
Citation: Borisut, P.;

Nuchitprasittichai, A. Adaptive Latin

Hypercube Sampling for a

Surrogate-Based Optimization with

Artificial Neural Network. Processes

2023, 11, 3232. https://doi.org/

10.3390/pr11113232

Academic Editors: Jie Zhang,

Xiao Feng and Minbo Yang

Received: 29 September 2023

Revised: 28 October 2023

Accepted: 9 November 2023

Published: 16 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Adaptive Latin Hypercube Sampling for a Surrogate-Based
Optimization with Artificial Neural Network
Prapatsorn Borisut and Aroonsri Nuchitprasittichai *

School of Chemical Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
prapatsorn.borisut@gmail.com
* Correspondence: aroonsri@sut.ac.th

Abstract: A significant number of sample points are often required for surrogate-based optimization
when utilizing process simulations to cover the entire system space. This necessity is particularly
pronounced in complex simulations or high-dimensional physical experiments, where a large number
of sample points is essential. In this study, we have developed an adaptive Latin hypercube sampling
(LHS) method that generates additional sample points from areas with the highest output deviations
to optimize the required number of samples. The surrogate model used for the optimization problem
is artificial neural networks (ANNs). The standard for measuring solution accuracy is the percent
error of the optimal solution. The outcomes of the proposed algorithm were compared to those
of random sampling for validation. As case studies, we chose three different chemical processes
to illustrate problems of varying complexity and numbers of variables. The findings indicate that
for all case studies, the proposed LHS optimization algorithm required fewer sample points than
random sampling to achieve optimal solutions of similar quality. To extend the application of
this methodology, we recommend further applying it to fields beyond chemical engineering and
higher-dimensional problems.

Keywords: artificial neural network; adaptive Latin hypercube sampling; simulation-based optimization;
process simulation; sequential sampling; design of experiment

1. Introduction

For many engineering problems, simulation is an essential method to understand the
behavior of real systems accurately. In numerous research projects, simulation is employed
to interpret complex models, reducing the time and cost associated with real-world process
operations. A surrogate model, also known as a meta-model, can be created using a
set of input–output data obtained from simulations or experiments. In this context, the
simulation is considered a ‘black box,’ where the functions and underlying assumptions of
the simulation are unknown except for the process output [1].

The popular surrogate model is Response Surface Methodology (RSM), which is
evaluated through the regression of input–output data using low-order polynomials. In
recent years, RSM has been applied in several chemical processes to study the effects of
independent factors [2–8]. It has also been used in treatment processes to improve removal
efficiency and reduce operating costs [2]. However, for complex processes, low-order
polynomials have limitations in capturing highly nonlinear behavior [9]. Generally, RSM
provides local optimization results. Therefore, global surrogate models such as Kriging
interpolation and artificial neural networks (ANNs) have been proposed to overcome these
limitations. Kriging interpolation offers an accurate model that provides better global
approximations compared to low-order polynomial models. It predicts output values at
specific inputs that match the simulated output values [10]. Kriging interpolation fits a
spatial correlation function to a set of input–output pairs, and the data points are used in
linear interpolation [11]. However, it is important to note that this surrogate model may
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have limitations due to available support software. Several surrogate models have been
used in the past years, including artificial neural networks (ANNs), radial basis function
(RBF), and random forest (RF) [12]. ANNs are a powerful tool for various applications,
such as approximating nonlinear systems, process modeling, and optimization [13]. They
can fit many complex nonlinear functions and apply to numerous processes in chemical
engineering [14,15]. ANNs were coupled with another machine learning technique such
as the genetic algorithm [16,17] and simulated annealing [17,18] for application in the
engineering process. ANNs are commonly employed due to their simplicity and ability
to handle challenging nonlinear mappings [19]. These mathematical models have been
used in both laboratory [20,21] and industry [14,22,23]. In 2020, Tahkola et al. developed a
surrogate model for electrical machine torque using grid sampling combined with ANNs,
and the results demonstrated the effectiveness of this sampling approach in modeling
torque behavior [24]. Many studies have shown that ANNs can provide accurate models
for various engineering disciplines [25–30]. Therefore, ANNs were employed to develop
accurate models for the chemical process case studies in this work.

To build a model that describes the relationship of any input and output, the sampling
technique is also required to construct the experiment and points of any responses. In
order to generate the sample points, the design of experiment (DoE) approach is necessary.
Therefore, the study of design of experiment (DoE) is necessary in order to select the
numbers and locations of sample points. The development of modern DoE techniques
can be categorized into two types, which are static and adaptive [31]. Factorial design,
Latin hypercube sampling, the Monte Carlo method and orthogonal array are classified
as static DoEs. Factorial design is widely used due to its simplest form of space-filling
design, which covers most of the considered regions of variables [32,33]. The first modern
design of experiment is Monte Carlo or random sampling, which generates sample points
in the design space using random numbers. This technique requires a large number of
sample points to represent the entire problem space. Subsequently, Quasi-Monte Carlo was
introduced to achieve a uniform distribution of sample points across the design space by
using low-discrepancy sequences. Three popular quasi-random low-discrepancy sequences
are Halton, Hammersley, and Sobol sequences. However, these sampling techniques,
including random sampling, demand a large sample size to achieve a highly accurate
model, which results in high costs and time consumption during real process operations.
Therefore, the proposed Latin hypercube sampling was studied to address these challenges.
Latin hypercube sampling exhibits a beneficial property known as optimum non-collapsing.
However, generating Latin hypercube sample points presents challenges, particularly in
terms of achieving uniform distribution across the design space. Additionally, in high-
dimensional problems, a large number of sample points is needed to adequately cover the
design space.

