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Abstract: The dim lighting and excessive dust in underground mines often result in uneven illumina-
tion, blurriness, and loss of detail in surveillance images, which hinders subsequent intelligent image
recognition. To address the limitations of the existing image enhancement algorithms in terms of
generalization and accuracy, this paper proposes an unsupervised method for enhancing mine images
in the hue–saturation–value (HSV) color space. Inspired by the HSV color space, the method first
converts RGB images to the HSV space and integrates Retinex theory into the brightness (V channel).
Additionally, a random perturbation technique is designed for the brightness. Within the same scene,
a U-Net-based reflectance estimation network is constructed by enforcing consistency between the
original reflectance and the perturbed reflectance, incorporating ResNeSt blocks and a multi-scale
channel pixel attention module to improve accuracy. Finally, an enhanced image is obtained by
recombining the original hue (H channel), brightness, and saturation (S channel), and converting
back to the RGB space. Importantly, this image enhancement algorithm does not require any normally
illuminated images during training. Extensive experiments demonstrated that the proposed method
outperformed most existing unsupervised low-light image enhancement methods, qualitatively and
quantitatively, achieving a competitive performance comparable to many supervised methods. Specif-
ically, our method achieved the highest PSNR value of 22.18, indicating significant improvements
compared to the other methods, and surpassing the second-best WCDM method by 10.3%. In terms of
SSIM, our method also performed exceptionally well, achieving a value of 0.807, surpassing all other
methods, and improving upon the second-place WCDM method by 19.5%. These results demonstrate
that our proposed method significantly enhanced image quality and similarity, far exceeding the
performance of the other algorithms.

Keywords: retinex; mine images; U-Net; HSV; ResNeSt

1. Introduction

Intelligent visual recognition technologies are widely applied in smart mining [1].
However, challenges such as insufficient lighting, uneven illumination, and dust in mine
environments significantly affects the performance of image analysis techniques, including
target tracking [2], object recognition [3], image semantic segmentation [4], and object
detection [5]. To obtain high-quality mine images, it is crucial to effectively enhance low-
light images [6] by improving brightness, illumination uniformity, color balance, and detail
information. Therefore, researching methods suitable for mine image enhancement is of
great importance [7].

Traditional image enhancement algorithms for addressing the low-light environments
in coal mines include histogram equalization [8,9], dark channel prior enhancement [10], the
Retinex algorithm [11], and image enhancement based on the hue–saturation–value (HSV)
color space [12,13]. Among these, the Retinex algorithm is widely used and encompasses
various techniques such as single scale Retinex (SSR) [14], multiScale Retinex (MSR) [15],
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and color restoration Retinex (MSRCR) [16]. The fundamental principle of Retinex theory is
based on the assumption that the color of an object remains constant regardless of variations
in illumination, exhibiting color constancy. As a result, the Retinex algorithm decomposes
the input image into illumination and reflectance components. The reflectance component
represents the inherent properties of objects, remaining unaffected by the illumination
conditions, while the illumination component captures the differences between low and
normal lighting.

With the continuous advancement of technology, deep learning has demonstrated
significant potential for applications in various fields. It is increasingly being employed in
the domain of low-light image enhancement [17]. Based on the differences in methodology,
these approaches can be categorized into supervised and unsupervised methods.

Supervised methods require collecting paired images in advance to establish the map-
ping relationship between normal and low-light images [18–34]. Zhang et al. [18] proposed
the KinD++ algorithm, which makes the processed images more realistic. Jiang et al. [20] in-
troduced a novel degradation to refinement generative network (DRGN) that focuses more
on the detailed information of images, resulting in improved visibility, while maintaining
naturalness. Xu et al. [21] proposed a hierarchical feature mining network called HFMNet,
which extracts illumination and edge features from different network layers. They also
developed a feature mining attention (FMA) module and utilized hierarchical supervision
loss to fully exploit key features, thereby enhancing image visibility. Wu et al. [25] pre-
sented URetinex Net, a deep unrolling network based on Retinex theory, which combines
an implicit prior regularization model with Retinex theory to better suppress noise and
preserve details. Lu et al. [27] proposed a frequency-divided multiscale learning network
that decomposes low-light images into high-frequency and low-frequency components.
They employed multiscale feature extraction and attention mechanisms to enhance the
images. Chen et al. [30] combined convolutional and self-attention mechanisms to enhance
low-light images, focusing on both local and global features during feature extraction to
eliminate noise and color biases. Yang et al. [31] introduced an enhancement network based
on multi-stream information supplementation, which restores the rich structure of images
through information supplementation, while removing noise and color biases. Xu et al. [32]
proposed a method called SNR-aware low-light image enhancement (SNRNet), which uti-
lizes a signal-to-noise ratio-aware transformer and a convolutional model to dynamically
enhance pixels with spatially varying operations. Jiang et al. [33] introduced a wavelet-
based conditional diffusion model (WCDM) that leverages the generative capability of the
diffusion model to generate perceptually faithful results. Li et al. [34] presented a novel
solution called UHDFour, which incorporates Fourier transform into a cascaded network.

