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Abstract: This study investigates the effectiveness of using conditional generative adversarial net-
works (CGAN) to synthesize Optical Coherence Tomography (OCT) images for medical diagnosis.
Specifically, the CGAN model is trained to generate images representing various eye conditions,
including normal retina, vitreous warts (DRUSEN), choroidal neovascularization (CNV), and diabetic
macular edema (DME), creating a dataset of 102,400 synthetic images per condition. The quality of
these images is evaluated using two methods. First, 18 transfer-learning neural networks (including
AlexNet, VGGNet16, GoogleNet) assess image quality through model-scoring metrics, resulting
in an accuracy rate of 97.4% to 99.9% and an F1 Score of 95.3% to 100% across conditions. Second,
interpretative analysis techniques (GRAD-CAM, occlusion sensitivity, LIME) compare the decision
score distribution of real and synthetic images, further validating the CGAN network’s performance.
The results indicate that CGAN-generated OCT images closely resemble real images and could
significantly contribute to medical datasets.

Keywords: OCT; modified CGAN; retina; transfer learning; interpretable analysis

1. Introduction

Optical coherence tomography (OCT) is based on the weak optical interferometer
principle [1] and has been widely used in ophthalmology over the past ten years. OCT
is capable of capturing various components of biological tissue, including the structural
organization, molecular composition, elasticity modulus, and some other parameters of
the organism, by the reflection and absorption of light [2]. These changes in biome param-
eters can be employed to identify various disorders, including oral epithelial dysplasia,
as well as for blood oxygen measurement, blood glucose monitoring, plaque detection,
and cancer [3,4]. OCT can be used to detect and diagnose eye problems on account of
its high resolution and non-invasive nature. For instance, OCT is necessary for clinical
decision making, monitoring macular and optic nerve illnesses, and precise determination
of choroidal thickness. The World Vision Report (WVR) published by the World Health
Organization (WHO) stated that more than 418 million people worldwide are afflicted with
eye lesions that can lead to blindness [5], and this number will increase exponentially. The
most prevalent disorders that cause vision loss in modern individuals are age-related mac-
ular degeneration (AMD) [6], choroidal neovascularization (CNV) [7], vitreous warts, and
diabetic macular edema (DME) [8]. With the advancement of machine learning [9] and deep
learning [10,11], increasingly high-precision models are employed to treat eye illnesses,
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merging this technology with current medicine to improve the decision-making capabili-
ties of medical systems. These models include AlexNet [12], VGGNet [13], DarkNet [14],
Inception [15], ResNet [16], DenseNet [17], MobileNet [18], NasNet [19], GoogleNet [20]
and SqueezeNet [21]. However, these deep learning models always require large, clear,
diversified, unique, and well-balanced images for model training, but the training data
acquisition is a hurdle problem. Kermany et al. [22] used data from 108,312 photos of
4686 patients. The accuracy cannot be further improved due to the difficulty of obtaining
huge quantities of medical data. According to the General Data Protection Regulation
(GDPR) [23] of European member states, a variety of data, including eye pictures, are
classified as biometric data and are considered private. The data are protected by law
regardless of whether the participants give consent to the institution’s use of the data
or not; it is difficult for the researcher to acquire large-scale OCT pictures for training
purposes. To remedy the data deficiency, traditional data can be used to enrich the diversity
of the training data (including rotating, panning, flipping, adding white noise, and adding
masking [24]).