Therefore, this work introduced adaptive Latin hypercube sampling to employ the
necessary sample points for representing the design space in simulation-based optimization.
The algorithm’s objective is to generate the fewest sample points while achieving the
best feasible optimal solution. The algorithm started with a small number of sample
points from Latin hypercube sampling. Additional sample points were then generated
and sequentially added to an original dataset. Artificial neural networks (ANNs) were
employed as a surrogate model. The optimal results obtained from the proposed algorithm
were compared with those obtained from random sampling. Three chemical processes
were used as case studies to represent problems with varying complexity and numbers of
factors. Three replications of each case study were conducted to assess the consistency of
the method.

This paper is organized as follows: Section 2 provides reviews of Latin hypercube
sampling, random sampling, and artificial neural networks. Section 3 presents the pro-
posed adaptive Latin hypercube sampling for surrogate-based optimization. Section 4
introduces details of three different case studies: (1) ammonia production from syn gas,
(2) methanol production via CO2 hydrogenation, and (3) CO2 capture using the Rectisol pro-
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cess to represent three different types of surrogate-based optimization problems. Section 5
offers results, discussion, recommendations, and future work. Finally, Section 6 presents
the conclusion.

2. Sampling Technique and Surrogate Modeling

This section provides information on sampling techniques and surrogate models.
Section 2.1 describes Latin hypercube sampling, Section 2.2 provides information on ran-
dom sampling, and Section 2.3 describes the artificial neural network.

2.1. Latin Hypercube Sampling

Latin hypercube sampling was first proposed in 1979 by M.D. Mckey et al. [34]. It is a
method for generating samples that cover the entire sample space without any replications.
The technique involves dividing each dimension of the sample space into N equally likely
intervals for N sample points. The fundamental principle of Latin hypercube sampling is to
ensure that each stratum is sampled exactly once, thereby guaranteeing a comprehensive
representation of the entire sample space. For instance, in Latin hypercube sampling (LHS)
involving two factors and ten sample points, the range of each factor, typically from 0
to 1, is partitioned into ten equal intervals. Each sample point is then randomly chosen
from one of these intervals, creating a distinctive and stratified LHS dataset. Each interval
accommodates only one sample point, which is randomly paired with other variables. You
can observe this LHS dataset in Figure 1a.

Processes 2023, 11, x FOR PEER REVIEW 3 of 20 
 

 

methanol production via CO2 hydrogenation, and (3) CO2 capture using the Rectisol pro-
cess to represent three different types of surrogate-based optimization problems. Section 
5 offers results, discussion, recommendations, and future work. Finally, Section 6 presents 
the conclusion. 

2. Sampling Technique and Surrogate Modeling 
This section provides information on sampling techniques and surrogate models. 

Section 2.1 describes Latin hypercube sampling, Section 2.2 provides information on ran-
dom sampling, and Section 2.3 describes the artificial neural network. 

2.1. Latin Hypercube Sampling 
Latin hypercube sampling was first proposed in 1979 by M.D. Mckey et al. [34]. It is 

a method for generating samples that cover the entire sample space without any replica-
tions. The technique involves dividing each dimension of the sample space into N equally 
likely intervals for N sample points. The fundamental principle of Latin hypercube sam-
pling is to ensure that each stratum is sampled exactly once, thereby guaranteeing a com-
prehensive representation of the entire sample space. For instance, in Latin hypercube 
sampling (LHS) involving two factors and ten sample points, the range of each factor, 
typically from 0 to 1, is partitioned into ten equal intervals. Each sample point is then 
randomly chosen from one of these intervals, creating a distinctive and stratified LHS da-
taset. Each interval accommodates only one sample point, which is randomly paired with 
other variables. You can observe this LHS dataset in Figure 1a. 

One advantage of Latin hypercube sampling (LHS) is that by selecting input points 
independently, it ensures that the sampled points are spread across the entire parameter 
space without clustering in any particular region. This reduces the risk of overemphasiz-
ing certain areas of the space, which can occur with other random sampling methods. 
Moreover, LHS ensures that once a point is sampled, it will not be selected again. This 
feature minimizes redundancy in the samples, allowing the system to focus on exploring 
new regions of the parameter space, leading to different output results. The illustration of 
Latin hypercube sampling is shown in Figure 1. However, the worst-case scenario for 
Latin hypercube sampling may result in poorly sampled spaces, as depicted in Figure 1b, 
which may not adequately represent the entire domain space. Therefore, in any field that 
uses Latin hypercube sampling as a sampling technique for optimization problems, it is 
essential to ensure that samples cover the entire parameter space (space filling). 

 
Figure 1. Illustration of Latin hypercube sampling for N = 10 of (a) good filling design and (b) poor 
filling design. 

