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Abstract: The power battery is an important component of new energy vehicles, and thermal safety is
the key issue in its development. During charging and discharging, how to enhance the rapid and uni-
form heat dissipation of power batteries has become a hotspot. This paper briefly introduces the heat
generation mechanism and models, and emphatically summarizes the main principle, research fo-
cuses, and development trends of cooling technologies in the thermal management of power batteries
in new energy vehicles in the past few years. Currently, the commonly used models for battery heat
generation are the electrochemical-thermal model and the electrical-thermal model. Scholars have
conducted more research based on multidimensional electrochemical-thermal/electrical-thermal
models because taking the actual characteristics of the battery into account can provide a more
comprehensive and systematic description. Among various cooling technologies, the air-cooling
system boasts the most economical manufacturing costs and a compact, reliable structure. The heat
transfer coefficient of the liquid-cooling system is very high, while the temperature remains uniform
in the PCMs cooling system during the material phase transition process. Against the background
of increasing energy density in future batteries, immersion liquid phase change cooling technology
has great development prospects, but it needs to overcome limitations such as high cost and heavy
weight. Therefore, the current lithium-ion battery thermal management technology that combines
multiple cooling systems is the main development direction. Suitable cooling methods can be selected
and combined based on the advantages and disadvantages of different cooling technologies to meet
the thermal management needs of different users.

Keywords: battery thermal management system; heat generation models; air cooling; liquid cooling;
phase change materials cooling

1. Introduction

Globally, with fossil energy reserves being depleted and the climate environment dete-
riorating, the new energy vehicle is an important measure to promote energy conservation
and CO2 reduction. The power battery is one of the most important components of new
energy vehicles. Power batteries can be divided into four types: lead acid batteries, nickel
metal hydride batteries, electric double layer capacitors, and lithium-ion batteries [1]. As
one of the most popular energy storage and power equipment, lithium-ion batteries have
gradually become widely used due to their high specific energy and power, light weight,
and high voltage output. The life cycle assessment method was adopted to conduct an en-
vironmental impact assessment on lithium-ion batteries, confirming that battery efficiency
and power loss were very important parameters during the battery usage stage [2,3].

Since the batteries in the battery pack will generate a lot of heat during operation, the
performance of the battery pack will be severely affected. As a result, new energy vehicles
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are increasingly being developed with a focus on enhancing the rapid and uniform heat
dissipation of the battery pack during charging and discharging. The optimal operating
temperature range for these power batteries was found to be between 25–40 ◦C, and the
ideal temperature distribution between batteries in the battery pack should be below
5 ◦C [4]. Sato [5] pointed out that when the battery temperature is higher than 50 ◦C,
the charging speed, efficiency, and lifespan are reduced. The study [6] reviewed the heat
sources and pointed out that most of the heat in the battery was generated from electrodes;
hence, for the lithium-ion batteries to be thermally efficient, electrodes should be modified
to ensure high overall ionic and electrical conductivity. At present, the analysis of the
principle of battery heat generation is mostly based on Bernardi’s battery heat generation
theory [7]. Corresponding electrochemical-thermal models [8–12] and electrical-thermal
models [13–17] have been established to analyze the heat transfer and temperature change
within the battery pack. To ensure the safe operation of batteries, a comprehensive thermal
safety management system should be established, which can detect potential thermal
failures and provide emergency cooling before accidents occur [18].

The battery thermal management system (BTMS) is essential for ensuring the best
performance and extending the life of the battery pack in new energy vehicles. In order
to remove excess heat from batteries, a lot of research has been done to develop a high-
efficiency BTMS which is suitable for new energy vehicles. The present common BTMS
technologies often use some kind of cooling medium to take heat away from the battery
surface. According to the different kinds of cooling media used, BTMS technologies are
divided into three categories: air cooling, liquid cooling, and phase change materials
(PCMs) cooling, as shown in Figure 1, which have different advantages and applications.
The researchers [19–22] reviewed the development of new energy vehicles and high energy
power batteries, introduced related cooling technologies, and suggested BTMS technology
as a viable option based on cooling requirements and applications. They pointed out
that liquid cooling should be considered as the best choice for high charge and discharge
rates, and it is the most suitable for large-scale battery applications in high-temperature
environments. The comparison of advantages and disadvantages of different cooling
systems is shown in Table 1.
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Table 1. The comparison of advantages and disadvantages of different cooling systems.

Thermal
Conductivity

Uniform
Temperature
Distribution

Cost Structure
Complexity Compactness Weight

Air cooling Medium Low Low Low High Low
Liquid cooling High Medium Medium Medium Low High
PCMs cooling Low High High High Low High
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Although the above studies have reviewed the thermal management techniques of
power batteries to a certain extent, the development of new energy vehicles is advancing
rapidly. The related research conclusions are constantly driving the progress and develop-
ment of the industry. Therefore, this paper investigates the research literature of the past
decade (among the 176 references cited in this paper, 156 were published from 2013 to 2023,
and 61 were published in the past three years) and combines insights into the heat gen-
eration mechanism and models of the lithium-ion batteries to provide a clear description
and systematic summary of the main principles, research focuses, and development trends
in three cooling technologies. It also identifies future development prospects for cooling
systems. The aim is to provide necessary assistance for research on heat generation and
cooling system design for power batteries in new energy vehicles.

2. Heat Generation of Lithium-Ion Batteries

Lithium-ion batteries generate heat mainly due to charge movement and chemical
reactions that take place during charging and discharging. As shown in the Figure 2b,
during the discharge process, lithium ions detach from the microporous structure of the
graphite anode and are embedded into the lithium iron phosphate through the internal
structure of the battery. The amount of lithium ions embedded determines the depth of
the discharge. At the same time, in order to achieve a balance transfer of positive and
negative ions, the same number of electrons in the external circuit also migrate between
the anode and the cathode, thereby achieving the charge balance and completing the
redox reaction of the battery. In the process, heat is generated and accumulated, seriously
influencing lithium-ion batteries’ performance, lifespan, and safety. As a consequence, a
key to battery thermal management is to develop a proper heat generation model that
is capable of predicting and analyzing the characteristics of lithium-ion batteries under
different operating conditions.
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Figure 2. Schematic diagram of (a) charging and (b) discharging of lithium-ion batteries.

2.1. Heat Generation Mechanism

In order to simplify the study, according to D. Bernardi’s battery heat generation the-
ory [7], there are four main types of heat generated by batteries: Joule heat Qj, polarization
heat Qp, reaction heat Qr, and side reaction heat Qs [23].
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1. Joule heat Qj: Batteries are made up of different materials, including electrodes,
separators, and so on, each with its own ohmic resistance, and the heat they generate
when the current flows is known as Joule heat. The calculation formula is Equation (1).

