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Abstract: Drug-resistant Morganella morganii, a rod-shaped, Gram-negative, facultatively anaerobic 

bacillus belonging to the Enterobacteriaceae family, is a growing worldwide health concern due to 

its association with high morbidity and mortality rates. Recent advancements in machine learning, 

particularly Alphafold 2′s protein structure prediction using local physics and pattern recognition, 

have aided research efforts. This study focuses on the enzymatic activity of aminoglycoside N6′-

acetyltransferase (aacA7), a critical transferase enzyme in bacteria that confers resistance to amino-

glycosides. AacA7 modifies aminoglycoside molecules by catalyzing the acetylation of their 6′-

amino group using acetyl-CoA, rendering antibiotics like kanamycin, neomycin, tobramycin, and 

amikacin inactive. We propose that Doripenem and OncoglabrinolC can interact with aacA7, poten-

tially modifying its enzymatic activity. Molecular docking analysis of aacA7 with 22 drug targets 

revealed OncoglabrinolC as the most promising candidate, exhibiting a binding energy of −12.82 

kcal/mol. These two top candidates, OncoglabrinolC and Doripenem, were then subjected to 100 ns 

of molecular dynamic simulations to assess their dynamic conformational features. Furthermore, 

the PredictSNP consensus classifier was used to predict the impact of mutations on aacA7 protein 

functionality. The study also investigated the interaction of wild-type and mutant aacA7 proteins 

with both Doripenem and OncoglabrinolC. These findings provide valuable insights into the bind-

ing behavior of OncoglabrinolC and Doripenem as potential lead molecules for repurposing against 

aacA7, potentially reducing the pathogenicity of Morganella morganii. 

Keywords: M. morganii; aacA7; virtual screening; molecular docking; molecular dynamics 

 

1. Introduction 

Morganella morganii (Proteus morganii), a rod-shaped, Gram-negative, and elective an-

aerobic bacillus, falls in the community Proteeae of the Enterobacteriaceae family. It is di-

vided into two sub-species, namely, morganii, and sibonii [1–3]. The morganii species is 

known to cause mainly post-operative wounds and urinary tract (UT) problems. M. mor-

ganii can cause severe infections of diverse tissue in patients of various age groups. Spe-

cific clinical M. morganii isolates show confrontation against several antibiotics by carry-

ing numerous resistant genes (such as blaNDM-1, and qnrD1), in this manner imposing a 

seriously fatal challenge for clinical infection monitoring and control. In addition, the 

sharp drafting ability of the organism is one of its salient features. Collected data indicate 

that M. morganii causes infections associated with kidney disease. This deadly pathogen 

often results in the heavy loss of manpower in some cases [3]. This pathogenic organism 

cannot be ignored due to increased resistance and acute conditions. Additionally, 
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virulence evolution makes M. morganii a significant non-negligent facultative pathogen. 

M. morganii causes various fatalistic infections, like sepsis, abscess, chorioamnionitis, pur-

ple urine bag syndrome, purpuric allantoic syndrome, and cellulitis [2,3]. 

Peritoneal infection following pleural empyema cannot be treated as a commonly 

occurring problem. Peritonitis and concomitant pleural empyema have been reported in 

immunocompromised patients based on different pathogenic methods and from diverse 

pathogenic microorganisms [4]. Amini and colleagues [4] reported a case of peritonitis 

and concomitant pleural empyema with an abnormal microbe in an immuno-competent 

host. In normal circumstances, M. morganii is considered habitually as intestinal commen-

sal. It is normally found to be the culprit in pyogenic infections and urinary tract infec-

tions, but hardly causes CNS problems, specifically a brain abscess. There are fewer avail-

able reports of M. morganii as a problematic player in a brain abscess [1]. High chances of 

the presence of this microbe are crucial infection transfer of posed lead natural compound 

against was inhibitory al in cases of a brain abscess, resulting in otogenic contamination. 

Patil and group [1] reported an uncommon case of M. morganii, bio-group-A in a brain 

abscess [1]. The identification of a novel genomic island (MMGI-1) and Tn6835 in an ex-

travagant resilient M. morganii Strain [5], along with most isolates of morganii, were found 

to be susceptible to amikacin, ceftazidime, and imipenem. Many patients recuperated af-

ter getting an antibiotic cure. Almost 15% of patients lost their lives despite the therapy. 

Gentamicin (a highly frequent drug) was used in the management of infections caused by 

M. morganii [2], which is also developing resistance day by day. The drug resistance of M. 

morganii has increased in recent years, and the increased resistance and resulting virulence 

are mainly introduced via extra genetic and mobile elements. The infections caused by 

multidrug-resistant (MDR) or even the extensively drug-resistant (XDR) M. morganii often 

result in their failure during the clinical treatment [3,6–9]. A six-year study (2006–2011) at 

Changhua Christian Hospital in Taiwan examined samples from patients exhibiting 

symptoms of Gram-negative bacterial infections. Out of 82,861 samples, 1219 (1.47%) 

tested positive for M. morganii, making it the ninth most common cause of clinical infec-

tions at the hospital. In total, 17 M. morganii-associated infections have also been reported 

in other regions, including Japan, the United States, and Spain. However, these cases are 

often scattered and primarily occur in immunocompromised patients [3]. 

Aminoglycoside N(6′)-acetyltransferase type 1 (aacA7) protein (commonly found in 

M.morganii), is encoded by the aacA7 gene [10]. This gene is present in the transposons, 

integrons, chromosomes, and plasmids of various Gram-negative bacterial species, and is 

responsible for most amikacin-resistant strains [11]. Other names for this protein are ami-

noglycoside resistance protein and AAC(6′)-I. One of its subtypes, AAC (6′)-Ib, plays a 

significant role in combination with enzymatic inhibitors such as the aminoglycoside re-

sistance enzyme [12]. 