To address the primary challenge in Latin hypercube sampling, researchers have ex-
plored various criteria to generate well-filling Latin hypercube designs, aiming to enhance 
their performance. Table 1 summarizes the criteria used in Latin hypercube sampling. The 
two most common criteria used in Latin hypercube sampling (LHS) involve maximizing 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 2

x1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 2

x1

(a) (b)

Figure 1. Illustration of Latin hypercube sampling for N = 10 of (a) good filling design and (b) poor
filling design.

One advantage of Latin hypercube sampling (LHS) is that by selecting input points
independently, it ensures that the sampled points are spread across the entire parameter
space without clustering in any particular region. This reduces the risk of overemphasizing
certain areas of the space, which can occur with other random sampling methods. Moreover,
LHS ensures that once a point is sampled, it will not be selected again. This feature
minimizes redundancy in the samples, allowing the system to focus on exploring new
regions of the parameter space, leading to different output results. The illustration of Latin
hypercube sampling is shown in Figure 1. However, the worst-case scenario for Latin
hypercube sampling may result in poorly sampled spaces, as depicted in Figure 1b, which
may not adequately represent the entire domain space. Therefore, in any field that uses
Latin hypercube sampling as a sampling technique for optimization problems, it is essential
to ensure that samples cover the entire parameter space (space filling).

To address the primary challenge in Latin hypercube sampling, researchers have ex-
plored various criteria to generate well-filling Latin hypercube designs, aiming to enhance
their performance. Table 1 summarizes the criteria used in Latin hypercube sampling. The
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two most common criteria used in Latin hypercube sampling (LHS) involve maximizing
the minimum inter-point distance between pairs of sample points and minimizing the cor-
relation between pairs of columns in the sample matrix [35]. By maximizing the minimum
distance, LHS avoids the problem of points clustering in certain regions of the parameter
space. Clustering can lead to bias in estimation and might cause important regions of the
space to be overlooked. By minimizing the correlation between pairs of columns in the LHS
matrix, it ensures that the selected variables or factors are as orthogonal as possible. This
means that the variables are as independent as possible, and each factor has less influence
on the others. This makes it easier to identify the individual impact of each variable on
the system’s output. However, when dealing with a large number of sample points or
when integrating them with the optimization of a specific case study, these algorithms may
require more computational time and become complex.

Table 1. The approach for constructing optimal Latin hypercube sampling.

Algorithm Criteria Pros. Cons.

Simulated annealing [36–38] Maximize the inter-point
distance

Effective for small-size
problems Converge very slowly

Exchange type and
Newton type [39] Maximize entropy Fast to find optimal design for

large-size problems

Columnwise–pairwise [40]
Maximize the inter-point
distance and Maximize
entropy

Retain some orthogonality
and high efficiency for
small designs

Does not significantly
reduce the searching time

Threshold accepting [41] Minimize L2 discrepancy
Can be applied to both
factorial and computer
experiment

Cannot give a good
design for small
dimension

Genetic algorithm [42] Maximize the inter-point
distance

Requires a small amount of
computational time

Enhanced stochastic evolutionary
algorithm [43]

Maximize the inter-point
distance, maximize entropy
and minimize L2 discrepancy

Needs a small number of
exchanges; effective for
large-size problems

Branch-and-bound [44] Maximize the inter-point
distance

Can be used for
non-collapsing designs

Obtain the optimum
design for N < 70

Translational propagation [45] Maximize the inter-point
distance

Obtain near-optimum LHDs
up to medium dimensions

High computational cost
for large number of
sample points

Particle swarm optimization [46,47] Maximize the inter-point
distance

Fast accessibility to reach
solutions

Local search algorithms
become trapped in local
optima

Translational propagation [48]
Maximize the inter-point
distance and minimize L2
discrepancy

Effective in terms of the
computation time and
space-filling and projective
properties

Not good in terms of
performance of
sampling points

Enhanced stochastic evolutionary
algorithm [49]

Maximize the inter-point
distance

Effective for large-size
problems

In order to reduce computational time, the adaptive Latin hypercube with sequential
design is an intriguing choice for case studies involving process simulation. Adaptive
sampling strategies typically begin with a small sample size and then sequentially add
points based on specific criteria. In 2003, Wang proposed an adaptive response surface
methodology model using inherited Latin hypercube sampling points [50]. This sampling
approach involves adding new sample points in underrepresented areas. Subsequently,
in 2018, Chang applied this technique instead of central composite design to calculate the
failure probability of a complex turbine blade structure [51]. The results demonstrated
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the effectiveness of this approach when combined with Gaussian process regression for
structural reliability analysis. Another variation of adaptive Latin hypercube sampling,
which initially identifies the region of interest, was introduced by Roussouly [52]. After
marking the location and sampling the first point, the region is subdivided to add two
more sample points. Finally, two additional sample points are introduced using another
two-point Latin hypercube. This technique offers advantages for reliability analysis by
focusing sampling efforts solely on the areas of interest. Zhi-zhao Liu and colleagues
proposed two general extension algorithms for Latin hypercube sampling: basic general
extension and general extension based on the greedy algorithm [53]. These algorithms
aim to preserve the majority of the original Latin hypercube points. While the general
extension approach can be time consuming, the general extension based on the greedy
algorithm reduces computational time, though it may lead to the removal of some of the
original points. In 2016, a rigorous Latin hypercube sampling method was coupled with a
sophisticated algorithm to ensure the retention of all initial points [54].