Qj = I2Ro (1)

In the formula, I—current during charging and discharging, A;
Ro —internal ohmic resistance of battery, Ω.

2. Polarization heat Qp: When batteries are charged and discharged, polarization phe-
nomena occur, resulting in electrode potentials that differ from equilibrium electrode
potentials. The heat produced in the polarization phenomena is called polarization
heat, which is irreversible. The calculation formula is Equation (2).

QP = I2RP (2)

In the formula, Rp—internal polarization resistance of battery, Ω.

3. Reaction heat Qr: When positive or negative electrodes are inserted or removed,
lithium ions also produce heat known as reaction heat. It is generally believed that
reaction heat has a positive value when discharging and a negative value when
charging. Reaction heat is reversible. The calculation formula is Equation (3).

Qr =
nmQI

MF
(3)

In the formula, n—the number of batteries;
m—the mass of each battery, kg;
Q—total chemical reaction heat, J;
M—molar mass, kg/mol;
F—Faraday constant, C/mol.

4. Side reaction heat Qs: In instances of thermal abuse, such as overcharging and over
discharging, lithium battery electrode materials and electrolytes generate heat, con-
tributing to the side reaction heat. As long as the working conditions are normal, it is
possible to ignore this part of the heat.

As a result, the total heat generation in the battery pack can be calculated using
Equation (4).

Q = I2Ro + I2RP +
nmQI

MF
(4)

2.2. Heat Generation Models

For the study of battery temperature, the heat generation model of lithium-ion batteries
is crucial. In order to establish models of heat generation, electrochemical-thermal models,
electrical-thermal models, and thermal runaway models based on physical mechanisms can
be used. According to the research methods, these models can be divided into theoretical
analysis, experimental research, and numerical simulation. Additionally, considering
different dimensions, there are also one-dimensional (1D), two-dimensional (2D), and
three-dimensional models (3D).

Currently, the commonly used models for battery heat generation are electrochemical-
thermal models and electrical-thermal models. The electrochemical-thermal models rely on
the electrochemical process occurring within the battery, taking into account the impact of
internal chemical reactions on heat production. Electrical-thermal models are based on the
heat produced when the current passes through the internal resistance of the battery, taking
the energy loss into account, which is then converted into thermal energy. At the same
time, the models with two dimensions or three dimensions take the actual characteristics
of the battery into account, such as external parameters and boundary conditions, which
can provide a more comprehensive and systematic description of the heat generation
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effect of the battery. Therefore, currently, scholars have conducted more research based on
multidimensional electrochemical-thermal/electrical-thermal models.

2.2.1. Electrochemical-Thermal Models

Current mainstream electrochemical-thermal models that can accurately reflect lithium-
ion batteries heat generation is the P2D model [8]. This model involves the simultaneous
solution of the transport equation of lithium ions in solid spheres of positive and negative
electrode materials and electrolytes, the Bulter–Volmer equation, and the heat transfer
control equation. When lithium-ion batteries are charged and discharged, this model
accurately describes the heat generated and potential distribution within them. Researchers
have developed many electrochemical-thermal coupling models based on this foundation.

Kemper et al. [9] introduced a simplified two-dimensional electrochemical-thermal
model. They derived the concentration distribution of lithium ions based on the P2D
model assumption and calculated the potential using the lithium-ion concentration at the
boundary. This model improves the ability to predict pulse charges and constant currents.
In the paper [10], Nie et al. proposed a method for simulating batteries of various sizes
(14,650, 18,650, and 26,650) via electrochemical-thermal coupling, as shown in Figure 3. The
battery temperatures rose sharply during discharge and peaks near the end. Larger battery
sizes and higher discharge rates resulted in higher temperatures. A three-dimensional
electrochemical-thermal coupling model for 30 Ah batteries was developed by Li et al. [11].
A number of discharge rates and ambient temperatures were studied in order to analyze the
battery’s internal electrochemical process and thermal characteristics. They found that the
discharge rate significantly affected the electrochemical and thermal behavior of the battery.
According to CHIEW et al. [12], the thermal characteristics of batteries were analyzed at
different discharge rates, using a combination of pseudo two-dimensional electrochemical
models and three-dimensional lumped thermal models. The effectiveness of the combined
model was validated through experiments.

Processes 2023, 11, x FOR PEER REVIEW 6 of 36 
 

 

dimensional electrochemical models and three-dimensional lumped thermal models. The 
effectiveness of the combined model was validated through experiments. 

  
(a) (b) 

Figure 3. (a) Longitudinal section of a commercial lithium-ion cell, and (b) illustration of the pseudo-
two-dimension electrochemical model [10]. 

2.2.2. Electrical-Thermal Models 
The baĴery’s equivalent circuit can be constructed using voltage, capacitance, and 

resistance in the electrical-thermal model, which is coupled with the thermal model of the 
baĴery. As a result of the equivalent circuit, the thermal model receives the terminal volt-
age simulation and calculates the rate at which the baĴery generates heat. As a result of 
the thermal model, the equivalent circuit updates the resistance and capacitance data 
based on the average temperature, thus achieving mutual coupling between the two mod-
els, as shown in Figure 4. 

  

(a) (b) 

Figure 4. Schematic diagram of (a) baĴery thermal model and (b) baĴery electrical model [16]. 

The finite element method was applied by Kim et al. [13] to develop a model for pol-
ymer lithium-ion baĴeries that incorporates two-dimensional electric-thermal coupling. 
Infrared thermal imaging was used to verify the model’s effectiveness by analyzing dis-
charge performance and temperature distribution. According to Xie et al. [14], a dynamic 
3D resistance-based thermal model, as shown in Figure 5, can be used to predict the tem-
perature distribution and evolution of a prismatic baĴery with a capacity of 50 Ah under 
different charging schemes and ambient temperatures. For beĴer computing efficiency, LI 
et al. [15] employed an electro-thermal model for analyzing baĴery heat generation during 
overcharging. Based on current and ambient conditions, Barcelona et al. [16] developed 
an integrated electro-thermal model that can predict the thermal behavior of baĴeries. 
Due to the model’s simplicity, it was tuned and validated based on experimental results, 
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two-dimension electrochemical model [10].

2.2.2. Electrical-Thermal Models

The battery’s equivalent circuit can be constructed using voltage, capacitance, and
resistance in the electrical-thermal model, which is coupled with the thermal model of
the battery. As a result of the equivalent circuit, the thermal model receives the terminal
voltage simulation and calculates the rate at which the battery generates heat. As a result of
the thermal model, the equivalent circuit updates the resistance and capacitance data based
on the average temperature, thus achieving mutual coupling between the two models, as
shown in Figure 4.
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Figure 4. Schematic diagram of (a) battery thermal model and (b) battery electrical model [16].

