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Abstract: In this study, we investigated the effects of different hydrogen bond types on the pho-
tophysical properties of diethylamino hydroxybenzoyl hexyl benzoate (DHHB) by systematically
exploring the changes in the spectral properties of DHHB in protic and aprotic solvents. The for-
mation and stability of hydrogen bonds were also studied, demonstrating that the system mainly
existed in the form of intramolecular hydrogen bonds at low concentrations (≤5 µg/mL). In these
circumstances, the fluorescent intensity, and molar absorption coefficient changed little, indicating
that the intramolecular hydrogen bonds had little effect on the spectral properties of DHHB. With an
increase in concentration, the number of intermolecular hydrogen bonds increased and the molar
absorption coefficient significantly increased, indicating that the intermolecular hydrogen bonds were
conducive to improving the UV absorption properties of DHHB. With an increase in temperature, the
molar absorption coefficient of the system decreased, which reduced the UV absorption performance
of DHHB. In the protic solvent, the system also contained DHHB–solvent intermolecular hydrogen
bonds. With an increase in the proportion of protic solvent in the system, the fluorescent intensity of
the system significantly decreased, and the UV integral area significantly increased, indicating that
the hydrogen bond between DHHB and the solvent molecules was beneficial in terms of improving
the UV absorption performance of DHHB.

Keywords: molecular hydrogen bonding; energy transfer; thermal motion; UV absorption properties

1. Introduction

Diethylamino hydroxybenzoyl hexyl benzoate (DHHB) is a relatively new oil-
soluble chemical sunscreen. It has a sunscreen band between 320 and 400 nm, including
the entire UVA band. Due to its molecular structure being a conjugated aromatic com-
pound containing a carbonyl group, DHHB is excited from a ground state (n) to a higher
energy state (π*). As shown in Figure 1, ∆En and ∆Ep are expressed as the transition
energy difference of a non-polar solvent and polar solvent, respectively. During the π–π*
transition, the energy emitted is lower than the energy absorbed by the excited state at
the beginning when the excited molecule returns to the ground state. This part of the
energy is emitted in the form of long-wave radiation [1]. It absorbs harmful short-wave
high-energy UV rays and converts the stored energy into harmless longer-wave low-
energy radiation [2,3], thus playing a role in sun protection. Compared with avobenzone
and other traditional high-performance UVA sunscreens, DHHB molecules contain only
one C=O double bond between two benzene rings. There is no photodegradation caused
by an isomerization reaction, which greatly improves photostability [4,5]. Good UV
absorption, excellent light stability, and safety and environmental friendliness in water
render DHHB irreplaceable in the field of sunscreen. The question of how to improve its
performance has attracted the attention of many researchers in the field of cosmetics. It

Processes 2023, 11, 2077. https://doi.org/10.3390/pr11072077 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11072077
https://doi.org/10.3390/pr11072077
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-4247-9692
https://doi.org/10.3390/pr11072077
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11072077?type=check_update&version=1