Aminoglycoside N(6′)- acetyltransferase type 1 (aacA7) protein catalyzes the ex-

change of an acetyl bunch from acetyl-CoA to the 6′- amino gathering aminoglycoside 

particles, offering protection from anti-infection agents accommodating the active ring 

(purpurosamine) together with netilmicin and tobramycin, while also being less signifi-

cant to gentamicin and amikacin [10]. The aacA7 protein is related to the N-acetyltrans-

ferase superfamily (GCN5-related) and provides confrontation to many aminoglycosides 

including amikacin (AMK), tobramycin, and kanamycin (KAN), which are composed of 

enzymes like histone acetyltransferases GCN5 and Hat1 [13,14]. 

The aacA7 protein catalyzes the transfer of the acetyl group from acetyl-CoA to the 

6′-amino group of aminoglycoside, implying defiance to antibiotic drugs containing the 

purpurosamine ring. These include netilmicin and tobramycin and, to some extent, gen-

tamicin and amikacin [1–5,10,15]. The protein initially acts by binding to the 30S ribosomal 

subunit composing the aminoacyl site of 16S ribosomal RNA, thus leading to the inhibi-

tion of translocation using the deceptive reading of the genetic code [16]. The initial re-

quirements for peptide synthesis steps, such as mRNA binding and the binding of the 50S 

ribosomal subunit, are not disturbed. Still, the extension does not occur due to the 
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interruption of the phenomenon to ensure translation accuracy. The established activity 

of antimicrobial is usually bactericidal to the susceptible Gram-negative bacilli [17]. It has 

also been observed that aminoglycosides at sub-inhibitory quantities could alter transcrip-

tion rates. Lower concentrations of amikacin could disrupt the construction of the Z ring, 

leading to cell division inhibition [18,19]. 

Aminoglycosides (AGs) bactericidal antibiotics were initially isolated from Strepto-

myces and Micromonospora and show interest in opposition to Gram-negative and Gram-

positive pathogenic microbes and mycobacteria. Many AGs have progressively been 

found and developed since the invention of the first-in-class AG, streptomycin. This de-

velopment has kept them clinically applicable, regardless of the inherent nephrotoxicity. 

In the current scenario, amikacin, gentamicin, and tobramycin are the maximum advised 

aminoglycosides for systemic management inside the US against bacterial infections. Kan-

amycin A is likewise used systemically; however, it is most effective in dealing with the 

resistance of M. tuberculosis in sufferers who display no reaction to first-line anti-TB treat-

ments [20,21]. 

Aminoglycosides and their mode of action are predicated mainly based on the bac-

terial ribosome in the foremost groove of the 16S rRNA subunit. The aminoglycoside bind-

ing causes genetic code misreading, generating misfolded proteins, and eventually leads 

to the death of the cell. Despite being some of the oldest antibacterial dealers till now, 

aminoglycosides have preserved huge effectiveness over a long time and continue to be 

typically used as antibiotics. On the other hand, bacterial resistance to aminoglycosides is 

spreading at a rapid scale. The earliest account of resistance may be dated again to 1946, 

when medical doctors at the Mayo Clinic found sufferers with tuberculosis wearing traces 

that had been one thousand instances extra immune to streptomycin [22].  

For 3D structure prediction, many computer techniques for protein structure prediction 

have been applied. These techniques include threading, which uses comparable energy func-

tions to assess a sequence’s matching with a fold that was produced experimentally. Tem-

plate-based modeling, in which patterns of evolutionary variation are used to match a se-

quence to a sequence with a known structure, is now the most extensively utilized and gener-

ally dependable method. The techniques referred to as fold recognition, comparative model-

ing, and homology modeling are all included in template-based modeling [23]. 

Neural networks have been used for structure prediction for a long time, but their effec-

tiveness in improving structure prediction is relatively new. The protein structure predic-

tion problem involves translating evolutionary couplings into protein distance matrix im-

ages and then incorporating the predicted distances into a heuristic system for 3D coordi-

nate prediction. AlphaFold uses cutting-edge neural network topologies and training 

techniques to significantly increase the accuracy of structure prediction. The basic amino 

acid sequence is used by the AlphaFold network to directly predict the 3D coordinates of 

all heavy atoms for a particular protein [24]. The main objective of this study is to use 

recent machine learning/deep learning algorithms for structure prediction and minimiza-

tion such as Alphafold2 to find certain potent molecules that break the acetylation reaction 

of the drug molecule itself, and show an inhibitory mechanism against the protein to slow 

down its pathogenic activity. Additionally, the study aimed to explore the repurposing of 

certain first-line antibacterials like Dorepenam, Silibinin, and Malvidin. Drug repurposing 

or drug repositioning is a way to carry forward the drug discovery procedure through the 

identification of a novel and potent clinical use for a pre-existing drug approved for a 

different ailment or indication [25].  
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2. Material and Method 

2.1. Protein Sequence Retrieval 

The FASTA sequence of aminoglycoside N(6′)-acetyltransferase type 1 of M. morganii 

(Uniprot ID: Q15BH7) obtained from UniProt KB [26–28] is given below: 

MDSSPLVRPVETTDSASWLSMRCELWPDGTCQEHQSEIAEFLSGKVARPAAVLIAVAP 

DGEALGFAELSIRPYAEECYSGNVAFLEGWVVSARRQGVGVALVKAAEHWARGRGC 

TEFASDTQLNSASTSAHLAAGFTEVAQVRCFRKPL 

2.2. Predictions for Stability and Pathogenicity 

The (PredictSNP) [29] tool, also a consensus classifier, which is a combination of 9 

PredictSNP, MAPP, PhD-SNP [30], PolyPhen-1, PolyPhen-2 [31], SIFT [32,33], SNAP [34], 

nsSNPAnalyser, and PANTHER [35] is used to get the indices for the change in the stabil-

ity and pathogenicity of the aacA7 protein upon mutation. These are well-known tools for 

calculating the effects of mutation on the functioning of the protein. 

2.3. Homology Modeling 

The 152-amino-acid-long aacA7 protein was the target chosen sequence for the ho-

mology model. The sequence was downloaded from UniProt [28] and uploaded to various 

web servers, i.e., I-TASSER [36,37], Phyre2 [23], Alphafold2 [38], and Swiss Model [39], 

for a comparative homology modeling of the 3D structures of the desired protein.  