The finite element method was applied by Kim et al. [13] to develop a model for
polymer lithium-ion batteries that incorporates two-dimensional electric-thermal coupling.
Infrared thermal imaging was used to verify the model’s effectiveness by analyzing dis-
charge performance and temperature distribution. According to Xie et al. [14], a dynamic
3D resistance-based thermal model, as shown in Figure 5, can be used to predict the tem-
perature distribution and evolution of a prismatic battery with a capacity of 50 Ah under
different charging schemes and ambient temperatures. For better computing efficiency,
Li et al. [15] employed an electro-thermal model for analyzing battery heat generation
during overcharging. Based on current and ambient conditions, Barcelona et al. [16] devel-
oped an integrated electro-thermal model that can predict the thermal behavior of batteries.
Due to the model’s simplicity, it was tuned and validated based on experimental results,
demonstrating its ability to predict battery temperature with reasonable accuracy. The math-
ematical model of Chin et al. [17] was coupled with the electric model in order to estimate
voltages, core temperatures, and surface temperatures under thermal uncertainties.
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2.3. The Effect of Temperature on Battery Performance

Since lithium-ion batteries have a complex structure and are exposed to chemical
reactions during discharge, they generate significant amounts of heat. The analysis of
battery performance under different temperatures is critical and necessary.
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2.3.1. The Effect of High Temperature on Battery Performance

Lithium-ion batteries may overheat when charged at high rates without a suitable
cooling system, which may adversely affect the efficiency, capacity, lifetime, and cycle times
of the battery itself [24]. Moreover, this can result in the battery exploding or spontaneously
combusting [19].

Temperature increases result in a decrease in internal resistance, but irreversible
reactions occur inside the battery, reducing its capacity, service life, and output power.
With increasing temperature, the Arrhenius formula predicts that the battery’s reaction rate
increases exponentially. The higher the temperature, the faster the battery aging rate [25].
Over time, the capacity will continue to decrease. By studying the cycling performance
of Sony 18,650 lithium-ion battery with a 1.8 Ah capacity, the results showed that after
800 charging and discharging cycles at operating temperatures of 25 ◦C and 45 ◦C, the
battery capacity decreased by 31% and 36%, respectively. When the working temperature is
50 ◦C, the battery capacity decreases by 60% after 500 charging and discharging cycles [26].
Lithium-ion batteries experience a decrease in service life if temperatures exceed 50 ◦C.
In general, every 10 ◦C increase in battery temperature doubles the internal chemical
reaction rate and reduces its lifespan by half. When considering the power of the battery
to determine its performance [27], it is obvious that the battery’s capacity decreases at
high temperatures due to the generation of dead zones and lithium evolution phenomena
in the active substances inside the lithium battery. This results in a decrease in battery
power due to an increase in impedance [28–30]. Most lithium batteries operate at optimum
temperatures between 25–40 ◦C [31,32], and if they are operated outside this range, their
performance will be adversely affected.

2.3.2. The Effect of Non-Uniform Temperature on Battery Performance

New energy vehicles typically utilize a power battery pack with multiple battery cells
connected in both series and parallel configurations. If the temperature distribution within
the pack is not uniform, it can also adversely affect the battery’s capacity, cycle life, and
other characteristics.

Firstly, due to the structural characteristics of individual batteries, there is a difference
in the thermal conductivity of power batteries in three dimensions, which can cause non-
uniform temperature distribution among individual batteries, leading to mismatched
battery performance. And this problem becomes more prominent as its size increases; for
example, the heat generation of the positive pole during reaction can reach three times that
of other parts [33]. Secondly, due to inconsistent heat dissipation during usage, the current,
discharge depth, and temperature distribution change in the battery pack. Consequently,
the battery will suffer from issues such as its State of Charge (SOC), capacity impedance,
and State of Health (SOH) [34,35]. When the temperature difference in the battery pack
reaches 5 ◦C, 10 ◦C, and 15 ◦C, the corresponding capacities are 90%, 85%, and 80% of the
original capacity, respectively [36,37]. Reference [38] studied the comparison of battery
pack temperature non-uniformity on cycle life using simulation and experimental methods,
and Figure 6 shows the comparison of cycle life performance. In the Figure 6, the red solid
line represents the performance of two batteries without a temperature difference, with an
average capacity decay of 0.1195 mAh per cycle (manufacturer data). The blue solid line
represents the experimental results of series batteries with a temperature difference, with
an average capacity decay of 0.7308 mAh per cycle. The slope is more than six times steeper
than when there is no temperature difference. After only 996 cycles, the capacity decreases
to 0.25 Ah (24% of the initial capacity). Reference [39] points out that the non-uniform
distribution of temperature may accelerate the difference in capacity attenuation between
parallel battery cells due to inconsistent current between individual battery cells. There is a
general belief that the battery pack should not have a temperature difference exceeding
5 ◦C [40].
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3. Air Cooling Technology

Battery packs are normally cooled with air cooling technology. Air cooling systems
are characterized by their simplicity, direct and safe medium access, low viscosity, small
size, high compactness, light weight, low maintenance cost, and low investment.

3.1. Principle of Air Cooling

There are two types of air cooling: passive air cooling and active air cooling. A passive
air-cooling system and an active air-cooling system differ in whether they have a powerful
motor to drive the air, such as fans, as shown in Figure 7.

Processes 2023, 11, x FOR PEER REVIEW 9 of 36 
 

 

3.1. Principle of Air Cooling 
There are two types of air cooling: passive air cooling and active air cooling. A passive 

air-cooling system and an active air-cooling system differ in whether they have a powerful 
motor to drive the air, such as fans, as shown in Figure 7. 

 
Figure 7. Schematic diagram of air cooling, (a) passive air cooling, and (b) active air cooling [41]. 

Passive air cooling involves air flowing from the outside to the inside of the baĴery 
pack, cooling the baĴeries because of the relative motion. As the vehicle moves, heat from 
the baĴery pack is removed by the air when passing through the gap in the baĴery pack 
and then vented from the opposite side. The low flow rate of the air results in a low heat 
transfer coefficient, so this technology is usually suitable for baĴeries that have low energy 
density, vehicles equipped with hybrid electric motors or pure electric motors that are low 
cost and have a short driving range [42]. 

When faced with high ambient temperature and increased baĴery pack heat dissipa-
tion requirements, passive air-cooling technology is not effective. Therefore, aerodynamic 
equipment, such as fans, needs to be added to increase air speed and improve the heat 
transfer coefficient. It is possible to remove more heat in a baĴery pack if there is enough 
airflow, which makes the temperature distribution uniform and the maximum tempera-
ture lower [43]. Although the fans increase the cost of the air-cooling system, the active 
air-cooling system improves the overall heat dissipation performance and reliability, and 
its benefits outweigh the increased cost [44]. 