2.2. Random Sampling

Monte Carlo or random sampling was the first modern sampling design for computer
experiments, which was proposed by Metropolis and Ulam in 1949 [55]. Random sampling
requires a large number of sample points (N) to achieve a high level of accuracy in surro-
gate modeling. However, this approach consumes more computational time and is time
consuming in terms of data collection. Figure 2 illustrates random sampling.
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Figure 2. Illustration of random sampling for (a) N = 10, (b) N = 100.

2.3. Artificial Neural Networks (ANNs)

Artificial neural networks are mathematical expressions consisting of interconnected
processing units known as neurons. These computer systems mimic the biological neural
networks found in animals. The parameters of the network include weights and biases.
Each neuron operates by using a transfer function. Generally, feedforward neural networks
are widely used for mathematical expressions, forming a directed graph. The primary
structure of artificial neural networks includes an input layer, a hidden layer, and an
output layer.

In this research, a three-layer feedforward neural network was used to train the dataset
due to its mathematical simplicity. Figure 3 illustrates the schematic of the feedforward
neural network with a single hidden layer.
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The training algorithm includes Levenberg–Marquardt, Bayesian regularization, and
scaled conjugate gradient techniques. However, Levenberg–Marquardt requires less time
than the others [56]. The input for the ANNs consists of a dataset of operational and design
parameters, which was generated using the original Latin hypercube sampling. The output
of the ANNs is the predicted cost corresponding to each process. In terms of neural network
hyperparameters in this research, a single hidden layer with eight neurons was employed
in the ANN network. The sigmoid function is used to model the relationship between the
input and the hidden layer. It is smooth and differentiable everywhere, making it suitable
for gradient-based optimization methods such as backpropagation. The smoothness of
activation functions ensures that small changes in weights and biases result in continuous
changes in the output, which is crucial for efficient training. The mathematical equations
corresponding to the weights and biases of ANNs used to estimate the output (y) are shown
in Equations (1) and (2).

y =

(
∑

r
W2r × Lr

)
+ B2 (1)

Lr =
2

1 + e
−2(∑

r
(W1r,k×xk,r)+B1r)

(2)

where k is the number of decision variables, r is the number of neurons in a hidden layer,
and W1 and W2 are input weights of the hidden layer and output layer, respectively. The
parameters B1 and B2 are biases of the input and the output layers, respectively.

3. Methodology

The methodology of this work is divided into three sections. In Section 3.1, we intro-
duce the adaptive Latin hypercube sampling approach for surrogate-based optimization,
which focuses on solving optimization problems using a small set of sample points. The
algorithm’s optimal solutions are validated through outcomes obtained via random sam-
pling. Section 3.2 covers the details of adaptive LHS in the proposed surrogate-based
optimization, while Section 3.3 offers detailed insights into optimization using random
sampling. Adaptive Latin hypercube sampling is a sequential sampling method that in-
creases the number of sample points one by one until it meets the algorithm’s criteria. In
contrast, random sampling is a one-time operation that generates the entire set of sample
points at once without the option to add more. In this work, if the number of sample points
in random sampling cannot adequately represent the entire surface, the algorithm will
generate a new initial dataset with twice the number of sample points as in the previous set.

3.1. Proposed Adaptive LHS for Surrogate-Based Optimization Algorithm

Figure 4 represents the proposed adaptive Latin hypercube sampling for surrogate-
based optimization. At the beginning of the algorithm, ranges of factors that have effects
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on the output value were assigned. Then, the first dataset of xkn (with the desired number
of sample points) was generated using Latin hypercube sampling where k = 1, 2, 3, . . ., K
and n = 1, 2, 3, . . ., N0, (K is number of decision variables, and N is number of sample
points). The initial number of sample points was set at seven times the number of factors.
The corresponding output values, yn, were obtained from process simulation combined
with an economic analysis. The sets of input and output were normalized in the range of
−1 to 1 for ANNs training using MATLAB with a three-layer design (input layer, hidden
layer, and output layer).
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For ANNs training, the Levenberg–Marquardt algorithm was used. The dataset was
split into 70% for training, 15% for validation, and 15% for testing. The criteria used to
determine the accuracy of the ANN model are the mean square error (MSE) [57] and the
R-squared (R2) value. The training loop for ANNs was terminated when the MSE value of
the ANN model remained at a minimum for 5 consecutive iterations, and the R2 value of
the model was greater than or equal to 0.995. The weights and biases of the most recent
ANN model were then used as the objective function for the optimization problem to
determine the optimal solution (xi,opt and ŷopt). The optimal operating conditions (xi,opt)
were then input into the process simulation to obtain the corresponding output value (yopt).
The accuracy of the obtained optimal solution is deemed acceptable if the percent error
between the predicted output value (obtained from the ANN model) and the actual output
value (obtained from process simulation), as shown in Equation (3), is within a preset value
of 1 percent. If the percent error is less than one, the optimization algorithm is terminated,
and the most recent optimal solution is reported as the optimal solution of the problem.

If the percent error value exceeds one, three additional data points are incorporated
into the existing dataset. The first additional data point is the most recent optimal solu-
tion (xi,opt, yopt), while the other two data points are generated using the adaptive Latin
hypercube sampling method (as described in Section 3.2). The updated dataset was then
normalized, and these steps were repeated until the percent error in the output falls below
one, ultimately yielding the optimal solution.

