(Constant) 222.471 6.674 33.332 <0.001 207.781 237.162

F4 46.258 6.744 0.697 6.860 <0.001 31.416 61.101 0.980 1.0212
F20 35.992 6.744 0.543 5.337 <0.001 21.149 50.834 0.980 1.021

(Constant) 222.471 5.447 40.842 <0.001 210.335 234.608
F4 39.014 6.192 0.588 6.300 <0.001 25.217 52.811 0.774 1.292

F20 39.285 5.653 0.592 6.950 <0.001 26.690 51.880 0.929 1.0773
F2 15.806 6.192 0.238 2.553 0.029 2.009 29.603 0.774 1.292

(Constant) 222.471 3.584 62.074 <0.001 214.364 230.579
F4 35.781 4.164 0.539 8.593 <0.001 26.361 45.201 0.741 1.350

F20 38.207 3.730 0.576 10.242 <0.001 29.769 46.646 0.923 1.083
F2 19.039 4.164 0.287 4.572 0.001 9.619 28.459 0.741 1.350

4

F17 14.007 3.730 0.211 3.755 0.005 5.569 22.446 0.923 1.083

a Dependent Variable: EC.

In Table 13, the optimal setting recommendations—in conjunction with the results of
Figure 3—are summarized in terms of the four leading recommended modifications: (1) the
thermal insulation of the roof, (2) the gas-sourced heating systems, (3) the automatic control
category type ‘A’, and (4) the thermal insulation of the walls. The remaining 20 weaker
factors may be adjusted by also considering practical/economic implications, or left at their
original conditions. A complete final profiled-factor solution is shown in Table 13. At this
point, it is worthwhile to assess the results by comparing the ‘before and after’ benefits that
may be realized from this rudimentary study. The original (certifiable) energy consumption
performance, as it was computed by the TEE KENAK 1.31.1.19 software program, was
found to be 133.8 kWh/m2 (energy status ‘C’), and was to be contrasted against a reference
building estimation of 129.2 kWh/m2. After completing the screening/optimization work,
the recommended factorial settings from Table 13 were input to the TEE KENAK 1.31.1.19
software program to confirm any accruing energy savings. The improved solution delivered
an energy consumption projection of 110.4 kWh/m2 (energy status ‘B’) for the apartment,
which was to be contrasted against a reference building estimation of 125.9 kWh/m2. This
is an almost 18% reduction in energy consumption, which may be considered satisfactory
given the fact that only a subset of the total available variables in the TEE KENAK 1.31.1.19
software program was actually studied in this paradigm.
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Table 13. Optimal settings for several key controlling factors (Key Settings). Combination solution
for all controlling factors (Full Settings).

Key Settings

Factors Natural Gas Boiler(−) Petroleum
Boiler(−)

Natural Gas
Boiler(+)

Petroleum
Boiler(+)

1 Automation for hot water no yes
2 Category of automatic control A D
3 Number of ceiling fans 0 5
4 Energy source for heating systems gas petroleum
5 Efficiency of power generation of heating systems 0.977 0.9 0.955 0.84
6 Passage of distribution network of heating systems externally internally
7 Efficiency of terminal units of heating systems 0.89 0.93
8 Type of cooling systems Air-cooled Water-cooled
9 Power of cooling systems (KW) 6 9

10 Efficiency of power generation of cooling systems (EER) 2.5 5.3
11 Efficiency of terminal units of cooling systems 0.9 0.96
12 Recirculation of distribution network (yes or no) yes no
13 Efficiency of domestic hot water storage system 1 0.98 0.98 0.93
14 Type of solar panels Simple Vacuum
15 Surface area of solar panels 2 4
16 Utilization rate of solar radiation for domestic hot water 0.344 0.38
17 Thermal insulation of walls yes no
18 Installation of awnings yes no
19 Presence of shutters yes no
20 Thermal insulation of roof yes no
21 Type of window’s frame wooden metallic
22 Air gap between glasses 6 mm 12 mm
23 Percentage of window frame 30% 20%
24 Type of exit door Thermal Insulation No insulation