Supervised methods rely on paired datasets to construct end-to-end networks that
learn the mapping relationship between low-light and normal-light images. These methods
heavily rely on feature extraction, and attention mechanisms enable the networks to focus
on more informative features. Designing an appropriate network allows for better expres-
sion of the intrinsic information of images, resulting in high-quality image generation.
However, there are still limitations to this approach, which can be summarized as follows:

(1) Supervised methods depend on paired datasets, which are challenging and time-
consuming to acquire.

(2) The generalization capability of the models is insufficient. Since they rely on paired
datasets for training, they may achieve impressive results on specific datasets but
perform poorly in other scenarios.

Unsupervised methods do not require paired datasets [35–47], which greatly enhances
the research efficiency. Guo et al. [36] proposed a novel unsupervised deep curve estimation
(Zero DCE) approach, utilizing a lightweight deep network called DCE-Net to adjust
the dynamic range of given images, without the need for preprepared paired datasets.
However, this method does not consider the influence of noise and suffers from a larger
network size, resulting in increased computational times. Jiang et al. [38] introduced
a fast and effective enhancement strategy (EnlightenGAN) by combining an attention
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mechanism with a U-Net network. Fu et al. [39] presented a new unsupervised low-light
image enhancement network, LE-GAN, based on the generative adversarial network (GAN)
framework and trained using non-paired low-light images. This network incorporates
a perceptual attention module for enhanced feature extraction, noise removal, and color
bias elimination. It further introduces novel loss functions to address overexposure issues.
Qiao et al. [42] proposed a generative adversarial network approach based on reverse
attention mechanisms, utilizing a deep aggregation pyramid pooling module to remove
noise and a reverse attention module to eliminate color aberrations and enhance image
quality. Jiang et al. [44] introduced an unsupervised decomposition and correction network,
incorporating a noise removal network to suppress noise. Inspired by CycleGAN [45],
Bhattacharya et al. [46] proposed an image enhancement model (D2BGAN) that effectively
removes artifacts by combining geometric and illumination consistency, contextual loss,
and multi-scale color, texture, and edge discriminators. Ma et al. [47] introduced a novel
self-calibrated illumination (SCI) learning framework designed to enhance the brightness
of low-light images in real-world scenarios with speed, flexibility, and robustness.

Unsupervised methods, by not requiring paired datasets, offer a more focused explo-
ration of the relationship between low-light and normal-light images. While they eliminate
the need for paired data, the resulting image quality often falls short of expectations and ex-
hibits certain visual artifacts. As demonstrated in Figure 1, unsupervised methods generally
yield lower image enhancement quality compared to the majority of supervised methods.

Figure 1. Using the LOL dataset, a comparison of the state-of-the-art supervised and unsupervised image
enhancement methods in terms of peak signal-to-noise ratio (PSNR) is presented. It should be noted that a
higher PSNR indicates better enhancement results. It is evident that the majority of supervised methods
consistently outperform unsupervised methods in terms of image enhancement effects.

In response to the issues presented by the aforementioned algorithms, this paper proposes
an unsupervised image enhancement method for mining images based on the HSV color
space. Firstly, we convert the low-light RGB images captured underground to the HSV space,
and then combine them with Retinex theory to design a U-Net-based reflectance estimation
network. Our ultimate objective is to improve the image quality generated by unsupervised
methods. Extensive experiments conducted on our self-constructed dataset demonstrated
that our method surpassed the state-of-the-art (SOTA) methods in terms of distortion and
perceptual metrics. The contributions of our work can be summarized as follows:
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(1) Combination of Retinex Theory and HSV Color Space for Reflectance Estimation:
In our study, we propose an innovative approach to enhancing mining images by
combining Retinex theory with reflectance estimation in the V channel of the HSV
color space. By utilizing a deep reflectance estimation network, we accurately estimate
the reflectance information in the images, leading to a significant improvement in
visibility and image quality.

(2) Design of an Enhanced U-Net Model: We introduce an improved U-Net model that inte-
grates the U-Net network, ResNeSt blocks, and a multi-scale channel-wise pixel attention
mechanism. Through operations such as convolution, encoding downsampling, feature
duplication, and upsampling, we achieve enhancement in the V channel. This model
effectively extracts image features and applies attention modules in the decoder to retain
important information, resulting in outstanding enhancement performance.

(3) Introduction of Four Sets of Loss Functions for Model Optimization: To address the
challenge of enhancing low-light images in underground coal mines, we design four
sets of loss functions, including an exposure loss function, reflectance consistency loss
function, spatial structure loss function, and illumination smoothness loss function.
By incorporating these loss functions, we comprehensively consider the exposure
level, reflectance consistency, spatial structure details, and illumination smoothness
of the images, leading to holistic model optimization and improved performance in
low-light image enhancement.