Percent error =
|yn+1 − ŷn+1|

yn+1
× 100 (3)
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3.2. Adaptive Latin Hypercube Sampling: Addition of Sample Points

In the step involving the addition of sample points in adaptive LHS, two additional
sample points are generated during each iteration. To determine these sample points, the
deviation from their respective actual values for all (N0 + 3i) predicted outputs is calculated
for each sample point in the dataset, where i represents the number of iterations. The
sample point that exhibits the highest deviation, denoted as (xn, yn,max deviation), is selected.
Subsequently, the intervals corresponding to the sample point with the highest deviation
(xn, yn,max deviation) are evenly divided into two intervals. Two additional sample points are
then randomly selected from each of these intervals.

Figure 5 illustrates an example of generating two additional sample points from the
highest deviation output sample point. This example showcases the generation of sample
points for two factors, which are denoted as x1 and x2. The highest deviation sample point
(xn, yn,max deviation) is represented as a red dot. The intervals corresponding to these sample
points are within the ranges of 0.4 to 0.6 for factor 1 and 0.2 to 0.4 for factor 2. Both factors
are evenly divided into two intervals: 0.4 to 0.5 and 0.5 to 0.6 for factor 1, and 0.2 to 0.3 and
0.3 to 0.4 for factor 2 (as indicated by dashed lines). Next, one sample point is randomly
selected from each interval of the factors. A total of two additional sample points are
obtained and represented as blue dots.
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3.3. Verification of the Optimal Solution Using Random Sampling Technique

Figure 6 illustrates the simulation–optimization algorithm using the random sampling
technique. The algorithm commenced with the same input ranges and factors as the
proposed simulation–optimization method employing adaptive LHS. Initially, 50 sample
points were used. Output data were collected, and ANNs were trained using the same
stopping criterion as in the proposed method. The resulting ANN model was then subjected
to optimization using a nonlinear solver to obtain the optimal solution. The accuracy of
the optimal solution was evaluated using the same criteria as in the proposed algorithm.
The algorithm terminated and reported the optimal solution if the percent error of the
solution was less than one. If not, additional points were generated and added to the
original samples, doubling the recent sample size (N × 2). These additional points were
then processed through the simulation, and the steps were repeated until the determined
optimal solution achieved a percent error of less than one.
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4. Case Study

To illustrate the varying complexity and number of factors in the problem, this section
examines three distinct chemical processes as case studies. Case Study I focuses on ammo-
nia production from syngas, which involves three factors. Case Study II explores methanol
production via carbon dioxide hydrogenation, which deals with four factors. Case Study
III addresses CO2 absorption by methanol using the Rectisol process, which involves five
factors. The details of each case study are provided below.

4.1. Process Simulation and Economic Evaluation
4.1.1. Case Study 1: Ammonia Production from Syngas

The first case study addresses an optimization problem with three decision variables.
Figure 7 depicts the process simulation of ammonia production based on the Haber process.
The process involves feeds of 31,900 kg per hour of natural gas at 35 bar and 25 ◦C as
well as 95,800 kg per hour of high-pressure steam at 150 bar. Further details on the
process simulation and conditions can be found in the work of Janosovsky [58]. Ammonia
production comprises two main parts: the production of syngas and the production of
ammonia (Equation (16)). The syngas production includes steps such as steam reforming
(Equations (4)–(7)), air reforming (Equations (9)–(12)), high and low shift conversion
(Equation (13)), CO2 removal, and methanation (Equations (14) and (15)). The reactions for
each step are as follows.

Steam reforming (Reformer unit)

CH4 + H2O → CO + 3H2 (4)

C2H6 + 2H2O → 2CO + 5H2 (5)

C3H8 + 3H2O → 3CO + 7H2 (6)

C4H8 + 4H2O → 4CO + 9H2 (7)

Air reforming (Combuster unit)

2CO + O2 → 2CO2 (8)
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2H2 + O2 → 2H2O (9)

CH4 + 2O2 → 2H2O + CO2 (10)

2CH6 + 7O2 → 6H2O + 4CO2 (11)

C3H8 + 5O2 → 4H2O + 3CO2 (12)

Water gas shift reaction (HTC and LTC units)

CO + H2O ↔ CO2 + H2 (13)

Methanation (Methanizer unit)

CO + 3H2 ↔ CH4 + H2O (14)

CO2 + 4H2 ↔ CH4 + 2H2O (15)

Ammonia production (PFR-100, PFR-101 and PFR-102 units)

N2 + 3H2 ↔ 2NH3 (16)
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For the process optimization, three decision variables are the reformer temperature,
the combuster temperature, and the low-temperature conversion reactor temperature. The
ranges of these decision variables are shown in Table 2. The temperatures of the high-
temperature conversion reactor, methanizer, and ammonia reactor were fixed at 450 ◦C,
340 ◦C and 450 ◦C, respectively. A two-stage compressor was used to increase the pressure
of the stream up to 150 bar before entering the ammonia synthesis loop. The ammonia
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synthesis system was modeled using three plug flow reactors in series with three quenching
sections. The final product, ammonia, was separated by a separation unit at 45 ◦C with
ammonia content exceeding 98 mol%. More details for replicating the process simulation
are provided in Supplementary Information S1.1.