The I-TASSER technique includes a neural network; however, threading, assembly, 

and refining are the steps used in the I-TASSER technique. The query sequence is initially 

run through the PDB library to find local pieces that are suitable for adoption in a subse-

quent structural reassembly. Three-dimensional (3D) protein structure comparative mod-

eling is performed using the SWISS-MODEL system. The server handles all the aspects of 

template selection, alignment, and model construction automatically. Phyre2, which 

builds 3D models, predicts ligand binding sites, and analyses the impact of amino-acid 

variations for a user’s protein sequence using advanced homology detection techniques.  

With the use of cutting-edge training techniques and innovative neural network to-

pologies, AlphaFold significantly increases the accuracy of structure prediction. The basic 

amino acid sequence is used by the AlphaFold network to directly predict the 3D locations 

of all heavy atoms for a particular protein. There are two primary phases in the network. 

Initially, the inputs are processed by the network backbone via a unique neural network 

block known as the Evoformer, which is processed via many layers. Both attention-based 

and non-attention-based components may be found in various Evoformer blocks. This is 

followed by the structure module, which adds an explicit 3D structure to the network by 

rotating and translating each protein residue.  

Energy minimization was performed on all the modeled structures using the Yasara 

server [40]. The protein models were validated via Ramachandran plots [41,42], the ProSA 

web server [43], ERRAT [44], and Verify3D [45], and in PROCHECK for the Gfactor cal-

culations [46]. 

2.4. Ligand Retrieval  

Different classes of antibiotic drugs have been on the market to treat many bacterial 

infections. Twenty-one random drugs were used, e.g., Silibinin, Doripenem, Azithromy-

cin, telithromycin, tetracycline, doxycycline, and roxithromycin. All ligands were re-

trieved from the Pubchem database [47,48], minimized from the Yasara energy minimiza-

tion server [40], and subjected to docking studies with wild-type and mutated forms of 

the aacA7 protein. 
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2.5. Ligand Toxicity Prediction 

Ligand toxicity prediction was performed using the ProTox 3.0 web server 

(https://comptox.charite.de/protox3/, accessed on 24 February 2024). The prediction incor-

porated similarity, the propensities of the fragments, and frequent features, using a ma-

chine learning model based on 61 different models for the toxicity prediction. Several fea-

tures included endpoints such as toxicity related to acute, organ, toxicology, molecular 

initiating, and metabolism. Also, Tox21 pathways including adverse outcomes and tox-

icity targets were considered. The percentage accuracy of the prediction was also calcu-

lated and reported in the results table. The reported LD50 values correspond to mice. 

2.6. Molecular Docking of aacA7 with Known Drugs 

Twenty-one random drug molecules were docked against the aacA7 protein, and the 

highest-scoring compounds with the least binding energy were found for further studies. 

The AutoDock 4.0 suite [49] was used to conduct the docking purpose. This software is 

perfectly suitable for the calculations of the ligands docking to the receptors. All interme-

diary steps like grid box creation were finalized using AutoDock Tools GUI (ADT) [49]. 

The prepared files were saved in the format given by AutoDock, known as PDBQT. The 

grid map was prepared using AutoGrid 4.0 using a grid box. The size of the grid was set 

to 126 × 126 × 126 XYZ points with a grid space of 0.375 Å, and the grid center was selected 

at X = −7.564, Y = −28.149, and Z = −32.156 dimensions.  

A scoring grid calculation was performed from ligand geometry to shorten the time 

of computation. Top conformations were chosen using the Lamarckian Genetic Algorithm 

(LGA) [50]. A maximum of 20 conformers was set to be considered for every compound. 

The population size of 150 was set. The number of energy evaluations was set to 2,500,000, 

the number of generations to 27,000, the number of the top individual that automatically 

survived to 1, the mutation rate to 0.02, and the crossover rate to 0.8, all the maximum 

values that could be set. The rest of the parameters were selected as default with 10 runs. 

The protein was rigid while the ligands were kept flexible for docking analyses, as the 

entire complex of both the protein and ligand would be further flexible in the molecular 

dynamic simulations. The lowest binding energy poses were obtained and matched with 

the receptor for later analysis. 

2.7. Molecular Dynamic Simulations 

2.7.1. System Setup 

To study the aacA7 protein–ligand complex, molecular dynamic (MD) simulations were 

performed. The CHARMM36 force field [51] was used, and the simulations were run for a 

total of 400 nanoseconds. Solvated systems using scripts in VMD [52] were prepared, and sim-

ulations were run using GROMACS 2020.4 [53–55]. The system consisted of the protein com-

plex, water molecules, sodium and chloride ions, and 150 mM NaCl. 

The system was first minimized for 3200 steps, followed by 1000 picoseconds of equi-

libration. The MD production run was then conducted for 100 nanoseconds each for a 

total of 400 nanoseconds. The NPT ensemble was used, with a pressure of 1 bar and a time 

step of 2 femtoseconds. The temperature was set to 300 Kelvin with a low damping coef-

ficient, and pressure was controlled using the Nose–Hoover Langevin piston. Electrostat-

ics were calculated using the particle mesh Ewald (PME) method, with a cutoff of 12 ang-

stroms for short-range and Van der Waals electrostatics. Each simulation was replicated 

twice with an initialized random seed to obtain average scores. 

2.7.2. Data Analyses 

Data analysis was performed using Gromacs analysis scripts. The data were plotted 

using Gnuplot, a plotting software available at http://gnuplot.info (accessed on 24 Febru-

ary 2024). The hydrogen donor and acceptor were calculated with a cutoff of 3.6 ang-

stroms, including the backbone and side chain. Other analyses, such as the radius of 
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gyration (Rg), solvent accessible surface area (SASA), secondary structure content (DSSP), and 

hydrogen bond formation, were calculated using TCL bash scripts. RMSD, RMSF, SASA, total 

energy, hydrogen bonds, and Rg were plotted using Prism (https://www.graphpad.com/fea-

tures, accessed on 24 February 2024), a data visualization software. 