GAN [25], an advanced adversarial learning network, is also applied in the field of
OCT image creation. Liu et al. [26] generated OCT images of AMD by combining GANs
(DCGANs and WGANs architectures) with style transformation. Using the generated OCT
images, Yanagihara et al. [27] trained a GAN to predict retinal abnormalities in untreated
AMD patients. Burlina et al. [28] trained high-resolution OCT images of AMD using
133,821 color fundus photos to demonstrate that DCNNs can produce realistic fundus
images. Zheng et al. [29] trained the OCT dataset on a publicly accessible GAN architecture
and demonstrated that the genuine and synthetic OCT images owned comparable image
quality. Using Fourier domain similarity, Tajmirriahi et al. [30] proposed a dual discrimi-
nator Fourier GAN (DDFAGAN) framework to generate more realistic OCT pictures. Seo
et al. [31] developed a new GAN model for few-shot image generation, focusing on lifelong
learning capabilities. You et al. [32] conducted a survey analyzing the use of GANs in
ophthalmology, covering a range of tasks and identifying key challenges. Shaopeng Liu
et al. [33] assessed six GAN models for predicting diabetic macular edema response to anti-
VEGF therapy with OCT images, identifying RegGAN as the most precise in replicating
post-treatment results. Furthermore, Xiaojun Yu et al. [34] developed MDR-GAN, a genera-
tive adversarial network incorporating multi-scale and dilated convolution res-network for
OCT retinal image despeckling, demonstrating superior denoising performance compared
to existing methods.

In this paper, four types of current fundus OCT data are trained using data augmenta-
tion [35] and conditional generative adversarial networks (CGAN) [36]. The fundus OCT
dataset is augmented using conventional data augmentation techniques with CGAN; the
expanded dataset is combined with the original dataset to form a new dataset (hybrid set),
which is used as a training set for image fidelity verification in multiple transfer learning
networks. Researchers have demonstrated that transfer learning [37] is an effective classifi-
cation strategy that can achieve a more rapid training effect by fixing optimized low-level
weight parameters. The output dataset quality of the CGAN network can be evaluated
through different transfer learning models. CGAN, which is also an opaque model, can
provide realistic data. Therefore, we attempted to employ GardCAM [38], LIME [39],
and occlusion [40] techniques to analyze the interpretability of the CGAN-generated im-
ages [41]. The regions that CGAN concentrates on training when synthesizing images of
particular retinal disorders are inferred in reverse by analyzing the regions that affect image
evaluation in the synthesized images. Meanwhile, the quality of the synthesized image of
the CGAN network can be further evaluated by comparing it with the interpretability of
the real images.

The main contributions of this paper are summarized as follows:

(1) A modified CGAN network is adopted to synthesize retinal OCT images for
data augmentation.
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(2) Transfer learning is innovatively used as a quality evaluation mechanism for the
generated image of CGAN.

(3) Interpretable analysis approaches (GardCAM, LIME, and occlusion) are introduced
for assessing the quality of retinal OCT pictures created by CGAN.

(4) Theoretical results demonstrate that high-quality retinal OCT pictures generated by
CGAN may function as a medical dataset.

The remainder of the paper is organized in further five sections: Section 2 examines the
theoretical foundations of the modified CGAN network. Section 3 explains preprocessing
methods and structural components of the CGAN network. The Section 4 summarizes the
data sources and theoretical outcomes. Section 5 discusses strategies for evaluating the
quality of CGAN synthetic images based on transfer learning and interpretability analysis
methodologies. Section 6 displays the results and future research directions.

2. Theoretical Background
Conditional Generative Adversarial Networks

A GAN consists of two major components, such as a generator and a discriminator,
D. The input generator, mapped by a random vector to a false image, is the likelihood of
identifying whether the input image is fake. Assume that the used dataset is x. Pdata(x) is
the distribution of our dataset, pz(z) is the distribution of random vectors, and Pg is the data
distribution of the generator. The random vector output is indicated by G(z; θg), whereas
the distribution of the dataset as x over the discriminator D is denoted by D(X; θd). The
following is the loss function for the GAN [25].

min
G

max
D

V(D, G) = Ex∼pdata(x) [logD(x)] + Ez∼pdata(z) [log(1 − D(G(z)))] (1)

The original GAN can only generate images based on random vectors. Hence the
discriminator can only be used to determine if the original GAN generated the input
image. CGAN adds label input to the structure of the original GAN so that the connection
between images and labels can be used during the training phase, and images with the
relevant labels may be created during the testing phase. In the CGAN generator, the extra
information y is added for restriction and is coupled to the random vector pz(z) via a fully
connected layer as the hidden layer input of the generator. As a discriminator for the
hidden layer input, the input picture x is connected to the additional information y. The
following is the CGAN loss function [36].