3.2. Focus Areas of Air-Cooling Systems 
In air convection cooling, the low thermal conductivity and low specific heat capacity 

of air prevent it from lowering the maximum temperature and maintaining a uniform 
temperature in the baĴery pack when there is a lot of heat [45]. However, baĴery perfor-
mance is closely related to temperature [46]. In some studies, uneven temperatures within 
the baĴery pack have been linked to unbalanced baĴery performance, which results in 
reduced baĴery performance of the entire vehicle. As a result, efforts in air cooling systems 
in recent years have mainly focused on the optimization of baĴery pack design, the im-
provement of the cooling channel, and the addition of thermal conductivity materials, so 
as to improve the comprehensive effect of the air-cooling system. 

In terms of baĴery pack design optimization, various approaches have been ex-
plored, such as different baĴery pack layouts, including square, rectangular, and circular 

Figure 7. Schematic diagram of air cooling, (a) passive air cooling, and (b) active air cooling [41].

Passive air cooling involves air flowing from the outside to the inside of the battery
pack, cooling the batteries because of the relative motion. As the vehicle moves, heat from
the battery pack is removed by the air when passing through the gap in the battery pack
and then vented from the opposite side. The low flow rate of the air results in a low heat
transfer coefficient, so this technology is usually suitable for batteries that have low energy
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density, vehicles equipped with hybrid electric motors or pure electric motors that are low
cost and have a short driving range [42].

When faced with high ambient temperature and increased battery pack heat dissipa-
tion requirements, passive air-cooling technology is not effective. Therefore, aerodynamic
equipment, such as fans, needs to be added to increase air speed and improve the heat
transfer coefficient. It is possible to remove more heat in a battery pack if there is enough
airflow, which makes the temperature distribution uniform and the maximum tempera-
ture lower [43]. Although the fans increase the cost of the air-cooling system, the active
air-cooling system improves the overall heat dissipation performance and reliability, and
its benefits outweigh the increased cost [44].

3.2. Focus Areas of Air-Cooling Systems

In air convection cooling, the low thermal conductivity and low specific heat capacity
of air prevent it from lowering the maximum temperature and maintaining a uniform tem-
perature in the battery pack when there is a lot of heat [45]. However, battery performance
is closely related to temperature [46]. In some studies, uneven temperatures within the
battery pack have been linked to unbalanced battery performance, which results in reduced
battery performance of the entire vehicle. As a result, efforts in air cooling systems in recent
years have mainly focused on the optimization of battery pack design, the improvement of
the cooling channel, and the addition of thermal conductivity materials, so as to improve
the comprehensive effect of the air-cooling system.

In terms of battery pack design optimization, various approaches have been explored,
such as different battery pack layouts, including square, rectangular, and circular [47–49] (as
shown in Figure 8), aligned, staggered, and cross-arranged configurations [50,51], changing
the distance between batteries [49,50,52,53], and tilting the battery pack casing (as shown
in Figure 9) [54], etc. These efforts try to enhance cooling performance as the air flows
through the battery pack. At the same time, some functions and algorithms have also been
proposed. For example, the function of battery size and the BTMS cost [55] and multi-
objective evolutionary algorithms, as shown in Figure 10, have been used to study battery
quantity, distance, and entrance channel location [56,57]. Figure 8 shows the temperature
distributions when the battery pack is designed as a square and rectangular shape. The
results suggest that when using a BTMS with just passive air cooling methods, at full
discharge, the rectangular shape with a lower maximum temperature for battery pack
offers advantages over the square shape [48]. As seen in Figure 11, the aligned arrangement
has the best cooling performance and temperature uniformity, followed by the staggered
arrangement, and finally, the cross arrangement [51].

In terms of cooling channel design, U-shaped channels, J-shaped channels, and Z-
shaped channels [58–60] are designed, as shown in Figure 12. Also, there are two-way
cooling channel designs [61,62], distributed thin airflow channel designs [63], reciprocating
airflow designs (as shown in Figure 13) [64], etc. In addition, changing the position of the
air inlet and outlet [65–68] and setting the inlet static pressure box [69] can also increase
the cooling effect. There are other measures to improve the air-cooling performance in the
main channel through which the air flows. For example, adding fins or winglets in the
air channel [68–71] etc., not only increases the heat exchange area, but also enhances the
airflow disturbance. And, as shown in Figure 14, adding hydrophilic fibers and using the
refrigerant in the hydrophilic fibers to absorb air heat [72] results in an average temperature
decrease of 24 ◦C compared with no cooling, and 17 ◦C compared with air cooling, as
shown in Figure 15a. Moreover, this approach helps improve temperature uniformity by
more than 70% compared with no cooling, a 56% improvement compared with air cooling,
as shown in Figure 15b.
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With regard to thermal conducting materials, metal materials with high thermal con-
ductivity, such as aluminum foam [73], as shown in Figure 16, can enhance heat conduction.
At the same time, the pores in the foam, as shown in Figure 17, can also increase turbu-
lent flow effects. The combination of silicon dioxide and copper mesh can enhance heat
conduction and heat dissipation [74]. Embedding porous aluminum foam into aluminum
finned heat sinks [75] or combining PCM and air cooling [76,77] can also increase the
air-cooling performance.
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3.3. The Development Trends of Air Cooling Systems

The studies above show that improving the air cooling BTMS performance is com-
monly achieved by optimizing the battery pack design, improving cooling channel design,
and adding high thermal conductive material to enhance heat conduction. With the opti-
mal design of the battery pack and cooling channel and the addition of new substructures
such as fins, local turbulence can be enhanced, convective heat transfer coefficient can be
increased, and hot spots can be minimized. Further improving cooling capacity will be
achieved by combining the most advanced thermally conductive materials.

Comparing the air cooling BTMS with other cooling methods, the former offers low-
est manufacturing costs as well as the most compact and reliable design. However, it
is still possible for the single air cooling BTMS to fail under certain extreme conditions,
including long-term operation at a high rate of charging or discharge and extreme ambi-
ent temperatures. To deal with unpredictable battery failure and thermal runaway, the
trends in developing air-cooling systems are improving cooling efficiency, reducing power
consumption, and increasing high-temperature adaptability.