2.7.3. Analysis of Binding Free Energy (MMPBSA) from MD Simulations 

The analysis module MMPBSA.py was used for the free energy calculation and interac-

tion energy of the ligand. The mathematical equation used for this calculation was as follows: 

∆Gbind.solv = ∆Gbind.vaccum + ∆Gsolv.complex − (∆Gsolv.ligand + ∆Gsolv.receptor) (1) 

The all-states solvation energy was calculated using Poisson Boltzman (OB) and Gen-

eralized Born (GB) [56,57]. This analysis disclosed the contribution of the electrostatics of 

the solvation state. The data were plotted using Prism. 

2.7.4. Chemical Similarity Index 

The chemical similarity index was performed using an online tool (ChemMine, 

https://chemminetools.ucr.edu/, accessed on 24 February 2024). The chemical structures 

in the SMILES format were uploaded and checked for the chemical similarity index using 

default settings. 

3. Results and Discussion 

3.1. Sequence Retrieval and Primary Sequence Analysis 

The target sequence of the aminoglycoside N(6′)-acetyltransferase type 1 (Uniprot ID: 

Q15BH7) of M. morganii was acquired from the Uniprot database [28,58] and put through 

to the Expasy Protparam tool [59] for primary structural investigation. 

3.2. Physico-Chemical Analysis of the Primary AAC6_MORMO Sequence 

The primary protein structure analysis by Expasy’s ProtParam (Table 1) showed that 

AAC6_MORMO (Q15BH7) contains 152 residues with an estimated molecular weight of 

16,376.45. The theoretical pI was predicted to be 5.18; hence, the protein was predicted to 

be acidic. 

Table 1. Various physicochemical properties of AAC6_MORMO (Q15BH7) from M. morganii were 

predicted using the Expasy Protparam tool [59]. 

Parameters Predicted Value 

Molecular weight 16,376.45 

Theoretical pI 5.1 

Number of positive residues 13 

Number of negative residues 18 

Half-life mammalian reticulocytes (in vitro) 30 h 

Half-life yeast (in vivo) >20 h 

Half-life E. coli (in vivo) >10 h 

Extinction coefficient 26,720 

Instability index 40.17 

Aliphatic index 77.76 

GRAVY index 0.059 

  



Processes 2024, 12, 1047 7 of 23 
 

 

3.3. Phenotypic Analysis for Stability and Pathogenicity Prediction 

A whole-protein-sequence SNP-based mutational analysis was performed using a 

consensus classifier (PredictSNP) [29]. Mutations showing deleterious effects in all seven 

programs of PredictSNP have been tabulated in Supplementary Table S1. Out of all these 

mutations, one random mutation E86K was chosen for the wild-type (WT) and mutated 

protein interaction studies with the lead compound selected after docking. 

3.4. Tertiary Structure Prediction, Energy Minimization, Structure Analysis, and Visualization 

Four web servers and Alphafold2 were utilized to get the best 3D structure of the 

aacA7 protein. The evaluation of the predicted 3D structure was accomplished using the 

template and the energy-minimized structure to discover the accuracy of the protein 

model. The stereo-chemical balance of the expected structure was calculated with 

PROCHECK [46]. The assessment of protein models with 3D sequence profiles was per-

formed using Verify 3D [60,61]. ERRAT [44] was used to investigate the facts of non-

bonded interactions among distinctive atom types. All the visualizations were carried out 

using the DeLano Scientific PyMol 3-D molecular viewer. All analyses resulted in the ac-

ceptance of the model generated by Alphafold2, which is based on machine learning and 

artificial intelligence as the best energetically stable homology model of the aacA7 protein. 

All the results of homology modeling are tabulated in Table 2. 

Table 2. Structure validation of homology models as obtained from various web servers. 
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Swiss modeling 92.1 7.1 0.8 0.0 0 - 146 85.62 94.35 4E8O.1A 

Alphafold2 92.0 5.6 2.4 0.0 1 - 152 88.19 88.19 1s3zb.1B 

Figure 1 demonstrates the 3D model of aacA7 using Alphafold2. The Ramachandran 

plot (Supplementary Figure S1) of the homology model generated utilizing PROCHECK 

shows that ~90% of the protein residues are spaced out under the central region, which 

delivers the model’s message as stereo-chemically stable. The homolog of the same pro-

tein from Salmonella enteritidis (UniProt-Q9R381) shows the structure in a dimer form, 

which has been resolved through X-ray crystallography. Supplementary Figures S15 and 

S16 also show the monomeric structure of aacA7 obtained from Alphafold2, along with 

the validation graph.  
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Figure 1. Modeled dimeric structure of AAC6_MORMO (aacA7) protein of M. morganii obtained 

from Alphafold2 deep learning structure prediction. Chain A is shown as a purple cartoon, while 

chain B is shown as a green cartoon. 

3.5. Molecular Docking of aacA7 with Drug Molecules 

Molecular docking calculations were conducted to discover the potential inhibitory 

action of the available drugs in the market for general microbial infection. These drug 

molecules were tested with the homology model of the aacA7 protein created by the 

Phyre2 server. The protein was energy-minimized after modeling to bring it down to its 

native energy state before employing the docking protocol. Twenty-one different drugs, 

including azithromycin, doxycycline, tetracycline, silibinin, doripenem, roxithromycin, 

and telithromycin, were used for protein–ligand docking. The docking was performed 

using AutoDock 4.2 [62–64], a molecular docking software. Table 3 summarizes the infor-

mation obtained from the in silico molecular docking experiment. Two best-bound drug 

candidates, Oncoglabrinol-C and Doripenem can be seen in Figures 2 and 3, respectively, 

with the aacA7 protein. The protein–ligand interaction profile can also be observed as a 

leaflet at the right of the corresponding figures.  