min
G

max
D

V(D, G) = Ex∼pdata(x) [logD(x|y)] + Ez∼pdata(z) [log(1 − D(G(z|y)))] (2)

It boils down to solving the difference between the distributions of Pdata and Pg
by sample. The objective is to identify an optimal generator G*, such that the difference
between the distributions of Pdata and Pg is minimized, and to derive the following equation
for G*:

G∗ = argmingDiv
(

Pg, Pdata
)

(3)

Instead of a generator, a novel discriminant D* is employed to solve the difference
between the distributions of Pdata and Pg, yielding the following equation:

D∗ = argmaxDV(D, G) (4)

At present, the optimization equation for G* is displayed below:

G∗ = argmingmaxDV(G, D) (5)

The main goal of the entire training procedure is to find the minimal JS divergence
between the distributions Pdata and Pg. CGAN consists of a generator and a discriminator
based on an optimized modification of GAN. Figure 1 illustrates the principle of CGAN.
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Figure 1 describes the structure of a Conditional Generative Adversarial Network (CGAN),
which is an advanced type of Generative Adversarial Network (GAN) that includes addi-
tional label information for generating targeted synthetic data, like images, conditioned on
these labels. This structure enhances the network’s ability to produce more specific and
relevant outputs during the training process by adding additional label information to
the generator and discriminator. The train phase creates images for the given labels and
associates the labels with the images. Supervised learning is achieved by setting the labels
as conditions.
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3. Proposed Framework

In this section, the pre-processing of image data and the application of CGAN for
generating synthetic images to enhance the original dataset are detailed as follows.

3.1. Data Pre-Processing

All OCT images will be preprocessed before being fed into the CGAN training network.
The real dataset contains five image types with different pixel sizes. The shortest edge in
each image type is used to determine the image length and width, and the image center
is intercepted and interpolated to scale the image pixels to 256 × 256 to standardize the
image size of the dataset. In addition, the image input to the CGAN must consist of three
RGB channels. The images in the real dataset are grayscale maps with a single channel.
All single-channel OCT greyscale images are converted to RGB images by copying the
grayscale map channel pixels into the remaining two channels.

3.2. Modified CGAN

This paper reconstructs a 100-element random vector projection in the generator
network as a 4 × 4 × 1024 array. Four convolution layers, three ReLU activation layers, and
three batch normalization layers are added to the generated array to increase its dimensions
to 256 × 256 × 3. For transposed convolutional layers, the filter size is 5 × 5, and the
number of layer groups decreases in increments of 3, 2, 3, and 3. The last layer is the tanh
layer. In the discriminator network, the input is a 256 × 256 × 3 picture. The final output
prediction score is determined by four convolutional layers, three leaky ReLU activation
layers, and three batch normalization layers. The discard probability of the discard layer in
the network is set to 0.5, and noise is added randomly to the image via the dropout layer.
The convolution layer has a 5 × 5 filter size. The number of layers is gradually reduced in
steps 3, 3, 2, and 3. The leakage ReLU scale has been set to 0.2, and the output layer contains
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a sigmoid layer with a filter size of 44 and an output range of [0, 1]. Layer-to-layer structural
interactions are illustrated in Figure 2 for the CGAN network component layers. Figure 2
shows a schematic of a Generative Adversarial Network (GAN), specifically a Conditional
GAN (CGAN), which is a type of deep learning model that is used to generate data that
are similar to some input data. It consists of two parts, a generator and a discriminator,
that are trained simultaneously through adversarial processes. The figure demonstrates
how the structure of each layer in the CGAN network contributes to the transformation
of the input noise into a fake image that is indistinguishable from real images, and how
the discriminator assesses these images. The notation ‘n’ refers to the number of feature
maps in a layer, and ‘s’ refers to the stride of the convolutional layers. This process is part
of training the GAN, where the generator learns to produce more realistic images while the
discriminator becomes better at distinguishing between real and generated images. The
end goal is for the generator to create images that are good enough to fool the discriminator
into thinking they are real.
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4. Model Experiment
4.1. Retinal Dataset

The OCT images of retinal illness used in the study are developed by Kermany [42].
The datasets generated and analyzed during the current study are available in the (Large
Dataset of Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images) reposi-
tory (https://data.mendeley.com/datasets/rscbjbr9sj/3, accessed on 2 June 2018).