(1) Improving cooling efficiency: Future air-cooling systems will further improve cooling
efficiency to meet the increasing power density of the battery. By optimizing the
design of the cooling system, the air fluidity and heat dissipation area are improved.
Combining other cooling methods with air cooling, including PCM structures, liquid
cooling, HVAC systems, heat pipes etc., an air-cooling system with these advanced
enhancements should provide adequate cooling for new energy vehicles’ high-energy
battery packs.
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(2) Reducing power consumption: The air-cooling system will consume a certain amount
of energy in the process of operation, so one of the future trends is to reduce the
power consumption of the cooling system. By improving the fan design, optimizing
the structure and flow characteristics of the cooling system, and reducing the air flow
resistance and energy loss, more energy is saved in the air-cooling system.

(3) Increasing high-temperature adaptability: The battery is easy to overheat in high-
temperature environment, so the future air-cooling system will be better adapted to
high-temperature environments. High-temperature-resistant materials and structure
designs are adopted to improve the high-temperature resistance performance of the
cooling system, ensuring that the battery temperature can be effectively reduced
under high-temperature conditions.

4. Liquid-Cooling Technology

Since liquids have higher thermal conductivity and are better at dissipating heat,
liquid cooling technology is better suited for cooling large battery packs [78]. Depending
on whether the liquid is in direct contact with the batteries or not, the cooling liquid can
be classified into indirect (non-contact) cooling liquid and immersion (contact) cooling
liquid [79,80].

4.1. Indirect Liquid Cooling Technology

Today, indirect liquid cooling is a common method of dissipating heat in the BTMS of
new energy vehicles. There are two main implementation methods, shown in Figure 18:
(1) dissipating heat through the tubes or tube sheets in the battery pack [81–83] and
(2) installing the batteries on the liquid cooling plate [84–86]. These two methods work
by making the cooling liquid flow into the tubes or the cooling plate, where the heat is
exchanged with the batteries.

Processes 2023, 11, x FOR PEER REVIEW 15 of 36 
 

 

whether the liquid is in direct contact with the baĴeries or not, the cooling liquid can be 
classified into indirect (non-contact) cooling liquid and immersion (contact) cooling liquid 
[79,80]. 

4.1. Indirect Liquid Cooling Technology 
Today, indirect liquid cooling is a common method of dissipating heat in the BTMS 

of new energy vehicles. There are two main implementation methods, shown in Figure 
18: (1) dissipating heat through the tubes or tube sheets in the baĴery pack [81–83] and (2) 
installing the baĴeries on the liquid cooling plate [84–86]. These two methods work by 
making the cooling liquid flow into the tubes or the cooling plate, where the heat is ex-
changed with the baĴeries. 

  

(a) 

  

(b) 

Figure 18. Schematic diagram and temperature contours of indirect cooling: (a) tube sheets [82], (b) 
cooling plate [86]. 

The indirect liquid cooling system can operate at temperatures ranging from −40 °C 
to 105 °C because it often uses water or glycol solution as coolant. A high thermal conduc-
tivity makes the liquid cooling BTMS more efficient and capable of achieving higher cool-
ing capacity than other cooling systems. 

At the same time, due to high heat capacity, liquid coolants’ flow rate is much lower 
than that of other systems when removing heat at the same rate. The electric water pump 
is quieter than the electric fan when powered by the same amount of electricity. According 
to the study [87], the glycol coolant mass flow rate, cooling intervention time, and concen-
tration were studied to determine their effects on the baĴery thermal field. When a 40% 
concentration ethylene glycol coolant was used, the standard deviation of the baĴery’s 
temperature field and the pressure difference of its cooling plate were 0.92 °C and 5.81 Pa, 
respectively. It was also pointed out that baĴery packs with lower concentrations have 
beĴer temperature uniformity. The thermal management requirements of electric vehicles 
can be met using an ethylene glycol solution at concentrations ranging from 20% to 40% 
in regions with mild climates. However, the indirect liquid cooling systems in electric 

Figure 18. Schematic diagram and temperature contours of indirect cooling: (a) tube sheets [82],
(b) cooling plate [86].



Processes 2023, 11, 3450 15 of 34

The indirect liquid cooling system can operate at temperatures ranging from −40 ◦C to
105 ◦C because it often uses water or glycol solution as coolant. A high thermal conductivity
makes the liquid cooling BTMS more efficient and capable of achieving higher cooling
capacity than other cooling systems.

At the same time, due to high heat capacity, liquid coolants’ flow rate is much lower
than that of other systems when removing heat at the same rate. The electric water
pump is quieter than the electric fan when powered by the same amount of electricity.
According to the study [87], the glycol coolant mass flow rate, cooling intervention time,
and concentration were studied to determine their effects on the battery thermal field.
When a 40% concentration ethylene glycol coolant was used, the standard deviation of the
battery’s temperature field and the pressure difference of its cooling plate were 0.92 ◦C and
5.81 Pa, respectively. It was also pointed out that battery packs with lower concentrations
have better temperature uniformity. The thermal management requirements of electric
vehicles can be met using an ethylene glycol solution at concentrations ranging from 20% to
40% in regions with mild climates. However, the indirect liquid cooling systems in electric
vehicles have certain drawbacks, such as their large and heavy structures, which impact the
driving range per charge [88], and the risk of leakage of electrically conductive coolants.

On one hand, the indirect liquid cooling system has more thermal resistance because
the heat generated by the battery must first pass through the liquid-cooled tube wall
before it can be transferred away. As the coolants flow, the temperature of the coolant
will keep rising, causing a decrease in the temperature balance within the battery pack.
Research on indirect liquid cooling has primarily focused on optimizing the structure of
the coolant channels [89–97] (as shown in Figures 19 and 20), improving the performance
of coolants [96,97], and coupling with solid-liquid phase change cooling [98,99]. These
efforts aim to improve the heat dissipation capacity of indirect liquid cooling and ensure a
uniform battery pack temperature in recent years. Figure 21 shows that adding conductive
material AgO and increasing the volume fraction of AgO (1%vf, 2%vf, 4%vf) in the liquid
can realize a better cooling effect [96]. Based on the results of the study [98], a new method
of delayed liquid cooling was proposed, combining liquid cooling with PCM cooling. It
demonstrated high-temperature uniformity and reduced pumping power, as shown in
Figure 22.
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On the other hand, a crucial seal is required within the entire BTMS to ensure the
safety of the system because of the high electric conductivity of the coolants. Typically,
electric vehicles use electric conductive coolants to run the motors, power modules, or cab-
ins, in which leakage of coolants can lead to short circuits and terrible accidents [100,101].
Consequently, ensuring absolute safety during the usage and maintenance primarily in-
volves focusing on the sealing design of the liquid cooling system. Liquid cooling systems,
therefore, are generally more expensive to manufacture than air cooling systems.