Processes 2023, 11, 2077 2 of 14

is essential to explore the hydrogen bond state of molecules in sunscreen as this has a
guiding significance for improvements in the UV absorption performance of sunscreen
containing carbonyl-conjugated aromatic ring structures.
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As a special interaction force between atoms, hydrogen bonds play an important role
in supramolecular chemistry, molecular recognition, photophysical chemistry, material
chemistry, and catalysis [6–10]. The formation of hydrogen bonds is closely related to
molecular polarity [11,12] and structure [13]. Hydrogen bonds are generally divided into
intramolecular hydrogen bonds and intermolecular hydrogen bonds. Relevant studies
have elaborated on the formation mechanisms of hydrogen bonds in specific compound
systems. Shimada et al. [14] measured the fluorescence lifetime and quantum yield of
2′-aminophenophenone derivatives using fluorescence spectroscopy and ultraviolet ab-
sorption spectroscopy; they then studied the effects of hydrogen bond formation on the
fluorescence lifetime and quantum yield. The results showed that the fluorescence life-
time and quantum yield of 2′-aminoacetophenone, 2′-(methylamino)acetophenone, and
2′-(dimethylamino)acetophenone were significantly reduced in protic solvents. The higher
the hydrogen bond strength, the more significant the fluorescence quenching. This indi-
cated that the intermolecular hydrogen bond interaction was the reason for the decrease in
the fluorescence lifetime. The calculation results of the internal conversion of the photo-
quantum yield showed that the internal conversion of the protic solvent was significantly
lower than that of the aprotic solvent, indicating that the excited-state intramolecular
proton transfer reaction caused the hydrogen bond formation. Mori et al. [15] used a
quantum mechanics/molecular mechanics and molecular dynamics (MD) simulation and
nuclear magnetic resonance spectroscopy to study the effect of polar solvents on the hy-
drogen bond strength of zwitterionic hydrogen phthalate derivatives. Trajectory analysis
of a methanol solution showed that the H protons tended to be close to carboxylic acid
groups that formed fewer intermolecular hydrogen bonds, indicating that the formation of
intermolecular hydrogen bonds was triggered by intramolecular proton transfer.

The mechanism of molecular hydrogen bond formation has been widely studied,
but there are few research works on the influencing factors of hydrogen bond formation,
such as temperature and concentration. In the existing literature, the characterization of
hydrogen bonds has mostly been achieved using Raman spectroscopy and infrared spec-
troscopy. Srivastava et al. [16] simulated the effect of self-association and inter-molecular
hydrogen bonds on the stretching patterns of acetonitrile and propionitrile in methanol
using Raman spectroscopy and density functional theory. The outcomes demonstrated
that a greater number of hydrogen bond complexes and dimers could form as the concen-
tration of acetonitrile and propionitrile increased. Schroeder et al. [17] used an infrared
thermal analysis technique to measure the hydrogen bond dissociation enthalpy of various
polyamides at various temperatures to study how temperature affected the formation of
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hydrogen bonds in polyamides. The results demonstrated that when the temperature rose,
the intensity of the hydrogen bonds and bonding absorbance reduced. Using an infrared
thermal analysis technique, Skrovanek et al. [18] investigated the effect of temperature on
the hydrogen bond strength of semi-crystalline nylon PA 11. The findings demonstrated
that, as the temperature increased in the N-H stretching vibration area, the strength of
the hydrogen bond decreased. Due to the low sensitivity of the Raman spectrum and
infrared spectrum in low-concentration systems, the majority of the related research mainly
describes the hydrogen bond state in high-concentration systems through the stretching
vibration intensity of the hydrogen bonds in these spectra. It is difficult to research the
molecular hydrogen bond state of low-concentration systems.

Unlike intramolecular hydrogen bonds, the formation of intermolecular hydrogen
bonds is closely related to the chemical environment. Intermolecular hydrogen bonds
are the result of intermolecular energy transfer and are inseparable from the molecular
concentration. An insufficient concentration leads to excessive molecular spacing and low
energy transfer efficiency between molecules. This affects the formation of intermolecular
hydrogen bonds. The stability of hydrogen bonds [19] is related to thermal motion. When
the energy of the thermal motion of solvent molecules is higher than the binding energy
of hydrogen bonds, the relative force of the hydrogen bonds decreases due to molecular
collision, thus reducing the stability of hydrogen bonds. When the molecular concentration
is high and there are enough molecules, the intermolecular hydrogen bonding force is
enhanced. This is enough to resist the energy generated by the thermal motion of the
solvent molecules. It is less affected by the thermal motion; therefore, additional hydrogen
bonds can be generated. A low-concentration system detects fine changes in the inter-
molecular interaction force with greater sensitivity. This is of significance to investigations
into the formation conditions of intermolecular hydrogen bonds. Our previous research
observed that the detection sensitivity of ultraviolet spectroscopy and fluorescence spec-
troscopy in a low-concentration system was higher than that of Raman spectroscopy and
infrared spectroscopy, proving their superiority for the study of molecular hydrogen bond
states in low-concentration systems. The molar absorption coefficient in the ultraviolet
spectrum—the characteristic constant of the tested substance—could also be used to char-
acterize the influence of molecular hydrogen bonds on the structure, thus supplementing
the study of hydrogen bond states in low-concentration systems.