Full Settings
1 2 3 4 5 6 7 8 9 10 11 12
- - - - - + + + - + + +

13 14 15 16 17 18 19 20 21 22 23 24
+ + - + - - + - + + + +

4. Discussion

Supersaturated datasecorrelation coefficients and their respective ts require probing
by a multitude of statistical techniques. The partial least squares (PLS) method is an
alternative approach that might offer additional information about the validity of the
factorial screening results, which were obtained in the preceding section. The proportion of
the explained variance, using a maximum of five latent variables, is shown in Table 14 (IBM
SPSS v.29). The output solution in Table 15 (IBM SPSS v.29) lists the factorial coefficients
and their corresponding variable importance in the projection using the five latent factors.
A practical roundup cut includes the candidate controlling factors F2, F3, F4, F5, F17, F20,
and F22. In this profiling, only the solution factor members that were suggested in the
Results section are considered.

Table 14. The proportion of the explained variance for the supersaturated dataset using the PLS method.

X Variance Cumulative X Variance Y Variance Cumulative Y Variance (R2) Adjusted R2

1 0.081 0.081 0.984 0.984 0.983
2 0.063 0.144 0.014 0.998 0.998
3 0.083 0.227 0.001 1.000 0.999
4 0.074 0.301 0.000 1.000 1.000
5 0.033 0.333 4.570 × 10−5 1.000 1.000

Using the stepwise elimination option of PLS, the ANOVA treatment diagnostics
(IBM SPSS v.29) reaffirm the high confidence to the previously recommended four-factor
model (Table 16). To further study the possible inclusion of additional contributions, the
Mallows’s Cp metric is utilized to reassess the linear regression results using the best subsets
approach (R-packages ‘leaps()’ (v.3.1) and ‘StepReg()’ (v.1.4.4)). The suggested solution
(F2, F4, F17, F22) achieves an adjusted R2 value of 96.2% and a corresponding Cp value
of 28.1. Adding as many as five extra regressors (F5, F7, F11, F21, and F22) via the best
subsetting approach increases the adjusted R2 to a value of 98.9% and, thus, substantially
reduces the corresponding Cp value to 10.3. However, a 99% confidence interval estimation
for the adjusted R2 in the original solution also includes the latter prediction. It is inferred
that the small supersaturated dataset may not allow for discerning the need for additional
predictors by relying only on the Cp criterion.
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Table 15. The factorial coefficients and the variable importance (latent factors) in the projection for
the supersaturated dataset using the PLS method.

Controlling Factors Latent Factors *
PLS Coefficients 1 2 3 4 5

F1 3.208 0.268 0.270 0.270 0.271 0.271
F2 12.227 1.443 1.436 1.436 1.436 1.436
F3 13.633 1.315 1.308 1.307 1.307 1.307
F4 26.549 2.756 2.738 2.736 2.736 2.735
F5 12.178 1.174 1.170 1.169 1.169 1.169
F6 −1.606 0.312 0.313 0.317 0.318 0.318
F7 −7.509 0.673 0.669 0.669 0.670 0.670
F8 −4.134 0.303 0.324 0.324 0.324 0.324
F9 0.856 0.280 0.312 0.313 0.313 0.313
F10 −1.585 0.072 0.102 0.137 0.145 0.145
F11 −6.211 0.437 0.452 0.454 0.454 0.454
F12 0.563 0.352 0.469 0.470 0.470 0.470
F13 0.491 0.057 0.095 0.098 0.107 0.107
F14 −3.333 0.128 0.188 0.192 0.193 0.193
F15 4.502 0.623 0.636 0.636 0.636 0.636
F16 0.491 0.057 0.095 0.098 0.107 0.107
F17 10.085 1.172 1.164 1.166 1.167 1.167
F18 3.653 0.427 0.427 0.428 0.428 0.428
F19 −2.059 0.312 0.313 0.313 0.313 0.313
F20 25.524 2.284 2.281 2.280 2.280 2.280
F21 −7.199 0.961 0.968 0.967 0.967 0.967
F22 −13.994 1.312 1.306 1.306 1.305 1.305
F23 −3.650 0.308 0.308 0.307 0.308 0.308
F24 −1.843 0.281 0.284 0.284 0.284 0.284

* Cumulative Variable Importance.