4.2. Immersion Liquid Cooling Technology

Immersion liquid cooling technology refers to the usage of an insulating and non-
flammable coolant to completely immerse the battery. By circulating the coolants or
undergoing phase changes between gas and liquid states, the heat generated by the battery
is quickly dissipated to keep the field uniform in the battery pack. Immersion liquid cooling
involves direct contact between the battery and the coolant, resulting in a more direct and
efficient heat transfer [102]. Since the immersion liquid cooling structure is very simple,
there are no heat exchangers, tubes or other components, and the coolants are usually
insulating and non-flammable liquids, there is no safety risk caused by coolant leakage.
Therefore, immersion liquid cooling technology has the characteristics of safety, high heat
transfer efficiency [103], good temperature uniformity and flexible layouts [104,105].

Nelson et al. [106] modeled and simulated the forced air cooling and immersion
liquid (transformer oil) cooling of BTMSs. When compared to traditional air cooling,
immersion liquid cooling achieved faster heating and cooling characteristics while using
relatively little energy. LUO B [107] also pointed out that at discharge rates of 1C–4C and
temperature environments of −20~40 ◦C, the immersion liquid cooling effect was obvious.
Sundin et al. [108] used AmpCool AC-100 as coolant to conduct the experiment, showing
that immersion liquid cooling technology had great advantages in maintaining optimal
battery temperature, reducing battery temperature fluctuations, and improving battery
temperature uniformity. Researchers studied immersion liquid cooling and indirect liquid
cooling in Pulugundla et al. [109]. It was demonstrated that immersion liquid cooling could
reduce the heat transfer resistance between the battery pack and the heat gradient along
its longitudinal axis. Figure 23 shows different immersion liquid BTMSs with stationary
coolant and flowing coolant.
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Since immersion liquid cooling technology has high heat transfer efficiency and good
temperature uniformity, Table 2 below summarizes the focuses and conclusions of studies
conducted on its performance with respect to heat dissipation.
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Table 2. Research on Immersion Liquid Cooling.

Authors Methods Working Medium Research Focuses Conclusions

Wang et al. [110] Experiment

No.10
transformer oil

Single phase
cooling

Different coolant
depth, flow rate

When coolant depth and flow rate are
increased, both maximum temperature
and maximum temperature difference

will be reduced.

Zhang et al. [111] Experiment
Mineral oil

Single phase
cooling

Different oil
immersion volume,
flow rate, inlet, and

outlet methods

With an increase in oil immersion
volume and flow rate, and by changing
positions of inlet and outlet, the battery

thermal effect will be
significantly improved.

Li et al. [112] Experiment

SS/BN
composite + water

Single phase
cooling

Different BN
material ratios in SS

The composite material with 10wt% BN
content should be the best choice for the

battery surface coating material.

Al-Zareer et al.
[113–115] Simulation

R134a, Ammonia
and Propane,

Two phase cooling

Different liquid
level

There is a positive correlation between
the heat dissipation ability of the coolant

and the liquid level of the coolant.

Park et al. [116] Simulation
Mineral oil

Single phase
cooling

Different battery
pack aspect ratios,

battery spacing

A wider battery pack helps to improve
temperature uniformity within the

battery pack, while a narrower
battery pack helps reduce system

power consumption.

Tan et al. [117]
(as show in
Figure 24)

Simulation
HFE-6120

Single phase
cooling

Different coolant
channels, flow
speeds, flow

directions

With increasing height of the flow
channel, maximum temperature, and
maximum difference of temperature
decrease, while power consumption
increases with increasing flow rate.

Qin et al. [118] Simulation
Dielectric fluid

Single phase
cooling

Different manifold
structure in flow

channel

Compared with separator thickness
and outlet width, manifold channel
width and battery spacing are two

important factors.

Suresh Patil et al.
[119]

Experiment +
Simulation

Dielectric fluid
Single phase

cooling

Weather the coolant
is flow, weather

there is tabs

There is a 46.3% reduction in tab
temperature of the battery thanks to the

coolant flow and tab cooling aid.

Guo [120] Experiment +
Simulation

D-1 type electronic
fluorinated fluid

Single phase
cooling

Different flow rate,
battery design

arrangements and
overheated

batteries

A minimum flow rate of 0.5L/min is
recommended for the battery pack in

order to achieve less than 5 ◦C
temperature non-uniformity.

Wang et al. [121]
(as show in
Figure 25)

Experiment +
Simulation

HFE-7000
Two-phase cooling

Different coolant
inlet temperature,

inlet flow rate

With a faster coolant flow rate, the
battery pack maximum temperature

will be lower; with a slower coolant flow
rate, the temperature difference in the
battery will be smaller and the battery

will perform better.
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In addition, study [122] suggested the original air-conditioning system could be
expanded by adding paths because there is already an air-conditioning system in modern
vehicles, so that the refrigerant can directly enter the heat exchanger in the battery pack
for heat exchange, as shown in Figure 26. Compared to other cooling methods, this
suggestion is very simple and direct since there are no extra coolants and equipment [123].
However, this cooling method has the problem of refrigerant evaporating to dryness, that
is, the refrigerant may evaporate in advance in the middle or at end of the battery pack
evaporator, and the gaseous refrigerant, having poor heat transfer capacity, may cause an
inhomogeneous temperature distribution in the battery pack. At the same time, since it is a
priority to consider battery safety, vehicles using this cooling method may affect the thermal
comfort of passengers [124]. Meanwhile, to ensure that the system cools effectively, the
boiling process should be complexly designed, and a reasonable expansion valve control
strategy should be set at the same time [125]. This has led to studies on the cooling method
in recent years, focusing on the optimization of system performance [126], the development
of control strategies [127], and the influence on system performance due to refrigerant
substitution [128] and the introduction of new refrigerants [129,130].
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4.3. The Development Trends in Liquid Cooling Systems

Besides the complex internal structure of an indirect liquid cooling system, which
contains a lot of coolant tubes and cold plates affecting the battery pack’s energy density,
the potential leakage risks of conductive coolants may have a certain negative impact
on the safety of the battery pack. In the immersion liquid cooling system, insulating
and non-flammable coolants are used. Many researchers focus on different coolant inlet
temperatures, inlet flow rates, coolant channels, etc. to study the influencing factors and
search for optimal design configurations. To help the liquid cooling system work well,
current development trends include efficient cooling technology, intelligent cooling control,
heat management integration, and lightweight design.

(1) Efficient cooling technology: For batteries to remain safe, more efficient cooling
systems are required as power increases. Some new cooling technologies, such as
microchannel cooling, have been introduced into battery systems to improve cooling
efficiency.

(2) Intelligent cooling control: In order to better manage the battery temperature, intelli-
gent cooling control systems are getting more and more attention. These systems can
monitor the temperature of the battery in real time and adjust the working state of the
cooling system as needed to keep the temperature of the battery in the proper range.