Table 3. Molecular docking results of aacA7 protein and 21 drug molecules of our choice. Binding 

energy, inhibition constant, and interacting residues are shown clearly. 
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Doripenem 

 

420.5 0.84 −10.28 −43.01 29.23 

Gln124, 

Asn127, 

Trp88, 

Arg71 

Asp122, 

Glu86, Trp6 

Silymarin 

 

482.4 2.4 −9.88 −41.33 57.7 

Thr140, 

Gly138, 

Glu108, 

Thr123 

Ala120, 

Ser121, 

Val142, 

Asp122, 

Cys77, 

Phe139 

Silibinin 

 

482.4 2.4 −9.86 −41.25 59.31 

Thr140, 

Gly138, 

Glu108, 

Thr123 

Ala120, 

Ser121, 

Val142, 

Cys77, 

Phe139 

Malvidin 

 

331.3 - −7.78 −32.55 1970 
Ala133, 

Arg96 

Ala94, 

Gly100, 

Ala137 

Tetracycline 

 

444.4 −2 −8.87 −37.11 316.66 

Val145, 

Thr123, 

Glu76, 

Glu75 

Leu125 

Berberine 

 

336.4 3.6 −8.55 −35.77 540.44 Thr140 

Val142, 

Phe119, 

Glu118, 

Ala120, 

Ser121, 

His134, 

Asp122, 

Thr123 

Taxifolin 

 

304.3 1.5 −7.3 −30.54 4460 

Glu141, 

Ser121, 

Val145 

Leu125 
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Cyanidin 

 

287.2 - −7.78 −32.55 1970 

Thr123, 

Thr140, 

Val145 

Leu125 

Catechin 

 

290.3 0.4 −7.84 −32.80 1790 

Thr123, 

Thr140, 

Val145 

Leu125 

Telithromycin 

 

812.0 4.2 −7.27 −30.41 4710 
Glu86, 

Leu125 

Phe84, 

Cys147, 

Thr123, 

Asp122 

Relacin 

 

653.6 −2.4 −8.74 −36.56 389.94 

Glu86, 

Gln124, 

Cys147 

Trp26, 

Asp122, 

Arg146 

Pyrimethamine 

 

248.7 2.7 −7.47 −31.25 3360 

Cys77, 

Glu118, 

Thr140 

Ala120, 

His134, 

Val142 

Doxycycline 

 

444.4 −0.7 −9.28 −38.82 157.63 

Glu75, 

Thr117, 

Glu118, 

Phe119, 

Thr140 

Cys77, 

Ala120, 

Gly138, 

Phe139, 

Val142 
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Picloram 

 

241.5 2.2 −5.27 −22.04 136,840 

Ala94, 

Gln97, 

Val101, 

Gly98, 

Arg96 

Trp88, Arg95, 

Val90, 

Ala136, 

Ala133, 

Gly100, Val99 

Azithromycin 

 

749.0 4 −8.86 −37.07 319.06 Cys147 

Asp122, 

Glu75, Phe84, 

Val145, 

Ser121, 

His134, 

Thr123, 

Leu125, 

Arg146 

Erythromycin 

 

733.9 2.7 −5.7 −23.84 66,170 
Asp122, 

Arg149 

Cys147, 

Glu76, 

Ala143, 

Val145 

Ascorbic Acid 

 

176.1 −1.6 −4.83 −20.20 288,630 

Gln97, 

Val99, 

Gly100, 

Val101 

Val90, Arg95, 

Arg96 

Clarithromycin 

 

748.0 3.2 −6.34 −26.52 22,500 
Thr123, 

Ala143 

Glu86, 

Asp122, 

Gln124, 

Leu125, 

Cys147 
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Adenosine 

 

267.2 −1.1 −4.97 −20.79 226,220 

Phe119, 

Val142, 

Ala143 

Ala120, 

Thr123 

Roxithromycin 

 

837.0 3.1 −4.77 −19.95 320,270 
Leu125, 

Cys147 

Asp122, 

Gln124, 

Arg146, 

Arg149 

It can be easily observed that OncoglabrinolC and Doripenem are two drugs showing 

the best binding affinity (−12.82 and −10.28 kcal/mol, respectively) with the aacA7 protein. 

With 402.43 pM, OncoglabrinolC demonstrated an excellent value of enzyme inhibition, 

whereas Doripenem showed 29.23 nM of protein inhibition. The flavan derivative from 

O.glabratus, Oncoglabrinol C (5,3′-Dihydroxyflavan 7-4′-O-digallate), showed striking ac-

tivation of PPARγ and PPARα in cell culture [65]. Table 4 demonstrates the toxicity study 

results of all the compounds used in our study. Toxicity studies signify that Doripenem 

belongs to class 5 of toxicity gradient and shows lesser toxic effects case by case.  
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Figure 2. Molecular docking of OncoglabrinolC with aacA7 protein. The aacA7 protein is repre-

sented by the blue cartoon and the ligand by the yellow stick (A). Two-dimensional ligand interac-

tion profile on the (B). 

 

Figure 3. Molecular docking of Doripenem with the aacA7 protein. The aacA7 protein is represented 

by the blue cartoon and the ligand by the yellow stick (A). Two-dimensional ligand interaction pro-

file on the (B). 
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Table 4. Oral toxicity prediction results for input compound. 
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OncoglabrinolC 223.67 2170 5 76.33 
Nephrotoxicity, Respiratory toxicity, Cardiotoxicity, Immu-

notoxicity, Nutritional Toxicity 

Doripenem 195.74 5000 5 69.26 Nephrotoxicity, Respiratory toxicity, Clinical Toxicity 