The dataset contains 108,309 OCT image datasets with subfolders for CNV, DME,
DRUSEN and NORMAL labels and is organized into two folders (training and testing). We
selected 37,205 OCT photos of choroidal neovascularization (CNV), 8616 OCT images of
age-related macular degeneration vitreous warts (DRUSEN), 11,348 OCT images of diabetic
macular edema (DME), and 51,140 OCT images of normal eyes for training. This dataset is
referred to as the real dataset.

The research has provided additional details about the real dataset used in this study.
The selection of this dataset was based on its extensive coverage of various pathologies and
sufficient sample size, ensuring the accuracy and generalizability of the model training.
Additionally, detailed statistical information about the dataset, such as the number of
images per disease type, image resolution, and quality, has been thoroughly assessed
to ensure the validity and reliability of the study. Further enhancing the transparency

https://data.mendeley.com/datasets/rscbjbr9sj/3
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of our research, our research also provides detailed information on data preprocessing
and enhancement techniques used, which significantly impact the final performance of
the model.

4.2. Experiment Results

MATLAB 2022a is used for all software development for the experiments. Computer
configurations, 12th Generation Intel Core i9-12900KS 5.5 GHz CPU and NVIDIA GeForce
RTX 3090 Ti GPU with 10,752 CUDA units. Two thousand iterations are set for this
experiment, and it took around 161 h to complete the training. Figure 3 depicts the
modified CGAN [36] for training and sampling of images output.
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During training, randomized data enhancements such as random flips along the
axis, different rotation angles, and randomly shifted pixels are introduced to increase the
diversity of the data. Adam [43] is selected as the optimizer for training. In this study, the
CGAN is suited for the gradient-based stochastic objective function optimization algorithm
with a quicker processing performance than SGDM [44]. The training parameters are
adjusted to obtain the optimal settings: mini batch size = 256, learn rate = 0.0002, gradient
decay factor = 0.5. Of the samples, 70 percent are selected as the training set and 30 percent
as the experiment set. Figure 4 depicts the modifications made to the synthetic OCT at the
1st, 10th, 100th, 1000th, 1500th, and 2000th iterations. It can be seen that as the number of
iterations increases, the features of the image gradually become clearer. The feature image
is progressively more complete and clear in 500 to 2000 iterations.

An array of specified labels and random vectors are fed into the trained CGAN
network and then are converted to dimensional labels and fed through a generator to
produce synthetic graphics on the GPU. A total of 102,400 OCTs are generated by four
labels to create a synthetic dataset, and the real dataset is randomly combined with the
synthetic dataset to produce a hybrid dataset, as shown in Table 1. Figure 5 compares
the OCT images generated by CGAN for each class to real photos. It can be seen that the
original dataset has been expanded and that the synthetic images used in the expansion
have highly similar features to the real images.

Table 1. Dataset composition.

Dataset Normal Drusen DME CNV

Real Dataset [42] 51,140 8616 11,348 37,105
Generate Dataset 102,400 102,400 102,400 102,400
Hybrid Dataset 153,540 111,016 113,748 139,605
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5. CGAN Synthetic Image Quality Assessment
5.1. Transfer Learning-Based OCT Image Quality Assessment of Synthetic Retinal Diseases
5.1.1. Quality Assessment Models Based on Transfer Learning

Transfer learning is a crucial component of classification networks. As a technique for
machine learning, it enables the utilization of previously trained weights for various tasks.
Thus, we employ transfer learning principles to develop assessment tools.

The evaluation process is given below. AlexNet, VGGNet, DarkNet, Inception Net,
ResNet, MobileNet, NasNet, ShuffleNet, GoogleNet, Squeezenet, Xception are adopted
as pre-trained models, respectively. A dataset consisting of 70% training data and 30%
experiment data was utilized. A test set from the real dataset containing 250 sheets for each
category of retinal OCT illness was used.