(3) Heat management integration: To improve overall efficiency and save space, some
new liquid cooling systems are integrated with other heat management systems. For
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example, cooling systems can be combined with air conditioning or seat heating
systems to better manage battery and interior temperatures.

(4) Lightweight design: For the vehicle to be lightweight, the design of the liquid cooling
system also focuses on weight reduction. The use of lightweight materials and
structural optimization can reduce the weight of the system and improve the overall
performance of the battery system.

5. Phase Change Materials Cooling Technology

Phase change materials (PCMs) usually have large latent heat that can be stored and
released when phase changes occur. PCMs are usually packaged outside the batteries, as
shown in Figure 27. The heat generated by the batteries first reaches the PCMs, where
it is absorbed by the PCMs. When the temperature of PCMs reaches the phase change
point, these materials undergo a phase transition. Before the complete phase transition,
the temperature of PCMs is basically unchanged, so the battery can be kept at a suitable
working temperature during most of the working time. The study [131] listed the main
criteria for selecting suitable PCMs for BTMSs, among which the melting point ranked
first. In fact, this value should be chosen within the desired operating temperature of the
battery. PCM cooling technology belongs in the category of passive cooling technology,
which can be further divided into solid-liquid phase change cooling and gas-liquid phase
change cooling, according to the phase change processes.
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5.1. Solid-Liquid Phase Change Cooling Technology

The solid-liquid phase change cooling technology has a simple structure, high ef-
ficiency, and good temperature uniformity [132,133]. The most common PCMs include
organic materials, inorganic materials, and eutectic materials [134]. Inorganic materials and
eutectic materials are less studied due to their characteristics [135,136]. In terms of organic
materials, paraffin is considered excellent due to its high latent heat, good stability, non-
supercooling property, and low toxicity [137]. As a result, it is widely used in solid-liquid
phase change cooling systems. The melting temperature of paraffin is 40–44 ◦C, and the
latent heat between the liquid state and solid state is 195 kJ/kg, and the solid and liquid
densities are 822 kg/m3 and 910 kg/m3, respectively. However, the thermal conductivity
of paraffin is low, about 0.25 W/(m·K), so the melting is not uniform during the phase
transition. The study [138] pointed out that when paraffin was used as a phase change
material, the temperature of the center increased by nearly 30 ◦C, and the temperature of
the edge increased by only about 20 ◦C, resulting in a large thermal gradient between the
batteries in the battery pack. In addition, there was leakage risk of melted paraffin.

In order to solve the problems of low thermal conductivity and the large thermal
gradient, the researchers’ efforts on solid-liquid phase change cooling technology in recent
years mainly focus on the manufacture of composite PCMs. Adding other materials
to the original PCMs can enhance structural stability, thermal conductivity, and heat
dissipation effects. For example, adding expanded graphite [139–141], carbon foam [140],
metal foam [142], metal particles [143] and so on have been considered. The range of
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thermal conductivity of composite PCMs in [45,138] can be increased to 3–16.6 W/(m·K).
Figure 28 shows how to prepare the composite PCM/GNP and PCM/carbon foam, and the
results demonstrate that by adding graphite and carbon foam to paraffin wax, its thermal
properties are increased. In addition, leakage is prevented, contributing to its stable thermal
performance [140].
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If only PCMs are used to control the battery temperature during continuous high-rate
charge and discharge cycles, the desired effect may not be achieved. Due to the poor effect
of the passive cooling systems, some scholars have also proposed adding a low-power
active cooling system to form a hybrid cooling system to deal with the exhaustion of latent
heat in PCMs in some extreme cases [144]. Therefore, searching for extra methods to
help PCM systems has always been a research focus. For example, an additional cooling
system is needed to assist in heat dissipation, such as combining solid-liquid PCMs with
air cooling systems [77,145–148], with liquid cooling systems [98,99,149–152], or with heat
pipes [153–155] etc. Figures 29–31 show how the solid-liquid PCMs are combined with air
cooling systems, liquid cooling systems, and heat pipes, respectively.
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5.2. Gas-Liquid Phase Change Cooling Technology

Gas-liquid phase change cooling technology mainly means heat pipe cooling, in which
liquid changes to gas when heated and the gas returns to a liquid state when cooled. The
battery heats the evaporation section of the heat pipe, and the liquid inside the pipe core
evaporates to steam as a result. During condensing, the steam releases latent heat and
returns to liquid, which passes through the central channel of the heat pipe. After the
liquid has been condensed, it flows by capillary or gravity back to the evaporation section,
forming a closed cycle, as shown in Figure 32. Therefore, the condensation section absorbs
a large amount of heat from the evaporation section, and then releases the heat to the
external environment. At present, common heat pipes include capillary heat pipes (CHP),
gravity heat pipes (GHP), and micro heat pipes (MHP) [156]. Micro heat pipes mainly
include pulsating heat pipes (PHP), micro-grooved flat heat pipes (MGFHP), and loop heat
pipes (LHP). The characteristics of these different heat pipes, along with their advantages
and disadvantages in the power battery heat dissipation process, are listed in Table 3 [157].
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Table 3. Differences between different types of heat pipes in power battery cooling [157].

Types Advantages Disadvantages

CHP

It is capable of fulfilling the heat dissipation
needs of different electric fan configurations,
while also having less stringent placement

angle requirements.

There is a capillary limit. It is not suitable
for high heat production conditions, and the

cost is high.

GHP
According to the battery heat dissipation
conditions, it is easy to process into the
required structure, and the cost is low.

It is greatly affected by gravity and the
placement angle is limited. Designing a heat

dissipation system is difficult.

PHP

Due to the large equivalent heat transfer
coefficient, the battery has a good antigravity
performance and can effectively reduce the

temperature rise. It also starts quickly.

The operating characteristics are complex.
There are many factors affecting performance.
Theoretical and application research is in the

initial phase.

MGFHP

It can reduce the temperature difference
between batteries and the weight of the heat

dissipation structure, and it has good
anti-gravity performance.

Due to insufficient capillary force, it is not
suitable for high heat production conditions,

and it is difficult to produce.

LHP

It is suitable for long-distance heat dissipation,
the evaporation section and condensation

section can be designed separately and is less
affected by gravity.

It is not suitable for compact and distributed
high heat flux cooling conditions, and it is

difficult to start with low heat load.