(4) Introduction of a Random Brightness Perturbation Method: Our study introduces a
novel random brightness perturbation method to enhance the robustness and gener-
alization ability of the model. By introducing randomness during training, we can
simulate the variations in reflectance under different lighting conditions in real-world
scenarios. This enables our model to adapt to various situations and demonstrate
better performance in practical applications.

2. Image Enhancement Network Model Based on HSV Space Transformation
2.1. Overall Architecture of the Model

This paper presents a mine image enhancement model based on the HSV color space,
as illustrated in Figure 2. Initially, the mine images in the RGB space are transformed into
the HSV color space, and the hue (H channel), saturation (S channel), and value (V channel)
components are extracted. While keeping the H and S components unchanged, we integrate
a Retinex theory model with the luminance component V and employ an improved U-Net
network to enhance the luminance. Additionally, by introducing a random perturbation
method for the luminance, a perturbation component V′ is obtained. To enhance the
model’s generalization capability, in the same scene, we increase the model’s generalization
by enforcing consistency between the original reflectance and the new randomly perturbed
reflectance. The random perturbation method used for the luminance enables the network
model to achieve effective image enhancement, even in the absence of normal images.
The enhanced luminance components Vc and V′

c are obtained through the improved U-Net
model, ensuring consistency between Vc and V′

c . Finally, the enhanced HSV results are
transformed back into the RGB space, resulting in the output of an enhanced image.
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Figure 2. Introduction to Our Overall Model Architecture: (a) HSV Color Transformation: Starting
from RGB images as input, this component generates HSV features as output. (b) Enhanced U-Net:
This module integrates the U-Net network, ResNeSt block, and multi-scale channel pixel attention
mechanism to enhance the V channel. (c) RGB Color Transformation: The HSV representation is
subsequently converted back to the RGB space through this transformation.

2.2. The HSV Color Space

HSV is a widely used color system in everyday life, as it provides a more intuitive
way for people to describe colors, including the hue (H), saturation (S), and value (V)
components [48]. The hue represents the color tone using degrees, while the saturation
refers to the intensity or depth of the color. The value component corresponds to the
brightness of the color. The HSV space exhibits the advantage of component independence,
enabling flexible adjustments of different attributes, without significant interference from
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the other components. In particular, the brightness component (V channel) in the HSV
space reflects the image’s lightness. Enhancing the brightness enhances the contrast, details,
and visibility of contours in the image. Therefore, converting an image to the HSV color
space allows for a partitioning of the image into H and S components, which are closely
related to color, while enabling specific adjustments to be made solely on the V channel to
control image brightness. The conversion formula from the RGB color space to the HSV
color space is as follows [49]:

H =



0◦ ∆ = 0
60◦ ×

(
G′−B′

∆ + 0
)

, C max = R′

60◦ ×
(

B′−R′
∆ + 2

)
, C max = G′

60◦ ×
(

R′−G′
∆ + 4

)
, C max = B′

(1)

S =

{
0 C max = 0
∆

C max C max ̸= 0
(2)

V = C max (3)

Among them, R′ , G′ ,and B′ normalize the values of R, G, and B to 0∼1. C max is the
maximum value in R′ , G′ , B′ , and ∆ is the difference between C max and C min.

Moreover, we conducted a straightforward experiment to demonstrate the advantages
of the HSV color space. We randomly selected a pair of low-light/normal-light images
from a dataset and transformed them into the HSV color space. By concatenating the H and
S channels of the low-light image with the V channel of the corresponding normal-light
image, we created a recombined image. Subsequently, we converted the recombined image
back to the RGB color space. As depicted in Figure 3, the recombined image exhibited
a color fidelity similar to that of the normal-light image. Hence, for low-light image
enhancement based on the HSV color space, it suffices to enhance the brightness, as the
color information is solely derived from the low-light image.

Figure 3. Visual quality results of the recomposed images generated from the H and S channels of
low-light images and the corresponding V channel of the respective bright images.

2.3. Random Brightness Interference

To simulate the reflection differences caused by lighting variations in real-world
scenarios, this paper proposes a brightness random perturbation method based on a power
function. This method adjusts the image brightness by introducing a random exponent,
thereby generating new images with the same reflectance characteristics as the original
image but with different brightness levels. This random perturbation method offers the
following advantages:

(1) Range Control: Both the input and output of the power function fall within the range
[0, 1], avoiding information loss due to the brightness exceeding a reasonable range.
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(2) Monotonicity Preservation: The power function is monotonically increasing, ensur-
ing consistent brightness relationships between the original and perturbed images,
preventing unnatural brightness changes.

(3) Perturbation Diversity: By introducing a random exponent, various degrees of bright-
ness perturbations can be generated, increasing the diversity of training data and
aiding in improving the robustness of the model.

V′(x) = V(x)d (4)

In this context, V(x) represents the pixel values of the original V-channel, V′(x)
denotes the perturbed V-channel, and d represents a random value. In ablation experiments,
we validated the effectiveness of this power function-based random brightness perturbation
method and demonstrated its ability to accurately simulate the reflection differences caused
by lighting variations in real-world scenarios. Furthermore, we observed that it had a
positive impact on enhancing the performance of the image enhancement algorithms.