Table 16. ANOVA results for the stepwise PLS treatment of the supersaturated dataset.

Model a Sum of Squares df Mean Square F Sig.
Regression 36,987.440 1 36,987.440 18.024 0.001 b

Residual 24,625.969 12 2052.1641
Total 61,613.409 13

Regression 54,752.927 2 27,376.463 43.895 <0.001 c

Residual 6860.482 11 623.6802
Total 61,613.409 13

Regression 57,459.467 3 19,153.156 46.108 <0.001 d

Residual 41,53.941 10 415.3943
Total 61,613.409 13

Regression 59,994.975 4 14,998.744 83.407 <0.001 e

Residual 1618.433 9 179.8264
Total 61,613.409 13

a Dependent Variable: EC; b Predictors: (Constant), F4; c Predictors: (Constant), F4, F20; d Predictors: (Constant),
F4, F20, F2; e Predictors: (Constant), F4, F20, F2, F17.

A convenient way to filter out the weak effects is to exploit the limiting dichotomous
nature of the supersaturated dataset and the advantageously large number of the studied
predictor variables. Consequently, essential information about the behavior of the energy
consumption response may be synopsized by at least four statistical descriptive measures
including the data location, dispersion, skewness, and flatness. The four respective sta-
tistical estimators, the median (M), the interquartile range (I), the skewness (S), and the
kurtosis (K), re-organized the collected supersaturated dataset in terms of 48 individual
factor levels. The summarized supersaturated EC dataset is listed in Table 17 (IBM SPSS
v.29) in a data-reduced form and tabulated per each individual factor level. Before ad-
vancing the information generation process, the extent of potential correlations among the
four summary estimators should be assessed. From Table 18, it can be observed that the
two-variable correlation estimations, according to the Spearman’s ρ coefficient, returned
three statistically significant outcomes (p < 0.001), in three out of the six possible pairings.
The three detected estimator relationships were between: (1) the median and the skewness,
(2) the interquartile range and the kurtosis, and (3) the skewness and the kurtosis. However,
the magnitudes of the coefficients for the median–skewness and skewness–kurtosis pairs
may not be considered strong. It is noteworthy that the resulting correlation between the
median–kurtosis estimator pair does not show up as significant. For data processing pur-
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poses, it is assumed that there exists a mediocre correlation between the median–skewness
and the skewness–kurtosis estimator relationships. Thus, both are retained in the succeed-
ing data analysis steps. The interquartile range–kurtosis estimator pair may be rated close
to strong, whereas the lower magnitude of its correlation coefficient does not also exclude
a mediocre rating (|ρ| = 0.549). Therefore, the interquartile range is maintained in the
analysis as well.

At this stage, an unsupervised screening approach is employed to cluster all individual
factor levels by their grouping tendency to enter different memberships. To initiate the
clustering process, the optimal cluster number is sought by computing the goodness of the
clustering measure, the gap statistic (function ‘clusGap()’ in R-package ‘cluster()’ v.2.1.2);
the ‘firstSEmax’ method is selected to evaluate the partitioning around the medoids (‘pam’)
by generating 1000 simulated reference sets. From Figure 5, the optimal cluster number is
found to be two. This outcome is also affirmed by the direct auto-clustering result (IBM
SPSS v.29), which utilizes the Schwarz’s Bayesian Criterion (BIC) to locate the optimal
change point of the measure (Table 19). From Figure 6, the cluster quality due to cohesion
and separation is rated as ‘Fair’, according to the Silhouette measure evaluation (IBM SPSS
v.29). Using hierarchical cluster analysis, the obtained identification cluster membership
predictions are now tabulated in the right-hand side of Table 17.
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Table 17. Summary statistics of the supersaturated dataset (median (M), interquartile range (I),
skewness (S), kurtosis (K)) per factorial setting, and their hierarchical cluster identification.