Heat pipes have been used in electronics and aerospace because of their light weight,
low cost, high flexibility, and especially high thermal conductivity. In the battery cooling
system, early research used a combination of heat pipes and air cooling. The heat pipe
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coupled with air cooling can improve the insufficient heat dissipation under air cooling
conditions [158–161], which proves that it can achieve a good heat dissipation effect for
the power battery. However, the power battery is not able to dissipate the heat generated
by increasing its contact area alone, as the heat generation increases. Some scholars have
adopted the coupling of flat heat pipes and air cooling and found that the effect of heat
pipe coupling with forced air cooling is better [162], but there are cases where the cooling
rate of the battery gradually decreases with the increase of air speed [163]. When air speed
is increased, the cooling effect does not change significantly because of the poor thermal
conductivity of the air. Even adding fins [164–166] to the condensation section of the heat
pipe can only meet a part of the heat dissipation demand.

In addition to liquid cooling, heat pipes can help make up for the low specific heat
capacity of air. Using CHP, Behi et al. [167] proved that the liquid-cooling-coupled heat
pipe system outperforms an air-cooling-coupled heat pipe system in terms of cooling effect,
and the maximum temperature of the battery is reduced by about 30%. At the same time,
scholars have also studied the influence of heat pipe heights [168], inner diameters [169],
working fluids [170], and coolant conditions [171–173] on the heat transfer performance in
the case of a heat pipe coupled with liquid cooling. It is true that heat pipes combined with
liquid cooling have better cooling performance, but problems such as complex structure,
high costs, and easy leakage may hamper its development.

Figure 33 shows how heat pipes are combined with liquid cooling systems, while
Figure 34 demonstrates that the height of the conduction element (H) has the largest
effect on the performance of the heat pipes. The factors considered are the height of
the conduction element(H), the circumference angle (θ), the thickness of the con duction
element (δ), the battery spacing (D), and the random error (E).
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When the heat pipe is coupled with the solid-liquid PCMs, solid-liquid PCMs can ab-
sorb or store the heat generated by the battery through sensible heat or latent heat, and then
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transfer it away through the heat pipe, effectively reducing heat accumulation [31,174–176].
Figure 35 shows the heat transfer and exchange process in a heat pipe combined with PCM.
At this time, the heat taken by the heat pipe also needs to be taken away by air or liquid.
The heat pipe combined with a solid-liquid PCM cooling system not only has good cooling
performance, but also shows good thermal uniformity. The system can be supplemented
with air cooling or liquid cooling to further improve the cooling performance, but the heat
pipe needs to be reasonably designed, and choosing the appropriate cooling medium is
also very important.
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5.3. The Development Trends of PCM Cooling Systems

For the solid-liquid PCMs and gas-liquid PCMs represented by the heat pipe, the
combination of PCMs and other cooling systems has partly solved the limitations of
phase change cooling technology and expanded their application range. In the future,
the PCM cooling system will exhibit the following trends: increased cooling efficiency,
miniaturization and integration, and sustainability.

(1) Increased cooling efficiency: The cooling system of PCMs will further improve cooling
efficiency to cope with the increasing power density of the battery. By increasing the
thermal conductivity and thermal capacity of PCMs, a more efficient cooling system
is designed to improve the heat dissipation performance of the battery.

(2) Miniaturization and integration: The future PCM cooling system will develop towards
miniaturization and integration. In order to simplify the equipment and structure,
PCMs cooling systems need to become more compact and lightweight to meet the
needs. At the same time, PCM cooling systems may be integrated with other battery
management systems or electronic devices to improve overall system performance
and efficiency.

(3) Sustainability: Future PCM cooling systems will focus on sustainability and environ-
mental performance. The selection and preparation of phase change materials may
be more environmentally friendly and reduce the impact on the environment. At the
same time, PCM cooling systems may also be integrated with technologies such as
renewable energy to achieve more sustainable energy management.
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6. Summary

New energy vehicles are an important measure for global energy conservation and CO2
reduction, and the power battery is its key component. This paper briefly introduces the
heat generation mechanism and models, and emphatically summarizes the main principles,
research focuses, and development trends of cooling technologies used in the thermal
management of power batteries for new energy vehicles in the past few years.

6.1. Conclusions

Currently, the commonly used models for battery heat generation are electrochemical-
thermal models and electrical-thermal models. Scholars have conducted more research
based on multidimensional electrochemical-thermal/electrical-thermal models because tak-
ing the actual characteristics of the battery into account can provide a more comprehensive
and systematic description.

The air cooling BTMS boasts the most economical manufacturing cost and a compact
and reliable structure, making it suitable for small battery systems. The focus of air cooling
systems in recent years has mainly been the optimization of battery pack design, the
improvement of the cooling channel, and the addition of the thermal conductivity material,
as well as the exploration of combinations with other cooling methods. To deal with
unpredictable battery failure and thermal runaway, the trends in developing air-cooling
systems are improving cooling efficiency, reducing power consumption, and increasing
high-temperature adaptability.

The heat transfer coefficient of the liquid cooling system is high. Indirect liquid
cooling BTMS has the disadvantage of a complex structure and the risk of leakage of
electrically conductive coolant. While making use of an insulating and non-flammable
coolant to completely immerse the battery, immersion liquid cooling technology achieves
higher cooling performance. Searching for a suitable liquid coolant, optimal flow rate and
temperature are the main focus of immersion liquid cooling technology. In addition, future
development trends include efficient cooling technology, intelligent cooling control, heat
management integration, and light weight design.

The PCM cooling system includes solid-liquid PCMs and liquid-gas PCMs represented
by heat pipes. They use the characteristics of the phase change materials, absorbing a large
amount of heat in the process of phase transition, to achieve a high-efficiency cooling
effect. Searching for high thermal conductivity materials, optimal system design, and the
exploration of combinations with other methods are the main focuses of PCM cooling
systems. In the future, the PCM cooling system will witness development trends such as
increasing cooling efficiency, miniaturization and integration, and sustainability.

6.2. Future Prospects

At present, against the background of increasing energy density in future batteries,
immersion liquid phase change cooling technology has great development prospects.
This liquid cooling system lowers the temperature of the battery by introducing coolant
to improve its performance and lifespan. Compared to traditional air-cooling systems,
liquid-cooling systems can provide higher cooling efficiency and better control of the
temperature of batteries. In addition, immersion liquid phase change cooling technology
can effectively solve the heat dissipation problem of high-power batteries and improve their
safety performance. However, the high cost and heavy weight of liquid cooling systems, as
well as the need to find suitable coolants, are the main challenges that need to be overcome.

Due to current technological limitations, there is currently no perfect cooling system. In
the future, lithium-ion battery thermal management technology combining multiple cooling
methods is the main development direction. Suitable thermal management technologies
can be selected and combined based on the advantages and disadvantages of different
cooling technologies to meet the thermal management needs of different users. At the same
time, by adding sensors and intelligent control, the operation of the cooling systems can be
dynamically adjusted to control the temperature of the battery more accurately.
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