2.4. Retinex Theory

Most Retinex-based networks are initially trained with a decomposition network, to
learn the decomposition of the illumination and reflectance components [50]. However, this
process inevitably introduces reconstruction errors when generating the final image. In this
study, we propose a network architecture that incorporates a perturbation, to introduce an
interfering brightness, utilizing the same network structure with shared parameters. Ac-
cording to Retinex theory [51], an image can be decomposed into brightness and reflectance
components, where the reflectance component should remain invariant under different
lighting conditions. Hence, the aforementioned channels, denoted as V and its perturbed
counterpart V′ can be decomposed into the following two parts.{

V = R × L
V′ = R′ × L′ (5)

In the given equation, where R represents the reflectance component and L represents
the illumination component, we consider L an intermediate variable for computing R.
Hence, the above equation can be reformulated as follows:{

R = V × 1
L

R′ = V′ × 1
L′

(6)

By considering this approach, it becomes unnecessary to compute the difference
between V and R ∗ L, thereby avoiding information loss during image reconstruction [52].

2.5. An Improved U-Net-Based Network for Reflectance Estimation

The U-Net network architecture possesses the characteristics of a deep convolutional
neural network [53], enabling effective extraction of feature information from images.
It adopts an encoder–decoder structure, utilizing multiple layers of convolution and pooling
operations to capture both the fine details and contextual information in an image, thereby
enhancing the effectiveness of image enhancement. However, the U-Net network may
encounter challenges when dealing with complex image structures and textures. Due to
its simple encoder–decoder structure, U-Net may struggle to accurately restore intricate
details and textures in more complex scenes, leading to distortion or blurring in the
enhanced results.

In this study, to meet our application requirements and ensure that the enhanced
results better preserve image information, we propose a lightweight multi-scale residual
attention U-Net model by integrating the advantages of the traditional U-Net network
structure with ResNeSt blocks and multi-scale channel pixel attention modules. The archi-
tecture of this model is illustrated in Figure 2. We replace a portion of the 3 × 3 convolution
modules in the U-Net model with ResNeSt blocks (as depicted in Figure 4), thereby increas-
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ing the network’s width and its adaptability to multi-scale targets. To address the issue of
the U-Net model’s skip connections propagating irrelevant information or noise along with
crucial detailed features to the decoding layers, we introduce attention mechanisms into
the network model (as shown in Figure 5).

Figure 4. ResNeSt block. A detailed view of the split-attention unit is shown in Figure 5.

Figure 5. Split-attention within a cardinal group.
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2.5.1. ResNeSt Block

In Figure 2, at each level of the U-Net network, the feature tensors sequentially pass
through a 3 × 3 convolution block and a ResNeSt block (indicated by the red arrows in
Figure 2). The ResNeSt [54] block retains the unique residual structure of ResNet, allowing
the network to be deep, without suffering from the degradation problem associated with
deep networks. Furthermore, to select the more crucial information from a plethora of fea-
tures, the model incorporates an attention mechanism inspired by SENet [55] (squeeze and
excitation networks) and SKNet [56] (selective kernel network) when designing the feature
extraction units. The structure, as shown in Figure 4, divides the input into k cardinals, each
denoted Cardinal i. Each cardinal’s base array is split into r parts, and each part undergoes
1 × 1 and 3 × 3 convolution operations. After extracting the feature information, the
split r-part module information is fed into the split attention module, achieving an output
of base array information. The results of each group are then concatenated. Finally, the
aggregated output feature map is linearly combined with the feature map of the residual
module to obtain the final output.

After performing a 1 × 1 convolution operation on the input features, a grouping
operation is implemented. The input is divided into K base arrays, and within each base
array, the features are further split into R parts, resulting in a total of G = KR features.
Within each sub-base array, the input image undergoes feature extraction operations,
resulting in output features denoted Ui = Fi(x), i ∈ {1, 2, ...KR}. Subsequently, the features
from the same base group are input into the split-attention module, as illustrated in Figure 4,
where feature summation takes place, as expressed by Equation (7).

Uk =
KR

∑
j=R(k−1)+1

Uj (7)

In this equation [54], Uk ∈ NH×W×C/K, k ∈ {1, 2..., K} represents the sum of features
in the k-th base group. Uj represents the feature information obtained after the 1 × 1
and 3 × 3 convolution operations on the j-th split block within the k-th unit group, j ∈
{Rk − 1 + 1, R(k − 1) + 2, ...Rk}. Subsequently, it undergoes global average pooling across
spatial dimensions, to capture the global context information embedded in the channels.
The calculation expression for the c-th channel is given by Equation (8).

Sk
c =

1
H × W

H

∑
i

W

∑
j

UK
Ci, j (8)

Lastly, the slices of the c-th dimension channel are aggregated using weighted sum-
mation, denoted as Vk

c , as expressed in Equation (9).