Factor Level M I S K Cluster ID
F1 1 227.3 111.0 0.11 −1.06 1

2 252.1 176.3 −0.81 −0.95 1
F2 1 194.0 152.9 0.15 −1.48 1

2 252.1 61.9 −0.95 2.04 2
F3 1 227.3 141.4 −0.19 −1.71 1

2 252.1 105.8 −0.67 −0.04 1
F4 1 157.6 111.6 0.35 −1.38 1

2 268.6 52.0 0.19 −1.02 2
F5 1 194.0 107.2 0.12 −1.59 1

2 257.1 72.5 −1.36 2.59 2
F6 1 230.1 63.1 −0.57 1.59 2

2 247.8 147.1 −0.36 −2.03 1
F7 1 230.1 98.0 −0.48 −0.26 1

2 247.8 152.9 −0.15 −1.74 1
F8 1 257.1 134.4 −0.52 −1.01 1

2 230.1 107.2 −0.67 −0.44 1
F9 1 227.3 99.5 −0.14 −1.31 1

2 252.1 184.1 −0.72 −1.12 1
F10 1 230.1 142.2 −0.11 −1.03 1

2 252.1 123.7 −1.01 −0.43 1
F11 1 247.8 154.9 −0.55 −0.91 1

2 230.1 111.0 −0.64 −0.55 1
F12 1 252.1 147.1 −0.86 −0.88 1

2 227.3 99.5 −0.17 −0.04 1
F13 1 230.1 111.0 0.24 −0.76 1

2 252.1 176.3 −0.84 −1.09 1
F14 1 252.1 154.9 −0.30 −2.11 1

2 230.1 63.1 −1.61 2.72 2
F15 1 227.3 107.2 0.00 0.00 1

2 257.1 134.4 −1.07 −0.32 1
F16 1 230.1 111.0 0.24 −0.76 1

2 252.1 176.3 −0.84 −1.09 1
F17 1 194.0 176.3 0.35 −1.55 1

2 252.1 41.3 −1.27 2.74 2
F18 1 247.8 112.2 −0.59 −0.86 1

2 230.1 134.4 −0.51 −0.70 1
F19 1 252.1 142.2 −0.33 −1.20 1

2 230.1 123.7 −0.87 −0.41 1
F20 1 157.6 132.1 0.16 −2.25 1

2 268.6 72.5 −0.46 −0.59 2
F21 1 252.1 98.0 −0.55 −0.56 1

2 227.3 152.9 0.04 −1.69 1
F22 1 247.8 64.7 −0.36 0.88 2

2 194.0 152.9 0.06 −2.07 1
F23 1 247.8 74.6 −1.31 1.86 2

2 230.1 154.9 −0.06 −1.73 1
F24 1 257.1 147.1 −0.41 −1.46 1

2 230.1 94.5 −0.82 0.30 1

Table 18. Spearman’s ρ correlation coefficients and their respective 95% confidence intervals for
median(M), interquartile range (I), skewness (S), and kurtosis (K) of the supersaturated dataset.

Spearman’s ρ Significance(2-tailed) 95% Confidence Intervals (2-tailed) a,b

Lower Upper
M–I −0.054 0.716 −0.341 0.242
M–S −0.579 <0.001 −0.745 −0.346
M–K 0.280 0.054 −0.013 0.529
I–S 0.190 0.195 −0.108 0.457
I–K −0.723 <0.001 −0.838 −0.546
S–K −0.627 <0.001 −0.777 −0.410

a Estimation is based on Fisher’s r-to-z transformation. b Estimation of standard error is based on the formula
proposed by Fieller, Hartley, and Pearson.
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Table 19. Auto-clustering of the summarized supersaturated datasets (Table 17) using the Schwarz’s
Bayesian Criterion (BIC) (IBM SPSS v.29).