Although it has been speculated that the UV absorption property of DHHB may
change with changes in the structure of hydrogen bonds, there are few relevant studies on
this topic, and the specific influencing factors and mechanisms remain unclear. In this study,
we used ultraviolet absorption spectroscopy and fluorescence spectroscopy to investigate
the effects of three protic and two aprotic solvents on the hydrogen bond formation state of
DHHB and explored the formation conditions of hydrogen bonds in this system. Based
on Förster’s energy transfer theory, the influence of the intermolecular energy transfer
distance on the hydrogen bonding force of a low-concentration system was investigated.
The effect of molecular thermal motion on the stability of molecular hydrogen bonds at
different temperatures was investigated using the Gibbs free energy law.

2. Materials and Methods
2.1. Experimental Materials and Instruments
2.1.1. Materials

We used methanol (Merck, Darmstadt, Germany; 99.9% purity), anhydrous ethanol
(Merck; 99.9% purity), isopropyl alcohol (Fisher, Hampton, NH, USA; 99.9% purity), carbon
tetrachloride (Sigma-Aldrich, St. Louis, MO, USA; 99.5% purity), n-hexane (Merck; ≥99.7%
purity), and diethylamino hydroxybenzoyl hexyl benzoate (BASF CHINA LIMITED, Shanghai,
China; 99% purity).
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2.1.2. Instruments

We used an ultraviolet spectrophotometer (Shimadzu Instrument Company of Japan,
Kyoto, Japan; UV-1800) and a fluorescence spectrophotometer (Shimadzu Instrument
Company of Japan, Kyoto, Japan; RF-5301PC).

2.2. Experimental Methods
2.2.1. Preparation of the DHHB Solution

(1) DHHB solutions were prepared with different solvents (n-hexane, carbon tetrachlo-
ride, methanol, ethanol, and isopropyl alcohol) at a fixed concentration of 5 µg/mL.

(2) Different concentrations of DHHB–carbon tetrachloride solutions and DHHB–methanol
solutions were prepared.

2.2.2. Ultraviolet Absorption Spectrum Test

A UV spectrophotometer was used to measure the absorbance at a scanning wave-
length range of 290 nm to 450 nm and at room temperature (25 ◦C). According to the
different concentrations of DHHB, cuvettes with different optical paths were selected,
including 5 cm (0.1–0.5 µg/mL), 1 cm (1–10 µg/mL), 0.1 cm (30–100 µg/mL), and 0.015 cm
(300–1000 µg/mL). A cuvette with an optical path of 0.015 cm was obtained by cutting a
glass sheet with a thickness of 0.085 cm and placing it in a cuvette with an optical path of
0.1 cm.

2.2.3. Calculation of the Molar Absorption Coefficient

The molar absorption coefficient is the ability of 1 mol of the material structure to
absorb ultraviolet light. Its value changes with the molecular structure. According to the
ultraviolet spectrum test, we used the following formula to calculate the molar absorption
coefficient (ε):

ε = A/CL (1)

where A is the absorbance of the maximum absorption wavelength λmax, C is the molar
concentration in mol/L, L is the thickness of the liquid layer in cm, and ε is the molar
absorption coefficient in L/(mol·cm).

2.2.4. Fluorescence Spectrum Measurement

A fluorescence spectrophotometer was used to set the excitation slit and emission slit
of the fluorescence spectrophotometer to 5 nm. The excitation wavelength was 377 nm, the
emission wavelength was 377 nm, the scanning step size was 1 nm, and the scanning range
was 390 nm~550 nm. Fluorescence scanning was performed on a solution pre-pared as per
Section 2.2.1 at a temperature of 25 ◦C.