Vk
c =

R

∑
i

ak
i (c)UR(k−1)+i (9)

In this equation, ak
i (c) represents the allocation weights, expressed as shown in

Equation (10). Here, ξc
i represents the weights for each segmentation in the C channels.

ak
i (c) =


exp(ξc

i (s
k))

R
∑

j=1
exp(ξc

i (s
k))

, R > 1

1
1+exp(ξc

i (s
k))

, R = 1
(10)

Finally, all unit groups are connected along the channel dimension. After the split
attention operation, a feature map V is obtained. Combining this with the ResNet net-
work, the input features are skip-connected with the output features, resulting in the
final output. This process enables the capture of more comprehensive local geometric
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details and generates more complete high-level semantic information, facilitating deeper
information mining.

2.5.2. Multi-Scale Channel Pixel Attention Module

In the conventional U-Net network, the decoding process in the decoder tends to
lose important fine-grained details. To address this issue, skip connections are introduced
in the U-Net architecture to establish connections between the encoder and decoder [53].
These skip connections enable the transfer of feature information extracted from the encoder
to the decoder. However, such a structure can be susceptible to the negative impact of
redundant information from the encoder on the feature fusion in the decoder. To overcome
this problem, attention mechanisms can be incorporated to alleviate the issue and enhance
the feature fusion process.

A multi-scale channel pixel attention module is designed, as illustrated in Figure 6.
The module achieves multi-scale functionality by concurrently utilizing 3 × 3, 5 × 5, and
7 × 7 convolutions. In general, larger convolution kernels result in larger receptive fields,
allowing the network to better capture global features in the image. Conversely, smaller
convolution kernels have smaller receptive fields, enabling the network to extract finer
local features.

Figure 6. Multi-scale channel pixel attention module.

After convolution, the input image generates multi-channel features, with each chan-
nel representing different feature information within the image. Moreover, the different
feature types of information hold varying degrees of importance in enhancing low-light
images. Therefore, channel attention is employed to capture the correlation among different
feature channels. Specifically, the multi-channel features extracted through convolution
are compressed into channel descriptors using adaptive average pooling, which encodes
the global spatial information of the feature maps. Subsequently, by applying convolution–
ReLU–convolution–sigmoid operations, feature weight matrices for different channels are
obtained. Finally, the input features are multiplied by their respective weight matrices to
obtain the output features.
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Following the channel attention module, a pixel attention module is added to help
the network focus on informative image features, such as high-frequency regions and
areas with severe blurriness. Specifically, the weighted features obtained from the channel
attention module serve as input to the pixel attention module. Through convolution–ReLU–
convolution–sigmoid operations, weights for different pixel values are generated. These
weights are then multiplied with the input features to obtain new features.

To fully utilize the information from different scales, the output features of the three
branches (3 × 3, 5 × 5, and 7 × 7) are concatenated, and convolution is applied to fuse the
three features. This fused feature is then passed to the next encoding and the corresponding
decoding layers. Additionally, residual connections are incorporated by adding the input
features to the output of the multi-scale channel pixel attention module. This helps the
network learn more stable features.

2.6. Design of the Loss Function

To address the enhancement of low-light images in underground coal mines, four
sets of loss functions are employed for model optimization. These include the exposure
loss function, reflectance consistency loss function, spatial structure loss function, and
illumination smoothness loss function.

(1) Exposure Loss: In order to control the brightness of the generated reflectance map, the
difference between the average brightness of the reflectance and the given exposure
value of a normal image is computed. Let E be set to 0.7, then the exposure loss L1
can be defined as follows:

L1 = ∥R − E∥2
2 (11)

where R represents the generated reflectance and E is a matrix of the same dimensions
as R, with all values set to 0.7.

(2) Reflectance Consistency Loss: According to Retinex theory, the reflectance of V should
be consistent with V′. Therefore, the reflectance consistency loss L2 can be defined as
follows [36]:

L2 =
∥∥R − R′∥∥2

2
(12)

where R and R′ are the reflectance maps generated from V and V′, respectively, and
∥∥2 represents the L2 norm.

(3) Spatial Structure Loss: To preserve the spatial structure of the input image in the
reflectance map, a spatial structure loss is introduced. This loss measures the difference
between the horizontal and vertical gradients of each pixel between the input image
and the reflectance map. The spatial structure loss L3 can be defined as follows:

L3 = ∥∇Rm −∇Vm∥2
2 (13)

where Rm and Vm represent the generated reflectance and the average pooling result
of the input, respectively. ∇ represents the first-order difference operation in the
horizontal and vertical directions.

(4) Illumination Smoothness Loss: According to Retinex theory, the illumination should
be smooth, allowing the details of the image to be preserved in the reflectance map.
Using S to represent 1

L , the illumination smoothness loss L4 can be defined as follows:

L4 = ∥∇S∥2
2 +

∥∥∇S′∥∥2
2

(14)

(5) The overall loss of the network can be defined as follows:

L = L1 + L2 + L3 + αL4 (15)

where α represents the weight of the illumination smoothness loss.
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3. Experiments
3.1. Experimental Settings

• Dataset. The low-light image data used in this study were collected from intelligent
mining system surveillance images of Xieqiao Mine in Huainan City. The dataset
consists of 1100 pairs of low/normal light images. Additionally, 100 underground
mining images were collected from Baidu and Google. All images were resized to
512 × 512 and named as the MINE dataset. It is worth mentioning that we selected
only 1000 low-light images as the training set and 200 images as the test set.