Silymarin 155.14 2000 4 69.33 
Nephrotoxicity, Respiratory toxicity, Cardiotoxicity, Immu-

notoxicity, BBB-barrier, Nutritional Toxicity 

Silibinin 155.14 2000 4 69.26 
Nephrotoxicity, Respiratory toxicity, Cardiotoxicity, Immu-

notoxicity, Nutritional Toxicity 

Malvidin 112.52 5000 5 69.26 
Nephrotoxicity, Respiratory toxicity, Cardiotoxicity, Immu-

notoxicity, BBB-barrier, Nutritional Toxicity 

Tetracycline 181.62 4400 4 68.07 
Hepatotoxicity, Respiratory toxicity, Immunotoxicity, Clini-

cal toxicity, Nutritional Toxicity 

Berberine 40.8 200 3 67.38 

Neurotoxicity, Respiratory toxicity, Carcinogenicity, Immu-

notoxicity, Mutagenicity, Cytotoxicity, BBB-barrier, Ecotoxi-

city 

Taxifolin 127.45 2000 4 100 
Nephrotoxicity, Respiratory toxicity, Carcinogenicity, Muta-

genicity, BBB-barrier, Nutritional Toxicity 

Cyanidin 114.29 5000 5 69.26 
Nephrotoxicity, Respiratory toxicity, Carcinogenicity, BBB-

barrier, Nutritional Toxicity 

Catechin 110.38 10,000 6 100 
Nephrotoxicity, Respiratory toxicity, BBB-barrier, Clinical 

toxicity, Nutritional toxicity 

Telithromycin 171.85 300 3 54.26 

Hepatotoxicity, Neurotoxicity, Nephrotoxicity, Respiratory 

toxicity, Immunotoxicity, Clinical Toxicity, Nutritional tox-

icity 

Relacin 311.36 3000 5 67.38 
Neurotoxicity, Nephrotoxicity, Respiratory toxicity, Clinical 

Toxicity 

Pyrimethamine 77.82 92 3 100 
Neurotoxicity, Respiratory toxicity, BBB-Barrier, Ecotoxi-

city, Clinical Toxicity 

Doxycycline 181.62 2240 4 68.07 
Hepatotoxicity, Respiratory toxicity, Immunotoxicity, Clini-

cal toxicity 

Picloram 76.21 686 4 100 
Hepatotoxicity, Neurotoxicity, Nephrotoxicity, Mutagenic-

ity, BBB-Barrier, Clinical toxicity 

Azithromycin 180.08 2000 4 100 
Neurotoxicity, Nephrotoxicity, Respiratory toxicity, Immu-

notoxicity, Clinical toxicity 

Erythromycin 193.91 2000 4 100 
Hepatotoxicity, Neurotoxicity, Nephrotoxicity, Respiratory 

toxicity, Immunotoxicity, Clinical toxicity 

Vitamin C 107.22 3367 5 100 BBB-barrier, Clinical toxicity, Nephrotoxicity 

Clarithromycin 182.91 1230 4 100 
Hepatotoxicity, Neurotoxicity, Nephrotoxicity, Respiratory 

toxicity, Immunotoxicity, Clinical toxicity 

Adenosine 139.54 8 2 100 
Neurotoxicity, Respiratory toxicity, Cytotoxicity,  

BBB-barrier 

Roxithromycin 216.89 3.004 2 100 Hepatotoxicity, Blood–brain barrier 
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3.6. Molecular Dynamics Simulation 

Molecular dynamic (MD) simulations have been executed for the best two drug-bind-

ing molecules OncoglabrinolC and Doripenem with the aacA7 protein. To corroborate the 

binding stability of the protein–ligand complex, we performed an MD simulation of 100 

ns each for wild and mutated complexes of aacA7–OncoglabrinolC and aacA7–Dor-

ipenem. The well-minimized equilibrated structure was used to perform docking studies; 

furthremore, all-atom MD simulations were performed to nullify any type of bias that 

could be felt during the experiment. All-atom 100 ns simulation is enough to get into the 

dynamic picture of a small protein–ligand complex. Potential energy analysis was per-

formed during the 100 ns MD simulations for all the complexes. This plot shows that all 

the trajectories were stabilized and remained stable throughout the 100 ns simulation run, 

as observed in Figure 4A. The total energy of the whole system (Figure 4B) also suggested 

stable trajectories for all four protein–ligand complexes. 

 

Figure 4. Potential energy (A) and free energy graph (B) obtained after 100 ns of the simulation run. 

An overall change in trajectory is negligible, showing the stable conformation throughout the run. 

RMSD deviation in WT protein in association with Doripenem is relatively high, and 

the whole trajectory is unstable. The rest of the complexes show fewer RMSD deviations, 

and more stability can be observed. Overall trajectory analyses for all WT complexes in 

comparison to their respective mutated versions are quite unstable. This signifies that mu-

tation plays a crucial role in the association of drug molecules to the enzyme of action. 

The compounds in the mutated version are more or less equilibrated with an atypical 

change of approx. 0.25 nm in the RMSD, except for a change of more than 1 nm in the case 

of the Doripenem WT complex (Figure 5A). The most deviation observed (approx. 0.75 nm) 

was the average RMSD change throughout the simulation, in total, 40 ns for the WT_Dor-

ipenem complex (shown in black) (Figure 5A). This sort of deviation could be the result of the 

attainment of the conformational change as the ligand molecule binds with the protein. On 

the other hand, the trajectory of the mutated aacA7 and Doripenem complex (displayed in 

red) presented the best-equilibrated contour through the simulation (Figure 5A). 
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Figure 5. RMSD (A) and RMSF (B) graphs for WT and mutated complexes of OncoglabrinolC (green 

and blue) and Doripenem (black and red), respectively. 

Similarly, the trajectories’ RMSF plot shows almost the same per-residue fluctuation 

in all four complexes around 20–40 residue patches (Figure 5B). The WT Doripenem com-

plex, as depicted in the RMSD plot, revealed most local residue-based variation around 

residue number 20 to 40 and after residue 120. The same profile was also observed in other 

complexes, except for the change in residues from 120 to further. These residue groups 

could be the plausible functional site for the ligand-binding incident. The large RMSD and 

RMSF values may suggest a huge energy exchange during the protein–ligand complex 

formation, which resulted in higher fluctuations. We are performing simulations only to 

understand this change in conformation, energy, and interactions. These values should be 

taken in a positive sense. 

Figure 6A demonstrated the pattern for hydrogen bonding seen during 100 ns simulation 

in all four intra-protein complexes. The most numbered H-bonds were monitored in the case 

of the WT–Doripenem complex, and the least number of H-bonds were examined in the WT–

OncoglabrinolC complex. Figure 6B displays the number of H-bonds formed between the pro-

tein and the surrounding solvent. 