3. Results
3.1. Effects of Different Solvents on the Spectral Properties of DHHB

The photophysical properties of DHHB are related to whether it can form hydrogen
bonds with solvents and the formed type of hydrogen bonds. As shown in Figure 2,
the following three types of hydrogen bonds formed in the DHHB solution system: in-
tramolecular hydrogen bonds of DHHB (Figure 2a), intermolecular hydrogen bonds of
DHHB (Figure 2b), and intermolecular hydrogen bonds between DHHB and the solvent
(Figure 2c). To explore the influence of the solvent effect of the hydrogen bond on DHHB,
the concentration of DHHB was fixed at 5 µg/mL, and the aprotic solvents n-hexane and
carbon tetrachloride were selected as aprotic solvent representatives. Their dielectric con-
stants were 1.58 and 2.24, respectively. Methanol, ethanol, and isopropyl alcohol were
selected as protic solvent representatives; their dielectric constants were 33.6, 24.3, and
19.92, respectively. The UV absorption spectra and fluorescence spectra were determined.
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According to our theoretical analysis, the hydrogen bond state of the DHHB molecules
in aprotic solvents (n-hexane and carbon tetrachloride) was dominated by a DHHB in-
tramolecular hydrogen bond (Figure 2a) and an intermolecular hydrogen bond (Figure 2b).
Methanol, ethanol, and isopropanol were the protic solvents; their polarity and capacity
to form hydrogen bonds decreased in order. The solvents could both accept and supply
protons to form hydrogen bonds (Figure 2c). Therefore, all three types of hydrogen bonds
existed. As shown in Figure 3, the maximum absorption wavelengths (λmax) of DHHB
were 344 nm and 348 nm in n-hexane and carbon tetrachloride, respectively; λmax red-
shifted to 353 nm~356 nm in methanol, ethanol, and isopropanol, and the absorbance
significantly increased. This phenomenon may have been a result of the formation of the
P-π conjugation effect, which reduces the energy required for electrons to transition from a
ground state to an excited state.

Related research [14] has shown that the formation of intermolecular hydrogen bonds
in protic solvents leads to fluorescence bursts. As the ability to form hydrogen bonds
increased, the quenching was more pronounced. Therefore, the fluorescence spectra of
DHHB in different solvents were determined. As shown in Figure 4, the fluorescent
intensity of the sample in protic solvents was lower than that in aprotic solvents. The
fluorescent intensity of the DHHB molecule in carbon tetrachloride was 178; it decreased
to 53, 51, and 40 in isopropanol, ethanol, and methanol, respectively. This indicated
that the DHHB molecule underwent fluorescence quenching in the protic solvents and
that the degree of quenching increased in turn. We speculated that the formation of
molecular hydrogen bonds in protic solvents caused the excited-state molecules to release
lower energy through intermolecular interactions and energy conversion, resulting in
fluorescence quenching. In this process, due to a reduction in the energy of the excited-state
molecules, the energy required for the electron to transition from the ground state to the
excited state increased. This indicated that the λmax redshift and the intensity increase in
the UV absorption spectra were due to the formation of hydrogen bonds in the structure. A
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weak peak appeared at the shoulder of 460 nm in both n-hexane and carbon tetrachloride.
Due to the low fluorescent intensity in n-hexane, the peak at 460 nm was not obvious;
there was no such peak in the protic solvent. This may have been due to the formation of
intermolecular hydrogen bonds between DHHB and the protic solvent. The 460 nm peak
disappeared as a result of fluorescence quenching.
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3.2. The Factors Influencing DHHB Molecular Hydrogen Bonding in an Aprotic Solvent