Table 2. Range of decision variables of Case Study 1.

Decision Variables Range

Reformer temperature (◦C) 900 to 1200
Combuster temperature (◦C) 1400 to 1700
Low-temperature conversion reactor temperature (◦C) 160 to 290

4.1.2. Case Study 2: Methanol Production via Carbon Dioxide Hydrogenation

The second case study represents an optimization problem with four decision vari-
ables. Figure 8 depicts the process simulation of methanol production via carbon dioxide
hydrogenation with a recycling process. The decision variables were (1) pressure of the
equilibrium reactor, (2) temperature of the equilibrium reactor, (3) temperature of the steam
entering a separator, and (4) the recycle ratio. This simulation used the Peng–Robinson
thermodynamics package. The feed stream of the process consisted of 1000 kmole per
hour of carbon dioxide and 3000 kmole per hour of hydrogen at conditions of 20 bar and
40 ◦C. The process’s specification was to achieve a methanol product purity of 99.5% by
mole. The range of each decision variable is shown in Table 3. Details of the economic
evaluation assumptions for this process can be found in the work of Borisut and Nuchit-
prasittichai [57]. Additional information for reproducing the process simulation is provided
in Supplementary Information S1.2.
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Table 3. Range of decision variables of Case Study 2.

Decision Variables Range

Pressure of the equilibrium reactor (bar) 50 to 70
Temperature of the equilibrium reactor (◦C) 190 to 210
Temperature of the steam entering a separator (◦C) 60 to 80
Recycle ratio 0 to 1

4.1.3. Case Study 2: Methanol Production via Carbon Dioxide Hydrogenation

The third case study represents an optimization problem with five decision variables.
Figure 9 illustrates the process of CO2 absorption by methanol via the Rectisol process. The
process consists of three main sections: water removal, absorption, and CO2/methanol
separation. The syngas feed contains a mole fraction of 0.2462 of CO2, 0.0002 of NH3, 0.0044
of CO, 0.0050 of Ar, 0.4148 of N2, 0.3186 of H2, 0.0035 of H2O, and 0.0073 of CH4 at 17.24 bar
and 18.30 ◦C [59]. A small amount of methanol was mixed with the syngas feed and sent to
the first separator to separate water from the feed gas. Subsequently, the syngas was fed to
an absorber column, where CO2 gas was captured by chilled methanol added at the top of
the column. The rich methanol then passes through a three-stage separator and is fed into
a stripper column to separate CO2 from methanol. The lean methanol leaving the stripper
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was mixed with 40 kmole per hour of makeup methanol and recycled to the absorber. The
vapor product from the stripper, primarily containing CO2, was combined to other CO2
product streams from the second and third separators. Details for replicating the process
simulation are provided in Supplementary Information S1.3.
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In the optimization of this process, the decision variables included the lean methanol
temperature, the third-stage separator pressure, the stripper reflux ratio, the stripper inlet
temperature, and the distillation reflux ratio. The ranges of these decision variables are
detailed in Table 4.

Table 4. Range of decision variables of Case Study 3.

Decision Variables Range

Lean methanol temperature (◦C) −55 to −20
The 3rd stage separator pressure (bar) 1.2 to 2
Stripper reflux ration 5 to 20
Stripper inlet temperature (◦C) 10 to 40
Distillation reflux ratio 1 to 10

5. Results and Discussion

The results and discussion are presented in four sections. In Section 5.1, we describe
the optimal results obtained from random sampling, which started with an initial number
of 50 sample points. Section 5.2 discusses the convergence of the proposed adaptive Latin
hypercube sampling (LHS) algorithm. In Section 5.3, we provide a comparison between
the optimal results obtained from the random sampling technique and those obtained from
the proposed adaptive sampling method. Section 5.4 includes recommendations for future
work. The dataset for all three case studies can be found in Supplementary Information S2.

5.1. The Results of Monte Carlo or Random Sampling

The Monte Carlo or random sampling was used to verify the optimal results obtained
from the proposed adaptive sampling LHS optimization algorithm. The starting sample
points for random sampling were set at 50, and they were then doubled until the solution
satisfied the criteria. Table 5 shows the results obtained from the random sampling tech-
nique for each iteration for all three case studies. The criterion for the ANN model is that
the R2 value of the model has to be greater than or equal to 0.995. The criterion for the
optimal solution is that the percent error of the optimal cost has to be less than one (1).
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Table 5. Result of random sampling of three case studies.

Case Studies Case Study I Case Study II Case Study III

Sample points 50 100 50 100 50 100 200 400
R-squared 0.9998 0.9999 1.0000 1.0000 0.9951 0.9999 0.9912 0.9998

Minimum cost 495.87 495.87 942.45 942.45 49.70 43.66 43.20 43.40
Predicted cost 505.89 496.73 926.29 948.23 39.37 42.83 45.88 43.66

Error 2.02% 0.17% 1.71% 0.61% 20.80% 1.91% 6.21% 0.59%

The results showed that in the case of Case Study I (ammonia production from syngas)
and Case Study II (methanol production via carbon dioxide hydrogenation), 100 sample
points were required to meet the criteria. The obtained minimum ammonia production cost
was USD 495.87 for Case Study I, and the minimum methanol production cost was USD
495.87 for Case Study II. For the results of Case Study III (CO2 absorption by methanol
via the Rectisol process), the optimization problem required 400 sample points to meet the
criteria. The minimum CO2 capture cost was USD 43.40.