• Training. The algorithm presented in this paper was implemented on a PC equipped
with a CPU (Intel(R) Core(TM) i7-12700K) and a GPU (3090TI), using the PyTorch
framework to construct the network model. The batch size was set to 8. We utilized the
Adam optimizer with default parameters and set the learning rate to 10−4. Each input
was subjected to brightness perturbation once, with a weight of 10. We trained
the proposed method for 500 epochs and conducted evaluations every 50 epochs.
During each evaluation, we assessed the model’s performance using a validation
set and recorded the model that achieved the best performance on the validation
set. This best-performing model was selected as our final model and utilized for
subsequent experiments and applications. This training and evaluation strategy
ensured the selection of the model with the best performance on the validation set,
enhancing the robustness and generalization capability of our method [36].

• Evaluation Metrics. For the real-world paired datasets tested in our study, we recom-
mend utilizing two full-reference distortion metrics: peak signal-to-noise ratio (PSNR)
and structural similarity index (SSIM) [57]. PSNR and SSIM are two widely used
metrics for evaluating the quality of image reconstruction or enhancement algorithms.
PSNR measures the ratio between the maximum possible power of a signal and the
power of corrupting noise that affects the fidelity of the signal. It quantifies the amount
of noise or distortion present in an image by computing the mean squared error (MSE)
between the original image and the reconstructed image. The PSNR value is typically
expressed in decibels (dB), with higher values indicating better image quality. SSIM,
on the other hand, assesses the structural similarity between two images by consid-
ering their luminance, contrast, and structure. It compares local image patches and
computes a similarity index based on the mean, variance, and covariance of these
patches. The SSIM index ranges from 0 to 1, where a value closer to 1 indicates a
higher structural similarity and better image quality.

• Comparison Methods. To validate the effectiveness of the proposed method, we
compared it with state-of-the-art (SOTA) methods from recent years, including
RetinexNet [19], Zero-DCE [36], EnlightenGAN [38], SCI [47], URetinex-Net [25],
SNRNet [32], WCDM [33], and UHDFour [34].

3.2. Results
3.2.1. Visual Comparison

From Figures 7 and 8, it can be observed that the original images were generally dark,
with low illumination, and unclear image details. RetinexNet could enhance the brightness
of the images but resulted in significant color distortion, as shown in Figures 7b and 8b.
The Zero-DCE algorithm enhanced the overall brightness of the images, but the brightness
became excessively strong, causing overexposure. EnlightenGAN and SCI could improve
the global brightness of the images, but they resulted in a significant loss of image informa-
tion. The URetinex-Net, SNRNet, WCDM, and UHDFour algorithms effectively enhanced
the brightness and contrast of the images, but they also led to considerable loss of details.
In comparison, our proposed method exhibited superior enhancement results. It not only
effectively enhanced the overall brightness of the images but also improved the brightness
of darker local regions, highlighting more image details, features, and edge information.
Furthermore, our method effectively mitigated color distortion issues that can occur during
the image enhancement process, preserving the original color of the images.
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Figure 7. Visual comparisons of state-of-the-art low-light image enhancement methods on Scenario
S1 low-light images from the MINE dataset are presented below. Please zoom in for better detail.

Figure 8. Visual comparisons of state-of-the-art low-light image enhancement methods on Scenario
S2 low-light images from the MINE dataset are presented below. Please zoom in for better detail.

To evaluate the practicality of the algorithm, we applied it to the monitoring system
of Xieqiao Mine in Huainan City and conducted enhancement comparison experiments
on real-time images from two sites, namely T1 and T2. The T1 image contained only static
scenes, allowing us to assess the effectiveness of detail and texture enhancement. The
T2 image included human figures, providing a basis for evaluating the model’s enhance-
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ment performance on individuals and establishing the foundation for a real-time person
detection system in the mine. The experimental results are shown in Figures 9 and 10.

Figure 9. The state-of-the-art low-light image enhancement methods were compared in real-time
monitoring scenario T1 as follows. Please zoom in to examine the details.

Figure 10. Thestate-of-the-art low-light image enhancement methods were compared in real-time
monitoring scenario T2 as follows. Please zoom in to examine the details.

Figures 9 and 10 demonstrate that the other advanced algorithms exhibited halo ar-
tifacts, shadows, and color distortion, resulting in incomplete image information and
significant loss of fine details. In comparison, our algorithm suppressed the overexposed



Processes 2024, 12, 1067 15 of 21

areas, leading to a noticeable reduction in brightness of individuals, while enhancing the
brightness in darker regions. This enhanced the distinction between individuals and the en-
vironment, resulting in a visually pleasing effect. Thus, our algorithm effectively achieved
low-light image enhancement in underground environments.