The formation of intermolecular hydrogen bonds may be related to the distance
between molecules. The intermolecular distance can be derived from the fluorescence
resonance energy transfer theory [20–23]. This theory states that, in two different fluorescent
groups, if the emission spectrum of one fluorescent group (the donor) overlaps with the
absorption spectrum of the other group (the acceptor), a transfer of fluorescence energy
from the donor to the acceptor should be observed when the distance between these
two fluorescent groups is suitable. After the donor molecule is excited, when the acceptor
is at a certain distance from the donor and the energy difference between the vibrational
energy levels of the ground state and the first electron excited state of the donor and
acceptor adapt to each other, the donor in the excited state transfers part or all of the energy
to the acceptor, causing the acceptor to be excited. In this process, Förster deduced the
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intermolecular distance of energy transfer from the solute concentration of the system, as
shown In Formula (2):

C0L =
3

4πNAR3
0L

(2)

where NA is Avogadr’s constant, 6.022 × 1023; C is the molar concentration, unit mol/L;
and R is the intermolecular distance, Å.

Based on Forste’s energy transfer theory, the intermolecular distances of DHHB at
different concentrations in an aprotic solvent were calculated using Formula (2). The
results are shown in Figure 5. To investigate the influence of molecular spacing on the
hydrogen bond state of DHHB molecules, the UV spectrum was tested by setting different
concentrations of DHHB in the aprotic solvent (carbon tetrachloride); the change in the
molar absorption coefficient was then calculated.
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From Figures 5 and 6, it can be seen that, in the low-concentration range (0.1–10 µg/mL),
although the intermolecular distance of DHHB rapidly decreased from 116 Å to 25 Å, the
molar absorption coefficient only increased from 35,700 to 36,300. This indicated that the
molecular structure change of DHHB was small. This might have been because the number
of DHHB molecules at this concentration range was small and the molecular spacing was
large. Therefore, the probability of a molecular collision was small, leading to the ob-
struction of intermolecular energy transfer. The system was dominated by intramolecular
hydrogen bonds and accompanied by a small number of intermolecular hydrogen bonds.
Due to the thermal motion of the molecules, the intermolecular hydrogen bonds were
unstable, and the molar absorption coefficient did not significantly change. When the
concentration of DHHB was in the range of 10~100 µg/mL, the intermolecular distance
decreased from 25 Å to 12 Å while the molar absorption coefficient rapidly increased
from 36,300 to 45,000; thus, the molecular structure of DHHB significantly changed. We
speculated that, at this concentration range, the intermolecular energy transfer efficiency
increased and that the energy transfer rate accelerated with the shortening of the energy
transfer distance; thus, intermolecular hydrogen bonds gradually formed in the system.
The formation of intermolecular hydrogen bonds enhanced the P-π conjugate effect; there-
fore, the molar absorption coefficient increased while the UV absorption capacity of DHHB
improved. When the concentration of DHHB increased to greater than 100 µg/mL, the
molecular spacing of DHHB decreased to less than 10 Å. The increase in the molar ab-
sorption coefficient slowed, which indicated that the number of intermolecular hydrogen
bonds in the system had gradually reached saturation. Until the concentration of DHHB
reached 700~1000 µg/mL, the molecules existed in the form of a hydrogen bond polymer
association. After the molecules absorbed photons, molecular excitation energy [24] jumped
between the molecules, prolonging the emission time. This resulted in the energy release of
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the excited-state molecules being blocked. Therefore, the UV absorption capacity tended to
be stable.
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To verify the molecular hydrogen bonding state of DHHB at different concentrations,
the changes in the fluorescent intensity of the system at different concentrations were
investigated using fluorescence spectroscopy. As shown in Figure 7, when the concentration
of DHHB increased to 10 µg/mL, the fluorescent intensity changed little. The fluorescent
intensity significantly decreased when the concentration increased; thus, in turn, the degree
of fluorescence quenching increased. When the concentration increased from 700 µg/mL to
1000 µg/mL, the fluorescent intensity decreased to almost zero. This might have been due to
the vibrational relaxation of the fluorescent molecule allowing the molecule to transfer the
energy of the absorbed photons to other molecules, thereby returning it to the ground state
in the form of a non-radiative leap and leading to the occurrence of fluorescence quenching.
When the concentration of molecules was too high, hydrogen-bonded dimers were formed
between molecules, and hydrogen-bonded multimeric conjugates and intermolecular
stacking occurred. This demonstrated that the formation of intermolecular hydrogen
bonds was beneficial to the UV absorbance of DHHB. The formation of multimers did not
significantly contribute.
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Similar to concentration, temperature is also an important factor affecting the stability
of molecular hydrogen bonds. Under the effects of temperature, solvent molecules can
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cause solute molecules to collide due to thermal motion [25] and exchange energy to form
molecular hydrogen bonds. With an increase in the free energy of a system, the kinetic
energy of thermal motion accelerates, damaging the molecular hydrogen bonds. Therefore,
the variations in the molar absorption coefficients at different temperatures for different
concentration systems were investigated.