5.2. The Convergence of the Proposed Adaptive LSH Optimization Algorithm

Figure 10 illustrates the convergence of the proposed algorithm for all three case
studies. In the figure, the triangle, black circle, and white circle symbols represent the
actual cost (obtained from the process simulation), predicted cost (obtained from the
optimization problem), and the percent error, respectively. The percent error between
actual and predicted costs is depicted as a dashed line. The proposed algorithm terminates
when the percent error of the optimal cost was less than one percent (1%).

For Case Studies I and III (Figure 10a,c), the outcomes exhibited a similar pattern,
where the percent error decreased as more iterations were added. There were a few points
where the percent error sharply rose before the algorithm converged. This was due to
the fact that sample points for ANN training, testing, and validation were randomly
chosen from the dataset, resulting in an insufficient number of data points before the
algorithm converged. For Case Study II, as shown in Figure 10b, the percent error of
the optimal solution decreased as the number of iterations (or sample points) increased
until it eventually became less than one percent. In all three case studies, each of which
featured a different number of independent parameters, the proposed method consis-
tently converged to provide optimal results that met the necessary criteria. Details on
the ANNs, including the weights and biases, for all three case studies, can be found in
Supplementary Information S3.

Considering the scale of the case studies, the first case study, which included three
studied factors, reached convergence after four iterations. Case Studies II and III, which
had four and five studied factors, respectively, converged after six iterations. The results
showed that the algorithm required more iterations to converge when dealing with higher-
dimensional problems.

5.3. Comparison of Optimal Solutions between Proposed Sampling and Random Sampling

This section compares the outcomes of the proposed adaptive LHS optimization
algorithm with those of random sampling to verify the results. Additionally, the number
of sample points required to obtain the optimal solution is compared in this section. The
number of sample points used in constructing the ANN model is crucial. Having a sufficient
number of sample points to represent the relationship between independent and dependent
variables allows the mathematical model to accurately depict the system, enabling the
solver to find the true optimal solutions for the optimization problem.

Table 6 provides a comparison of the optimal results obtained from random sam-
pling and the proposed algorithm. Three replications of the proposed algorithm were
conducted to ensure consistency. For Case Study I (ammonia production from syngas),
the optimal operating conditions for all three variables obtained from the proposed algo-
rithm matched those determined by random sampling. The optimal operating conditions
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were temperatures of 900 ◦C for the reformer, 1400 ◦C for the combuster, and 160 ◦C
for the low-temperature conversion reactor, resulting in a minimum production cost of
USD 495.87 per ton of generated ammonia, which was consistent with the results from
random sampling. Notably, the proposed technique required only 38 sample points to
find the optimal solution for this problem with three decision variables compared to the
100 sample points needed by random sampling.
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Table 6. Comparison the results of proposed adaptive Latin hypercube sampling and random sampling.

Case Study I: Ammonia Production from Syngas

Sampling
Techniques

Total number of
sample points R2 x1 (◦C) x2 (◦C) x3 (◦C) x4 x5

ypredicted
(ŷ)

(USD per ton)

yactual
(y)

(USD per ton)
% error

Random
Sampling 100 0.9999 900 1400 160 N/A N/A 496.73 495.87 0.17

Proposed algorithm

Replication 1 38 0.9928 900 1400 160 N/A N/A 498.40 495.87 0.51
Replication 2 30 0.9995 900 1400 160 N/A N/A 495.22 495.87 0.13
Replication 3 30 0.9987 900 1400 160 N/A N/A 492.14 495.83 0.74

Case Study II: Methanol Production via Carbon Dioxide Hydrogenation

Sampling
Techniques

Total number of
sample points R2 x1

(bar) x2 (◦C) x3 (◦C) x4 (-) x5

ypredicted
(ŷ)

(USD per ton)

yactual
(y)

(USD per ton)
% error

Random
Sampling 100 1.0000 70 190 80 1 N/A 942.80 942.45 0.61

Proposed algorithm

Replication 1 46 1.0000 70 190 80 1 N/A 942.37 942.45 0.01
Replication 2 46 0.9993 70 190 80 1 N/A 943.85 942.45 0.15
Replication 3 40 0.9991 70 190 76 1 N/A 944.31 945.94 0.17

Case Study III: Carbon Dioxide Absorption by Methanol via Rectisol Process

Sampling
Techniques

Total number of
sample points R2 x1 (◦C) x2

(bar) x3 (-) x4 (◦C) x5 (-)
ypredicted

(ŷ)
(USD per ton)

yactual
(y)

(USD per ton)
% error

Random
Sampling 400 0.9998 −29.0 1.20 5 40 1 43.66 43.40 0.59

Proposed algorithm

Replication 1 53 0.9958 −20.0 1.20 5 40 1 45.74 45.47 0.60
Replication 2 50 0.9987 −20.0 1.27 5 40 1 45.91 45.67 0.51
Replication 3 53 0.9980 −26.7 1.28 5 40 1 43.25 43.19 0.14