3.2.2. Quantitative Comparison

Table 1 presents a comparison of the PSNR and SSIM values for the enhancement
results of our network and the other state-of-the-art methods on the S1, S2, T1, and T2
images. It can be observed that our proposed model achieved the highest PSNR and SSIM
values. This indicates that our method effectively enhanced the quality and fidelity of
low-light images in underground environments.

Table 1. Quantitative evaluation of different methods on S1 , S2, T1, and T2. The best results are
highlighted in bold black.

Methods Reference S1 S2 T1 T2
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

RetinexNet BMVC 18 [19] 13.69 0.404 12.58 0.457 13.84 0.458 12.87 0.421
Zero-DCE CVPR 20 [36] 18.98 0.561 15.87 0.512 17.45 0.461 16.34 0.436

EnlightenGAN TIP 21 [38] 17.11 0.681 16.84 0.534 18.36 0.532 17.32 0.597
SCI CVPR 22 [47] 19.12 0.654 18.94 0.686 17.48 0.674 18.59 0.648

URetinex-Net CVPR 22 [25] 18.46 0.674 18.13 0.699 17.38 0.668 18.64 0.687
SNRNet CVPR 22 [32] 17.38 0.642 18.21 0.712 17.22 0.674 17.46 0.672
WCDM TOG 23 [33] 20.07 0.718 21.13 0.708 19.35 0.716 18.98 0.694

UHDFour ICLR [34] 19.51 0.695 20.05 0.722 18.47 0.703 17.21 0.683
Ours - 22.94 0.813 23.46 0.804 22.84 0.708 21.21 0.723

We conducted an evaluation of images from four distinct scenarios. From the results
presented in Table 1, it can be concluded that our method achieved an approximately 14.3%
improvement in PSNR and an approximately 13.2% improvement in SSIM compared to the
WCDM competitor in the S1 scenario. In the S2 scenario, our method demonstrated approx-
imately 11.1% and 11.4% improvements in PSNR and SSIM, respectively, relative to both
the WCDM and UHDFour competitors. Regarding the T1 scenario, our method exhibited
an approximately 18.0% enhancement in PSNR compared to the WCDM competitor, along
with an approximately 1.1% improvement in SSIM. In the T2 scenario, our method achieved
approximately 11.8% and 4.2% improvements in PSNR and SSIM, respectively, compared
to the WCDM competitor. In summary, our method showcased excellent performance
across diverse scenarios, demonstrating significant improvements over the competitors in
multiple evaluation metrics. These findings underscore the substantial effectiveness and
performance of our approach in the domain of image enhancement.

To enhance the authenticity of the experiments, we selected 200 images from the
MINE dataset and performed a comparative enhancement using our algorithm and other
advanced algorithms. The average PSNR and average SSIM were calculated, and the results
are presented in Table 2.

Upon analyzing the Table 2, our method achieved the highest PSNR value of 22.18,
which represents a significant improvement compared to the other methods. Specifically, it
outperformed the next best method, WCDM, by 10.3%. In terms of SSIM, our method also
performed remarkably well, with a value of 0.807, surpassing all other methods. Notably, it
exhibited an improvement of 19.5% over the second-best performer, WCDM. These results
demonstrate that our proposed method significantly enhanced the quality and similarity of
the images, surpassing the performance of the other algorithms by a considerable margin.
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Table 2. Quantitative evaluation of the different methods on MINE. The best results are highlighted
in bold black.

Methods Reference PSNR↑ SSIM↑

RetinexNet BMVC 18 [19] 13.58 0.457
Zero-DCE CVPR 20 [36] 17.99 0.558

EnlightenGAN TIP 21 [38] 17.05 0.649
SCI CVPR 22 [47] 19.41 0.671

URetinex-Net CVPR 22 [25] 18.59 0.659
SNRNet CVPR 22 [32] 18.01 0.638
WCDM TOG 23 [33] 20.11 0.709

UHDFour ICLR 23 [34] 19.68 0.687
Ours - 22.18 0.807

3.3. Ablation Study

To validate the effectiveness of the proposed improvement method, comparative anal-
ysis was conducted through ablation experiments. The experimental results are presented
in Figure 11. In group (a), low-light images were used, while group (b) represents the
enhanced results using our algorithm. For groups (c), (d), (e), and (f), the experiments
involved keeping the modules in the network unchanged while conducting ablation ex-
periments on each loss function. Similarly, for groups (g), (h), and (i), the experiments
involved keeping the loss functions unchanged while conducting ablation experiments
on various modules within the network. The test quality indicators were selected from
the MINE dataset, which consists of low-light images captured in underground mines.
The comparative experimental results are shown in Figure 11, and the objective metric
evaluations are presented in Table 3.

Table 3. Quantitative results of ablation studies. The best results are highlighted in bold black.