Figure 8 demonstrates that the molar absorption coefficient of the system decreased
with an increase in temperature at all concentrations. In the low-concentration range
(≤10 µg/mL), an inflection point was observed where the molar absorption coefficient
significantly increased when the concentration and temperature increased. At 4 ◦C, the
molar absorption coefficient of the system began to increase when the concentration was
higher than 3 µg/mL; this may have been due to the formation of intramolecular hydrogen
bonds at this concentration. With an increase in the concentration, the molecular spacing
decreased, the number of intermolecular hydrogen bonds increased, and the molar absorp-
tion coefficient gradually increased. When the temperature was increased to 25 ◦C and
45 ◦C, the inflection points of the molar absorption coefficient increased to 5 µg/mL. When
the temperature was increased to 65 ◦C, the thermal motion significantly increased, further
weakening of the stability of the intermolecular hydrogen bonds; the inflection point in-
creased to 10 µg/mL. At temperatures of 4 ◦C, 25 ◦C, and 45 ◦C, the amplification of the
molar absorption coefficient slowed when the concentration was higher than 100 µg/mL.
When the concentration was increased to 800 µg/mL, the molar absorption coefficient
tended to be stable. This indicated that the DHHB–DHHB intermolecular hydrogen bonds
reached saturation after this concentration and that the molecules were stacked in the form
of multipolymers. This concentration increased to 900 µg/mL when the temperature was
raised to 65 ◦C.
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The reason for this result may have been due to the collision between the thermal motion
solvent molecules and the hydrogen bond. When the thermal motion energy of a solvent
is greater than the hydrogen bond energy, the hydrogen bond instability is broken. After
an increase in temperature, the thermal motion of a system intensifies and the free energy
increases; thus, the number of stable hydrogen bonds in the system reduces [26–29]. When
the temperature rises, the thermal motion of system molecules intensifies; the increase in the
free energy of a system destroys the stability of the hydrogen bond [30].

3.3. The Factors Influencing DHHB Molecular Hydrogen Bonding in a Protic Solvent

To investigate the effect of heterogeneous energy transfer on the intermolecular hydro-
gen bonds of the solvent–DHHB, different concentrations of DHHB–methanol solutions
were prepared. The effect of the molecular hydrogen bond state on the molar absorption
coefficient at different DHHB concentrations was explored using UV spectrophotometry.
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As shown in Figure 9, in the low-concentration range (0.1 µg/mL to 5 µg/mL), the
molar absorption coefficient of the system slowly increased. The increased rate was higher
than that of the DHHB–carbon tetrachloride system. This may have been due to the
formation of intermolecular hydrogen bonds between the methanol and DHHB molecules.
When the concentration of DHHB increased from 5 µg/mL to 100 µg/mL, the molar
absorption coefficient significantly increased. When the concentration of DHHB was greater
than 100 µg/mL, the increase in the molar absorption coefficient slowed until it reached
equilibrium. This result was mainly due to the formation of hydrogen bonds between the
methanol and DHHB molecules in the methanol solvent, which accelerated the saturation
of hydrogen bonds in the system. This indicated that the formation of solvent–DHHB
intermolecular hydrogen bonds could improve the UV absorption of DHHB.
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To investigate the effect of the ratio of solvent–DHHB intermolecular hydrogen bonds
on the UV absorption performance of DHHB, the concentration of DHHB was fixed at
5 µg/mL, and the UV absorption spectra of the system were investigated under different
volume ratios of aprotic solvent (carbon tetrachloride) to protic solvent (methanol). By
calculating the integral area of the UVA band (320~400 nm), the influence of the hydrogen
bond type on the UV absorption performance of DHHB was analyzed.