The evaluation begins with pre-processing, where the input data are resize based
on the size of the inputs to the pre-trained network. The input of the dataset into the
18 pre-trained models is the most crucial step in the system evaluation and diagnosis.

Eighteen deep-learning models are trained in this system using the retinal OCT hybrid
dataset. With these models, we can validate the set to obtain a score for each model
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and prevent overfitting by utilizing a test set derived from the real dataset. The scoring
measures enable us to determine the performance of the model and whether the model has
received a high score. This indicates that the dataset employed by the model is of good
quality, ultimately meaning that the images created by CGAN are sufficiently “realistic” to
generate high-quality, highly usable synthetic retinal OCT images. The setups of models
utilized for transfer learning are displayed in Table 2. In the study, we found that the deeper
the layers, the longer the training time. Figure 6 illustrates the evaluation mechanism for
generative graphs, which is essentially based on multiple transfer learning.

Table 2. Model configuration.

Network Input Layer Batch
Size Epoch Learning

Rate Momentum Optimizer Time(Min)

AlexNet [45] 227 × 227 × 3 8 64 6 0.001 0.9 sgdm 32
Googlenet [46] 224 × 224 × 3 22 64 6 0.001 0.9 sgdm 46
ShuffleNet [47] 224 × 224 × 3 50 64 6 0.001 0.9 sgdm 89

SqueezeNet [48] 227 × 227 × 3 18 64 6 0.001 0.9 sgdm 25
Xception [49] 299 × 299 × 3 71 64 6 0.001 0.9 sgdm 264

MobileNet V2 [50] 224 × 224 × 3 53 64 6 0.001 0.9 sgdm 90
InceptionNet V3 [51] 299 × 299 × 3 48 64 6 0.001 0.9 sgdm 168
EfficientNet b0 [52] 224 × 224 × 3 82 64 6 0.001 0.9 sgdm 255
DenseNet201 [53] 224 × 224 × 3 201 64 6 0.001 0.9 sgdm 486
VGGNet16 [54] 224 × 224 × 3 16 64 6 0.001 0.9 sgdm 106
VGGNet19 [54] 224 × 224 × 3 19 64 6 0.001 0.9 sgdm 112
DarkNet19 [55] 256 × 256 × 3 19 64 6 0.001 0.9 sgdm 89
DarkNet53 [56] 256 × 256 × 3 23 64 6 0.001 0.9 sgdm 194
ResNet18 [57] 224 × 224 × 3 18 64 6 0.001 0.9 sgdm 50
ResNet50 [57] 224 × 224 × 3 50 64 6 0.001 0.9 sgdm 95

ResNet101 [57] 224 × 224 × 3 101 64 6 0.001 0.9 sgdm 150
Nasnet mobile [58] 224 × 224 × 3 - 64 6 0.001 0.9 sgdm 317
Nasnet large [58] 331 × 331 × 3 - 64 6 0.001 0.9 sgdm 3460
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5.1.2. Experimental Result

Figure 7 depicts the training plots of GoogleNet. The accuracy of the training set is
shown with a blue label, the cross-entropy loss training set with an orange label, and all
experiment sets with a black label (black dotted dashed line). Image normalization and
0.6 smoothings were performed to reveal the trend curve.
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5.1.3. Accuracy and Assessment

Precision has a direct bearing on the evaluation of image quality. A confusion matrix
was used to evaluate the performance of 18 models. The 18 models were evaluated based
on the experiment set accuracy, the test set accuracy, and the recall balance [59]. The
experiment set is used to determine the accuracy of the final result. Accuracy, Precision,
Recall, F1 score are calculated by the following formula:

Accuracy =
TP + TN

(TP + FP) + (TN + FN)
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 Score =
2TP

(2TP + FP + FN)
(9)