The optimal operating conditions for Case Study II (methanol production from carbon
dioxide hydrogenation) were determined using the proposed algorithm for three repli-
cations, and they matched those determined by random sampling, with the exception of
the temperature of the steam entering the separator (x3) in the third replication. In the
third replication, the steam’s temperature entering the separator (x3) is 76 ◦C, which was
slightly different from the temperatures obtained in the other replications (80 ◦C). A slight
decrease in the temperature of the stream entering the separator resulted in an increase
in the methanol production cost. This change did not have a significant impact in terms
of model prediction error. Furthermore, the third replication used only 40 sample points
to represent the entire surface, while the other two replications used 46 sample points.
This indicates that the model with 40 sample points found a local optimum. The optimal
operating conditions for this case study were a pressure of 70 bar for the equilibrium
reactor, a temperature of 190 ◦C for the reactor, a temperature of 80 ◦C for the steam en-
tering a separator, and a recycling ratio of 1. The lowest cost to generate methanol was
USD 942.45 per tonne of methanol. While random sampling required 100 sample points
to find the optimal solution for this problem with four decision variables, the proposed
adaptive LHS optimization approach only required 46 sample points.

For Case Study III (carbon dioxide absorption by methanol via the Rectisol process),
the values of the optimal operating conditions were identical to those obtained from random
sampling except for the value of the lean methanol temperature (x1). The results for the
lean methanol temperature (x1) from three replications varied from −26.70 to −20.0 ◦C,
which was slightly different from the values obtained from random sampling (−29.0 ◦C).
The lowest CO2 capture costs identified by the proposed algorithm for three replications
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ranged from USD 43.25 to USD 45.91 per ton of CO2 capture, which is consistent with
the lowest cost identified by random sampling (USD 43.40 per ton of CO2 capture). The
optimal operating parameters for this case study included a lean methanol temperature
of −26.70 ◦C, a third-stage separator pressure of 1.28 bar, a stripper reflux ratio of 5, a
stripper input temperature of 40 ◦C, and a distillation reflux ratio of 1. The minimum cost
for CO2 capture was USD 43.19 per tonne of CO2. The proposed technique required only
53 sample points for this problem with five decision variables, while random sampling
needed 400 sample points to achieve the same level of ANN model accuracy and obtain
the optimal solutions.

Based on the results of the three different case studies, adaptive Latin hypercube sampling
required fewer sample points than random sampling to accurately represent the entire surface
using ANN models. The model accuracy and optimal conditions achieved using adaptive
sampling were comparable to random sampling but required fewer sample points.

5.4. Recommendation for Future Work

To assess the performance of the current algorithm and establish its generalizability,
it was compared to the work by [60], which introduced incremental Latin Hypercube
Sampling (LHS) for ANN-based optimization. In [60], the sample size began at ten times
the number of decision variables and increased iteratively by one-third of the current
number of sample points, which was rounded up to the nearest tenth. In contrast, the
present algorithm initiated with a sample size set at seven times the number of decision
variables with three additional sample points added in each iteration. Both algorithms
employed the same exit criteria (% error less than 1). The current algorithm required fewer
additional sample points in each iteration and resulted in fewer sample points to obtain
the optimal solution. However, it is important to note that the previous work applied
their method to more complex problems involving six and seven decision variables. To
comprehensively compare the performance of both methods, it is recommended to apply
the current algorithm to optimization problems with higher dimensionality.

For future work, it is recommended to compare the performance of this adaptive
LHS approach with other adaptive sampling techniques or advanced surrogate model
techniques. Implementing Bayesian optimization to enhance the optimization method is
suggested. Performance tests that incorporate various adaptive sampling criteria, such as
distance, space-filling metrics, gradient information, and prediction uncertainty, can be
applied to the algorithm. Furthermore, the results have demonstrated that as the number
of samples increased, the solution converged to the true optimal solution. To enhance the
performance of the algorithm, convergence guarantees can be further implemented. The
application of the proposed algorithm should be extended to different fields of study, such
as engineering design, materials discovery, etc. Additionally, it is essential to study the
limitations of ANNs, particularly in terms of their consistency during the training process.

6. Conclusions

This paper proposes an adaptive Latin hypercube sampling method for simulation-
based optimization problems. The algorithm uses the deviation of the output as a criterion
for generating new sample points. After each iteration, three additional sample points are
added to the existing dataset. The first additional sample point is the optimal solution from
the previous optimization dataset, while the other two additional data points are selected
from a grid area with the maximum deviation in output. Artificial neural networks (ANNs)
were employed as the surrogate model for the optimization problem. The accuracy of the
ANN model was assessed using the mean square error (MSE) and R-squared (R2) values.
The criterion for determining the accuracy of the optimal solution was that the percent
error should be less than one percent. The results demonstrate that the proposed algorithm
is capable of obtaining optimal solutions that are similar to the random sampling approach
but require fewer sample points.
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One of the primary advantages of the developed algorithm is its versatility. While in
this work, we exclusively applied adaptive sampling with ANNs, we envision broader
applications across various surrogate models. The adaptability of the Latin hypercube
sampling method makes it a valuable tool for optimizing complex systems where obtain-
ing accurate models is crucial. Looking forward, we recommend a further exploration
of adaptive Latin hypercube sampling in comparison to other adaptive sampling meth-
ods, particularly in the context of high-dimensional optimization problems. These future
investigations will provide more insights into the algorithm’s scalability and efficiency.
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