Methods PSNR↑ SSIM↑

Ours 21.46 0.723
w/o L1 18.29 0.698
w/o L2 15.53 0.558
w/o L3 18.42 0.662
w/o L4 17.56 0.597

w/o ResNeSt Block 20.01 0.701
w/o Attention 18.52 0.687

w/o Interference 19.31 0.679

From Figure 11c, it can be observed that the removal of the exposure control loss
L1 resulted in an overall darkening of the image. Figure 11d demonstrates that in the
experiment without the reflectance consistency loss L2, the images exhibited abnormal
exposure. Despite the introduced interference, the network fundamentally mapped from
image to image, rather than image to reflectance, due to the absence of reflectance con-
sistency loss. Figure 11e reveals that the removal of the structural loss L3 introduced
artifacts and compromised some texture details. Figure 11f shows that in the absence of
the illumination smoothness loss L4, the image contrast became excessively high. From
Figure 11g, it is evident that removing the ResNeSt block lad to a significant loss of image
details, due to the decreased feature extraction capability of the network. Furthermore,
Figure 11h demonstrates that removing the attention module resulted in overexposure and
partial blurring of details. In Figure 11i, the removal of the random brightness perturbation
module caused excessive enhancement, leading to color distortions.
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Figure 11. Visual comparison of the effectiveness of the ablated modules in the conducted research.

Based on the comparison of PSNR values in Table 1, it is evident that the “Ours”
method outperformed the “w/o” variants in terms of image quality. The highest PSNR
value achieved was 21.46, attributed to the “Ours” method, indicating its superior per-
formance in preserving image details and reducing noise compared to the other variants.
In terms of SSIM, the “Ours” method generally exhibited better performance than the
“w/o” variants, although the differences were not significantly pronounced compared to
the PSNR values. The SSIM value for the “Ours” method was 0.723, indicating a higher
structural similarity between the enhanced and original images. Specific evaluations were
also conducted for particular method variants. It can be observed that the exclusion of
certain components, such as the “ResNeSt Block” or “Attention”, led to a decrease in both
PSNR and SSIM values. This highlights the crucial role of these components in the overall
performance and effectiveness of the method.

These research findings demonstrate the high efficacy of the proposed method in
addressing image quality issues under dust and low-illumination conditions in coal mine
environments. This has significant implications for the safety, production efficiency, and
environmental monitoring of coal mine workers. Overall, this study’s contribution lies in its
innovative approach to improving image quality in coal mine environments. The proposed



Processes 2024, 12, 1067 18 of 21

method has the potential to enhance the safety and productivity of coal mining operations
and is of great importance for the field of image processing in the context of coal mines.

4. Conclusions

This study presented a coal mine image enhancement method based on the HSV color
space, to address the impact of dust and low-illumination conditions on video image en-
hancement in coal mine environments. The proposed method combines the characteristics
of the HSV color space and applies Retinex theory to the brightness (V channel). By design-
ing a reflection estimation network based on U-Net and incorporating ResNeSt blocks and
multi-scale channel-wise pixel attention modules, the accuracy and generalization ability
of the algorithm were improved. Experimental results demonstrated the effectiveness
of our method in addressing image quality issues caused by dust and low-illumination
conditions in coal mine environments. Our method achieved the highest PSNR value
of 22.18, representing a significant improvement over the other methods, with a 10.3%
enhancement compared to the second-best WCDM method. Additionally, our method
performed remarkably well in terms of SSIM, achieving a value of 0.807, surpassing all
other methods, and exhibiting a noteworthy improvement of 19.5% over the second-best
performer, WCDM. In conclusion, our proposed method effectively addresses image quality
issues caused by dust and low-illumination conditions in coal mine environments.

While this study makes significant contributions, there are also some limitations.
One limitation was the dataset used for evaluation, which may have limited the diversity of
coal mine image samples. Future research should consider expanding the dataset to include
a greater variety of coal mine types and image variations under different environmental
conditions, to increase the representativeness of the experiments. Another limitation was
that the proposed method was specifically designed and evaluated for coal mine environ-
ments, and its applicability in other domains or general image enhancement tasks remains
to be explored. Future research could investigate the transferability and adaptability of this
method to different industries or broader image-processing applications. Lastly, although
the proposed method achieved promising results, there is still room for improvement
in algorithm efficiency and computational complexity. Future research could focus on
optimizing the computational aspects to make the method more practical for real-time or
large-scale applications. Therefore, future research should consider further exploration in
areas such as multi-modal image enhancement, data augmentation, and synthesis, as well
as joint optimization and task relevance.

In summary, this study proposed an unsupervised coal mine image enhancement
method in the HSV color space, which showed promising results in low-illumination coal
mine image applications. Furthermore, this method can also be applied to other industrial
domains, considering that many industrial environments, similarly to coal mine settings,
often suffer from low-lighting conditions and dust-related issues. By improving the quality
of industrial video images, this method can enhance the effectiveness of visualization,
monitoring, and detection systems. Future research could focus on further refining and
expanding this method to enhance its applicability and effectiveness, as well as exploring
its integration with other tasks, thus providing a more comprehensive solution for coal
mine image processing.
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