TP (True Positive) refers to a positive anticipated result and an actual positive outcome,
whereas FP (False Positive) refers to a positive expected result and an actual negative result.
TN (True Negative) is a pessimistic prediction and an actual negative result. FN (False
Negative) is a predicted outcome that is negative, but the actual result is positive. FN (False
Negative) refers to an anticipated negative consequence and an actual positive effect. Four
confusion matrices of the different model are displayed in Figure 8. Images a–d are the
confusion matrices for AlexNet, GoogleNet, ResNet18, and NasNetLarge, respectively. As
the performance of the models improves, the confusion matrix reveals that the proportions
of TP and TN steadily grow, converging towards the diagonal, while the ratios of FP and
FN gradually decrease.
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Figure 9 displays the four clock metrics measured using the experiment set for all
18 models. Alexnet still achieved an accuracy rate of 97.40%, even though it was the
worst. The accuracy of the remaining models ranged from 98% to 100%. Eleven models
reached at least 99% accuracy, representing 61% of all trained models. The accuracies of the
experiment and test sets are displayed in Table 3. All 18 models with varying performances
obtained extremely high levels of accuracy in the test set, with a variance of 3.84%. Due
to the low quantity and high quality of photos in the experiment set, the difference in
accuracy is only 2.50%. It is illustrated, therefore, from an accuracy perspective that the
main determinant of the high accuracy of the 18 models is the training set used, showing
that the CGAN-generated OCT images have distinct characteristics and properties similar
to those of real OCT images.

Table 3. Accuracy of the experiment and test sets of different models.

Model Experiment Set Test Set

AlexNet [46] 94.40% 97.40%
Googlenet [47] 96.59% 98.50%
ShuffleNet [48] 95.46% 99.10%

SqueezeNet [49] 92.93% 98.00%
Xception [50] 96.68% 99.10%

MobileNet V2 [50] 95.97% 99.90%
InceptionNet V3 [51] 97.53% 98.50%
EfficientNet b0 [52] 95.51% 98.50%
DenseNet201 [53] 97.70% 99.50%
VGGNet16 [54] 97.23% 99.70%
VGGNet19 [54] 97.48% 99.70%
DarkNet19 [55] 97.48% 99.40%
DarkNet53 [56] 97.72% 99.20%
ResNet18 [57] 97.23% 99.00%
ResNet50 [57] 97.25% 98.20%

ResNet101 [57] 97.52% 98.40%
NasNet mobile [58] 96.53% 99.00%
NasNet large [58] 98.24% 99.50%
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Accuracy is dependent on the anticipated outcome and the proportion of positive
samples that are accurate. The recall is based on the actual sample, which includes the
correct proportion of positive samples. Figure 9 depicts the precision and recall rates for
the four categories across the 18 models examined. The results are more even in NORMAL
and DME. The recall rate in DRUSEN is significantly higher than the precision rate.

In contrast, the CNV demonstrated a lower recall rate and a higher precision rate,
demonstrating a negative relationship between the two rates. NORMAL and DME achieve
a highly desirable situation, and DRUSEN and CNV have a significant correlation. Nonethe-
less, the differences are minor. By calculating the F-value, a detailed and comprehensive
evaluation can be obtained. The Fscore formula assigns distinct weights to the precision
and recall rates. The formulas are displayed below:

FScore = (1 + β2)
Precision × Recall

β2 · Precision + Recall
(10)

where β = 1.
The F1 Score is a weighted average of the precision and recall that reflects the quality

of the model. After reconciliation and averaging, the F1 Score is in optimal condition, as
shown in Figure 9. The F1 Score ranges between 99.4% and 100% for NORMAL, 95.8% and
100% for DRUSEN, 99.2% and 100% for DME, and 95.3% and 100% for CNV. The accuracy,
recall, and F1 Score statistics demonstrate that the model trained with the hybrid dataset is
of the highest quality possible. Furthermore, it is demonstrated that the CGAN-generated
images exhibit specific characteristics and properties similar to those of real OCT images.

5.2. OCT Image Quality Assessment of Synthetic Retinal Diseases Based on Interpretable
Analysis Methods
5.2.1. Interpretable Analysis Method

Interpretable analysis techniques emphasize the display of pictures or convolutional
layers, employing an intuitive visual perception to explain the behavior of the network [60].
Although deep learning is challenging for human understanding as a black box, inter-
pretable analysis can be used to describe the logic of decision-making.