Number of Clusters Schwarz’s Bayesian Criterion (BIC) BIC Change a Ratio of BIC Changes b Ratio of Distance Measures c

1 162.043
2 154.178 −7.865 1.000 1.378
3 156.959 2.781 −0.354 1.864
4 172.807 15.849 −2.015 1.365
5 192.696 19.889 −2.529 1.456
6 216.057 23.361 −2.970 2.013
7 243.246 27.189 −3.457 1.072
8 270.690 27.444 −3.489 1.090
9 298.424 27.734 −3.526 1.082

10 326.404 27.980 −3.558 1.355
11 355.168 28.764 −3.657 1.551
12 384.715 29.547 −3.757 1.022
13 414.294 29.578 −3.761 1.074
14 443.968 29.674 −3.773 1.126
15 473.787 29.819 −3.791 1.214

a The changes are from the previous number of clusters in the table. b The ratios of changes are relative to the
change for the two-cluster solution. c The ratios of distance measures are based on the current number of clusters
against the previous number of clusters.

The rationale is that, as long as the two settings for the same controlling factor are
found to belong to the same cluster, then the regressor cannot be further considered as a
viable predictor of the total solution. In other words, an alternative method is attempted to
reduce the initial regressor list of the supersaturated EC dataset. The hierarchical cluster
distribution for the combined four statistical-estimator groupings is shown in Table 20
(IBM SPSS v.29). A total of 81.3% of the members are identified as belonging to cluster
‘1′; hence, there is a clear asymmetry in the factor-level distribution. Such asymmetry has
been elicited owing to the cluster variability in the mean estimation for the interquartile
range, and also for both skewness and kurtosis, based on their mean and their standard
error for their respective mean estimations (Table 20). In Figure 7, the dendrogram for
the hierarchical clustering solution (using median linkage) demonstrates the inherently
complicated configuration display of all 48 factor-levelled EC-response datasets. To ensure
that the dichotomizing of all four summarizing estimators is meaningful, in Figure 8, the
distribution of the datapoints for the median, interquartile range, skewness, and kurtosis
is contrasted with their clustered memberships. Further, the comparison application
outcomes of the Mann–Whitney test aid in inferring that the cluster separations, for all four
estimators, are statistically significant at least on the typical 0.05 level.

Table 20. Hierarchical clustering and combined statistics for the four individual summarizing
estimators (IBM SPSS v.29) from Table 17.

HIERARCHICAL M I S K
N 39 39 39 39

Mean 231.782 133.336 −0.3441 −1.03261
Std. Error of Mean 4.0194 4.1793 0.06563 0.10261

N 9 9 9 9
Mean 250.478 62.856 −0.8556 1.42332

Std. Error of Mean 4.6410 3.5568 0.19677 0.46687
N 48 48 48 48

Mean 235.288 120.121 −0.4400 −0.5721Total
Std. Error of Mean 3.5261 5.2895 0.07009 0.18282
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Accordingly, returning to Table 17, the reduced list of the nominated controlling
factors, in this instance, includes F2, F4, F5, F6, F14, F17, F20, F22, and F23. Repeating the
stepwise selection process on this group of regressors, the resultant factorial profile appears
identical to the regression solution which was obtained in the previous section, i.e., F2, F4,
F17, and F20.