Figure 10 demonstrates that, as the volume fraction of methanol increased, the max-
imum absorption wavelength of the system shifted to red; thus, in turn, the maximum
absorbance increased. When the volume ratio reached 3:7, the absorbance curves did not
significantly change. With a continual increase in the volume of methanol, a high degree of
overlap occurred. The integrated area of the UVA region significantly increased when the
volume fraction of methanol increased from 0 to 20%, as shown in Figure 11. This might
have been due to the gradual formation of hydrogen bonds between the methanol–DHHB
molecules. With an increase in the volume fraction of methanol, the increase in the inte-
gral area began to slow down. This may have contributed to the number of free DHHB
molecules that could form intermolecular hydrogen bonds with the solvent molecules,
which decreased as the volume of protic solvent increased at a fixed DHHB concentration.
When the volume fraction of methanol was increased to 70%, the integrated area effectively
reached equilibrium; thus, we assumed that the methanol–DHHB intermolecular hydrogen
bonds had reached saturation. This demonstrated that the formation of solvent–DHHB in-
termolecular hydrogen bonds was beneficial to improving the UV absorption performance
of DHHB.
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The change in the hydrogen bond state of the DHHB molecules under different vol-
ume fractions was verified by using fluorescence spectroscopy. As shown in Figure 12, the
fluorescent intensity of the system rapidly decreased from 187 to 87 as the volume fraction
of methanol increased from 0 to 20%. This indicated that the number of solvent–DHHB
intermolecular hydrogen bonds in the system had rapidly increased. When the volume
fraction of methanol increased to 70%, the fluorescent intensity decreased to 49, indicating
that the number of hydrogen bonds between the solvent and DHHB molecules had gradu-
ally reached saturation in this process. When the methanol volume fraction increased, the
fluorescent intensity changed slightly. The experimental results were consistent with the
integrated area results, verifying that the methanol–DHHB molecular hydrogen bond was
beneficial to enhancing the UV absorption performance of DHHB.
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4. Conclusions

The effects of molecular hydrogen bonds on the UV absorption properties of DHHB
were investigated by measuring the UV spectra and fluorescence spectra of DHHB in
different protic and aprotic solvents. The effect of the intermolecular energy transfer
distance on the formation of hydrogen bonds at different concentrations was investigated
by measuring the molar absorption coefficient of DHHB at different concentrations in
carbon tetrachloride and methanol solutions. The results demonstrated that, at a low
concentration (≤ 5 µg/mL), the probability of intermolecular collision was small due to
the concentration of the system being diluted enough. The intermolecular distance was
large, thereby reducing the efficiency of intermolecular energy transfer; the system mainly
formed intramolecular hydrogen bonds. The intermolecular hydrogen bonds formed in
the system may have been unstable due to the collision of thermally moving molecules.
As the concentration increased, the number of stable intermolecular hydrogen bonds
increased. The molar absorption coefficient did not significantly increase when increasing
the concentration of DHHB. This indicated that, when the concentration of DHHB increased
to a certain extent, the intermolecular hydrogen bonds reached saturation, prompting the
system to form hydrogen bond dimers and multimolecular associations.

The change in the molar absorption coefficient of DHHB at different temperatures and
different concentrations was investigated. The influence of temperature on the stability
of the hydrogen bond was probably because the energy from the thermal motion of the
solvent molecules was greater than the energy of the hydrogen bond, which caused the
hydrogen bond to break after collision. As the temperature increased, the molecular thermal
motion intensified while the free energy of the system increased, which was not conducive
to the stability of the intermolecular hydrogen bonds. This reduced the UV absorption
performance of DHHB.
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