 

Figure 6. Hydrogen bonding pattern for intra-protein (A) and protein-water (B) interfaces. 
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In addition to RMSD, RMSF, hydrogen bonding patterns, SASA, the radius of gyra-

tion (Rg), and MMPBSA graphs, other analyses were also performed. Specifically, the sol-

vent-accessible surface area (SASA) of all the proteins and ligands was calculated to assess 

the effect of ligand binding on the surface residue profiling of the protein. Figure 7A 

shows the SASA plot obtained using the gmx sas command in Gromacs [53,66] for the 100 

ns simulation. Overall, profiles are similar, apart from certain exceptions in the case of 

OncoglabrinolC wild and mutated states. The radius of gyration (Rg) plot for the four 

complexes in 100 ns simulation run-time suggests that the structure of the protein may 

change upon ligand binding in both wild and mutated states (Figure 7B).  

 

Figure 7. SASA plot (A) and radius of gyration plot (B) for WT and mutated aacA7 protein in com-

plex with OncoglabrinolC and Doripenem drug molecules. 

The Rg value for WT–Doripenem is greater than 1.8 nm, which may indicate a change 

in the conformation of the ligand inside the binding pocket. This could be due to the pro-

tein being more receptive to the ligand, making more conformational space available for 

better ligand binding. On the other hand, the lower Rg values for the other complexes 

suggest that they are more structurally stable for ligand binding and interaction. The de-

crease in the gyration radius for the rest of the complexes indicates that the proteins become 

more compact upon ligand binding. The Rg is a measure of the compactness of a protein and 

is defined as the mass-weighted root mean square distance of a group of atoms from their 

center of mass. It is an important parameter that provides a close-up view of the overall di-

mensions of the protein. [67–69]. Parameters that can be studied to track the changes using the 

radius of gyration are associatory and dissociation effects, the binding of coenzymes, temper-

ature effects, and conformational changes by denaturation [70,71].  

Similar results are also recorded for ligands in WT and mutated complexes. These 

results are provided in supplementary figures. Supplementary Figure S2 (left panel) 

demonstrated the RMSD graph for ligands only. OncoglabrinolC bound to E86K-mutated 

protein showed a high deviation, and Doripenem showed the least deviation. The RMSF 

graph (right panel) demonstrated the tremendous fluctuation rate in the conformation of 

ligands when bound to protein structures. Supplementary Figure S3 shows the SASA 

graph (left panel), with hardly any change in the ligand area. The Rg graph (right panel) 

also shows the negligent change in the radius of Doripenem. A change of 0.1 nm can be 

observed in the radius of OncoglabrinolC binding to WT and the mutated aacA7 protein. 

The number of observed H-bonds formed in between the protein and ligand during the 

100 ns simulation run can be observed in Supplementary Figure S4. The highest digit of 
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H-bonds (>10) is found in the E86K-mutated aacA7–OncoglabrinolC complex. The free 

energy of the solvation graph for protein (left panel) and ligands (right panel) is shown in 

Supplementary Figure S5. To understand the change and binding stability in the ligand-

docked complexes, we studied the conformational change of aacA7–OncoglabrinolC (in 

wild and mutated forms) and aacA7–Doripenem (in wild and mutated forms) complexes 

at three different time intervals (0 ns, 50 ns, and 100 ns). Supplementary Figures S6–S8 

show the overall binding residues of aacA7 in association with OncoglabrinolC and Dor-

ipenem in wild and mutated forms, respectively. The change in binding partner residues 

can be easily observed.  

For a better understanding and relative comparison, we performed the whole proce-

dure from modeling to simulation apo and holo states of the aacA7 dimer protein. The 

dimer was modeled with the help of Alphafold [72]. A comparative table for the average 

and standard error values for wild and mutated complexes for Oncoglabrinol-C and Dor-

ipenem in the monomeric state and apo and holo dimeric states of aacA7 bound to Onco-

glabrinol-C is provided as Supplementary Table S3. Supplementary Figure S9 shows the 

dimeric state of the aacA7 protein docked with Oncoglabrinol-C. It is observable that the 

ligand binds at the interface of both chains as we get into the monomeric state. Superim-

posed dimeric conformations of aacA7 in the apo state at 0 ns (red) and 100 ns (green) 

time scale can be seen in Supplementary Figure S12. Additionally, Supplementary Figure 

S13 demonstrates the Superimposed dimeric conformations of aacA7 in the holo state 

(bound with Oncoglabrinol-C) at a 0 ns (red) and 100 ns (green) time scale. Supplementary 

Figure S14 shows the RMSD, RMSF, and H-bond graphs for the aacA7 protein in dimeric 

conformation in apo and holo states (bound to Oncoglabrinol-C). These graphs relate di-

rectly to the monomeric conformation of the protein and suggest that the process of bind-

ing to drug candidates is almost similar whether the protein is in a dimeric state or a mon-

omeric state. 

The initial study plan was to perform 50 ns simulations, but looking at the RMSD 

plots, we could infer that the 50 ns simulations would not be enough; hence, we increased 

the simulation time by two-fold to accommodate better stability for the protein–ligand 

complex. Usually, higher simulations are recommended for protein–protein interactions, 

as also confirmed by our additional simulations in triplicates (Supplementary Figure S14). 

In these simulations, we saw a stable RMSD with no absurd fluctuations when the protein 

was in a complex; therefore, we can infer that 100 ns simulation time is applicable for 

conclusive protein–ligand binding analysis. 

3.7. Binding Free Energy (MMPBSA/MMGBSA) Analysis 

One-to-one energy components such as van der Walls forces, coulomb charges, and 

H-bonds are computed using MM-PBSA and MM-GBSA tools in Gromacs v2020.4 (Figure 

8). The MMPBSA and GBSA tools have also been recently developed using machine learn-

ing algorithms for the better identification of local contacts. Also, Supplementary Table S2 

represents these values and is incorporated in the text for understanding. The WT–Onco-

glabrinolC complex shows the maximum Gibbs free energy (−40.2 kJ/mol). When the glu-

tamic acid is mutated to lysine (E86K), the Gibbs free energy does not change drastically, 

showing a similar affinity of OncoglabrinolC towards the protein. It suggests that after 

dynamic simulation, OncoglabrinolC is the most preferred molecule and a potential lead; 

it shows worthy interaction with aacA7 protein, demonstrating its potential as a lead can-

didate in the future. 
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Figure 8. Results of essential dynamics for wild and mutated complexes of aacA7 with Onco-

glabrinolC and Doripenem drug candidates. 