This study employs procedures that lend themselves to refined analysis (Grad-CAM [38],
occlusion sensitivity [39], and LIME [40]). The degree of “realism” of the composite image
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is assessed by comparing the mapping features of the real image and the composite image
in the classification network. Figure 10 illustrates the evaluation mechanism based on the
interpretable analysis methodology.
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5.2.2. Image Quality Assessment

Each visualization technique relates to a distinct function for image output production.
In this section, Grad-CAM, occlusion sensitivity, and LIME methodologies are used for
evaluation, respectively.

For example, the GoogleNet training model was evaluated by selecting eight OCTs,
two of each category, including one real image and one synthetic image. Three visualization
and analysis techniques are used for deep learning GoogleNet network decision-making
behavior, using real and synthetic images for theoretical comparison.

The Grad-CAM technique [38] is a gradient-based class activation heat map and
extends the class activation mapping technique (CAM) [46]. CAM calculates scores for the
gradient impact of convolutional features by determining those that play an essential role
in classification. The stronger the reliance, the steeper the gradient. Figure 11 depicts a
Grad-CAM plot of eight OCT images, with the genuine images [42] in the first row and the
synthetic images in the second. The greater the score and gradient height, the darker the
hue. The graphic depicts a color mapping with dark blue as the lowest value and red as the
highest. Comparing real and synthetic images, the distribution of colors within the same
category is comparable.
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Occlusion sensitivity [40] is a heat map based on perturbations. The region is perturbed
with masked blocks applied to the input data in this method. The occlusion sensitivity is
attained by changing the masking blocks to isolate the components that play a significant
role in categorization. To achieve the highest degree of occlusion sensitivity, the masks
and Stride parameters must be set to precise levels for optimal masking sensitivity. Set
MaskSize = 15 and Stride = 5. Figure 12 illustrates the occlusion sensitivity maps for each
of the eight OCT images. The picture depicts how each component contributes to the classi-
fication. The larger the contribution, the darker the color. When comparing the genuine
image to the composite image, the contribution of each component is comparable in images
with similar compositions. The NORMAL and DRUSEN outside retinas exert the most
influence on the DME and CNV, whereas the inner and outer retinas affect the CNV. Again,
the largest contribution is typically centered in the inner and outer retinal deformations.
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The LIME method [39] is a proxy model feature map that is perturbation-based.
By approximating the classification behavior of the deep learning model to a smaller
proxy model (regression model), the element scores of the picture are generated using the
proxy model to determine the significance of each image component. Figure 13 displays
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the LIME maps for each of the eight OCT images. A regression tree is a simple model
employed. The individual map area blocks show the relevance of the categorization of the
photos. The darker red blocks are more significant. Comparing real and synthetic images,
the categorization networks concentrate on similar areas, with NORMAL and DRUSEN
focusing on the outside retinal area, DME and CNV being impacted by both the inner and
outer retinal areas, CNV being affected by the inner retinal area over a greater area.
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The results show that the synthetic images make similar contributions to the real
images in the classification network, with an overall approximate distribution of score
regions. It is illustrated that CGAN-synthesized OCT images have the main characteristics
of real images.

6. Conclusions

This paper presents a modified CGAN to produce high-quality retinal OCT images,
and two assessment methods are proposed to evaluate the quality of the synthetic images.
The first evaluation method is based on 18 models with transfer learning, and calculations
of accuracy, precision, recall, and F1 Sore parameters were carried out. In addition, an
interpretable analytical method is based on three visualization techniques was used to
comparing the contributions of the real and generated images to the classification model.
Separate analyses were conducted on the classification network’s conclusions regarding
the real and artificial images. Both evaluation techniques demonstrate that the quality of
CGAN-generated OCT images of retinal disease is comparable to that of real OCT images
of retinal disease. The generative OCT images from CGAN can be substituted for actual
images. The primary drawback is the limited resolution of the generative images. Future
study will focus on pre-processing and super-resolution of the images in order to enhance
the resolution of CGAN generative images.
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