Finally, to examine the preponderance of the leading controlling factors from a non-
parametric viewpoint, an entropic approach is implemented. A convenient way to achieve
this is to evaluate, for all individual controlling factors, the joint distribution of their paired
settings. Due to the small number of data points that needs to be accommodated by a larger
factorial base, the continuous EC dataset was discretized each time to reflect the response
data that corresponded to each factorial setting. To render a common bin number for all
computations, the Freedman–Diaconis formula [106] was used, i.e., # of bins = rangeEC/h
with h = 2·IQR/ 3

√
n (IQR = interquartile range, n = number of EC response entries). In-

putting the values of rangeEC = 215.8 kWh/m2, IQR = 99.03 kWh/m2, and n = 14, the
number of common bins was computed to be approximately three. Next, the synchronous
two-setting discretization was conducted using the function ‘discretize2d()’ (R-package
‘entropy()’ (v.1.3.1)). Then, the empirical (Shannon) mutual information of the setting
pairs was computed using the function ‘mi.empirical()’ (R-package ‘entropy’ (v.1.3.1)).
The two controlling factors with the two lower mutual information estimations between
settings, along with their lower-setting optimal shrinkage intensity estimations (function
‘entropy.shrink()’ from the R-package ‘entropy’ (v.1.3.1)), were found to be: (1) F20 (0.08
nats) with optimal shrinkage intensity lowered at 0.263 at the second level, and (2) F4 (0.202
nats) with optimal shrinkage intensity lowered at 0.263 at the second level.

5. Conclusions

The Renovation Wave for Europe is a great campaign under the European Green Deal
which aims to effectuate the energy consumption and gas emission reduction of millions
of older residential buildings in Europe. However, the energy performance improvement
effort would be attained one apartment unit at a time. This complication might be remedied
by adopting the mass customization philosophy that has been successfully espoused for
several decades in industrial engineering. Consequently, a lean and green datacentric
approach was attempted to carry out such a gradual improvement process, borrowing
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ideas and techniques from the Green Lean Six Sigma toolbox that is implemented to model
and solve manufacturing problems. Therefore, the problem of examining the energy con-
sumption reduction due to a candidate group of controlling factors was easily organized
into a mini dataset with the aid of a supersaturated trial planner. The resulting empirical
model is conveniently formulated, and the ensuing data analysis becomes manageable to
expediently complete. The practicality of reaching a quick result is advantageous to an en-
ergy engineer. The proposed methodology demonstrated its responsiveness aspect toward
attaining the goal of obtaining a solution quickly. The case study was a real-life standalone
apartment unit that actually underwent a green certification process. By programming
only 14 specific supersaturated recipe combinations for as many as 24 controlling factors,
each factor was adjusted at two selected settings. The profiling relied on the variability
potential that a factor carried to influence the energy consumption of the apartment unit.
The novelty of this work is owed to the fact that it was the first time that shell properties
and electromechanical system modifications were allowed to enter the empirical modelling
effort. It is noted that it is a great advantage to prioritize the influence of the examined
controlling factors on the standardized energy consumption ratings for two reasons. First,
the generated dataset is trustworthy because it is based on derived estimations from a
parametrized Energy Performance Certification database which is considered officially
validated on a national level. Secondly, The Energy Performance Certification software
platform (TEE-KENAK) generates actual and reference energy consumption ratings on
the year-round performances of: (1) the original apartment unit and (2) on the apartment
unit’s modifications.

An assortment of main effects plots, best-subsets partial least squares, and entropic
(Shannon) mutual information predictions formed the profiler engine of the proposed
methodology. The statistical filtering of the proposed apartment shell properties and
its electromechanical system modifications identified four strong effects: (1) the thermal
insulation of the roof, (2) the gas-sourced heating systems, (3) the automatic control category
type ‘A’, and (4) the thermal insulation of the walls. The prediction for the optimal energy
consumption corresponds to 110.4 kWh/m2 (energy status ‘B’) for the apartment. It
accounts for an almost 20% reduction in energy consumption. Moreover, the ‘greener’ status
rating has improved from the original ‘C’ status. Future work could involve forecasting the
costs of apartment unit renovations and optimized predictions that combine economical
and technical parameters, as well as occupant usage trends.
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