3.8. PCA Analysis 

Principal component analysis (PCA) was employed to investigate the time-depend-

ent conformational dynamics of the protein–ligand complexes. This technique identifies 

the essential motions of the system by decomposing the atomic fluctuations into orthogo-

nal principal components (PCs). Each PC represents a specific mode of motion, with the 

first few PCs capturing the greatest variance in the trajectory data. The eigenvalues asso-

ciated with each PC quantify the contribution of that mode to the overall dynamics. Sup-

plementary Figure S10 presents the eigenvalues, along with the corresponding free ener-

gies and covariance analysis. Analysis of these graphs reveals a greater spread in the ei-

genvalues for the wild-type complexes compared to the mutated complexes. This suggests 

a higher degree of conformational diversity in the wild-type protein–ligand interactions. 

Conversely, the mutations appear to introduce structural rigidity, leading to decreased 

fluctuations and potentially enhanced stability of the mutated complexes over time. 

4. Conclusions 

In this study, we investigated the potential repurposing of naturally occurring drug 

molecules against pan-resistant strains of Morganella morganii, a nosocomial pathogen ex-

hibiting concerning virulence. M. morganii, belonging to the Enterobacteriaceae family, 

has emerged as a significant opportunistic pathogen, particularly associated with urinary 

tract infections. Given the extended timelines typically associated with de novo drug dis-

covery, we employed a structure-based in silico approach for the rapid identification of 

potential drug candidates. AlphaFold2, a state-of-the-art protein structure prediction tool 

based on machine and deep learning, was utilized to generate a reliable 3D homology 

model of the aacA7 enzyme, a critical target for antibiotic therapy. Through in silico mo-

lecular docking simulations, we evaluated the binding affinities of two naturally occur-

ring compounds, OncoglabrinolC and Doripenem, against both the wild-type and mu-

tated forms of the aacA7 protein. The encouraging results from the docking studies, cor-

roborated by essential dynamic simulations, suggest the potential of these molecules for 

further development as repurposed antibiotics. However, to definitively validate these 

findings and assess their efficacy against M. morganii strains, further wet lab 
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experimentation is warranted. This in vitro and potentially in vivo testing will be crucial 

for establishing the therapeutic potential of the identified drug candidates. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/pr12061047/s1, Figure S1: The Ramachandran plot shows 

that more than 90% of protein residues are in the favored region as obtained from Procheck [46]; 

Figure S2: Left panel demonstrates the RMSD graph for ligands only. oncoglabrinolC bound to E86K 

mutated protein (in blue) shows high deviation and Doripenem molecule (in red) shows least devi-

ation. RMSF graph demonstrated the huge fluctuation rate in conformation of ligands when bound 

to protein structures (right panel); Figure S3: SASA graph (left panel) shows hardly any change in 

ligand area. Rg graph (right panel) also shows the negligent change in radius of Doripenem. A 

change of 0.1 nm can be observed in radius of OncoglabrinolC binding to WT and mutated aacA7 

protein; Figure S4: Number of observed H-bonds formed between protein and ligand during the 

100 ns simulation run. Highest number of H-bonds (>10) is found in E86K mutated aacA7-Onco-

glabrinolC complex; Figure S5: Free energy of solvation graph for protein (left panel) and ligand 

(right panel); Figure S6: Binding interactions between Oncoglabrinol-C and wild type aacA7 protein 

at different time intervals of 100 ns MD simulation run; Figure S7: Binding interactions between 

Oncoglabrinol-C and mutated aacA7 protein at different time intervals of 100 ns MD simulation 

run; Figure S8: Binding interactions between Doripenem and wild type aacA7 protein at different 

time intervals of 100ns MD simulation run; Figure S9: Binding interactions between Doripenem and 

mutated aacA7 protein at different time intervals of 100 ns MD simulation run; Figure S10: Dynamic 

behavior of protein-ligand complex in 2D space can be observed in this graph. PCA analysis with 

the components like covariance and eigenvector indices along with the energy factor is calculated 

and presented as 3 different graphs; Figure S11: Dimeric aacA7 protein docked with Oncoglabrinol-

C. Two subunits are in magenta and green cartoon structure, Oncoglabrinol-C is in ball model; Fig-

ure S12: Superimposed dimeric conformations of aacA7 in the apo state at 0 ns (red) and 100 ns 

(green) time scale; Figure S13: Superimposed dimeric conformations of aacA7 in the holo state 

(bound with Oncoglabrinol-C) state at 0 ns (red) and 100 ns (green) time scale. Ligand position at 0 

ns (blue) and 100 ns (yellow); Figure S14: The RMSD, RMSF, and H-bond graphs for aacA7 protein 

in dimeric conformation in apo and holo state (bound to Oncoglabrinol-C); Figure S15: Alphafold2 

predicted artificial intelligence model for the AAC protein showing most residues falling in very 

high confidence region, with pLDDT > 90; Figure S16: Predicted Aligned Error (PAE) plot from 

Alphafold2 prediction showing the protein falls under very low expected position error, hence high 

confidence; Figure S17: Chemical similarity index for best protein ligands showing similar SMILES 

format for the Oncograbinol Molecular against Doripenem; Table S1: All the Mutations showing 

deleterious effect in all 7 programs of PredictSNP (Bendl et al. 2014) [29] have been tabulated; Table 

S2: MMPBSA/MMGBSA analysis performed using the script MMPBSA.py module showing different 

energy contributions during the 100 ns molecular dynamics simulation for each of the four complexes; 

Table S3: Comparative Table for Wild type and mutated complexes along-with Dimer results. 
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