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Abstract: Failure Mode and Effect Analysis (FMEA) is an essential risk analysis tool that is widely
applicable in various industrial sectors. This structured technique allows us to identify and assign
priority levels to potential failures that violate the reliability of a system or process. Failure evaluation
occurs in a decision-making environment with uncertainty. This study proposes a probabilistic
fuzzy system that integrates linguistic and stochastic uncertainty based on a Mamdani-type model
to strengthen the FMEA technique. The system is based on analyzing the frequency of failures and
obtaining the parameters to determine the probability of occurrence through the Poisson distribution.
In addition, the severity and detection criteria were evaluated by the experts and modeled using the
Binomial distribution. The evaluation result is a discrete value analogous to the process of obtaining
the success or failure of the expert generating the evaluation of 10 Bernoulli experiments. Three fuzzy
inference expert systems were developed to combine multiple experts’ opinions and reduce linguistic
subjectivity. The case study was implemented in the knitting area of a textile company in the south of
Guanajuato to validate the proposed approach. The potential failure of the knitting machinery, which
compromises the top tension subsystem’s performance and the product’s quality, was analyzed. The
proposed system, which is based on a robust mathematical model, allows for reliable fault evaluation
with a simple scale. The classification performed by the system and the one performed by the experts
has similar behavior. The results show that the proposed approach supports decision-making by
prioritizing failure modes.

Keywords: FMEA; failure mode; RPN; probabilistic fuzzy system; linguistic uncertainty; stochastic
uncertainty

1. Introduction

The increase in quality and competition has motivated companies to offer products
and services based on customer expectations. These companies use evaluation techniques
to identify potential risks, effects, and causes [1,2]. Risk management and criticality analysis
are effective tools for prioritizing component failures in complex systems [3], allowing
corrective actions to be taken at the product development and operational levels [4]. FMEA
is the most widely used structured and qualitative technique for identifying failure modes
within a system, evaluating their impact, and planning corrective actions. It is the num-
ber one step in reliability studies [5] to increase system general safety [6] and has been
successfully implemented in diverse areas [7].

When implementing this technique, a multidisciplinary group of experts is involved to
analyze potential failures that may violate the system’s proper functioning. Subsequently,
experts evaluate the failure modes based on their knowledge, considering three criteria:
occurrence (O), detection (D), and severity (S). Traditionally, ten categories are used for each
criterion. The metric for prioritizing failures is the product of the three criteria; this product
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is called the risk priority number (RPN). By applying FMEA, experience is transformed
into the ability to foresee future problems [8] and thereby mitigate or eliminate unexpected
events that reduce the system’s reliability [9].

In actual practice, the evaluation of failure modes is carried out in what Kahneman
defines as a decision-making environment under conditions of uncertainty [10]. Experts
play an essential role in decision-making; however, when they express their opinion, it
is based on their perception and experience of the effects caused by failures. Therefore,
they inherently use natural language to evaluate the criteria (input variables), generating
imprecise information. In the proposed approach of this research, two types of uncertainty
are considered: the first is linguistic, which is addressed by categorizing the criteria based on
the experts’ interpretation. The second type of uncertainty is stochastic, which addresses the
random nature of a phenomenon. The domain used in the proposed system is established
based on probabilistic values for the input variables. Probabilistic fuzzy systems that cover
both types of uncertainty in a unifying framework allow us to achieve a more realistic and
comprehensive model [11]. Recent studies have proposed models to improve the FMEA
technique by considering linguistic uncertainty with fuzzy logic systems. However, few
studies have considered the stochastic uncertainty derived from the occurrence of failure
modes.

FMEA was formally implemented in 1963 during the Apollo space project, but in 1994,
the implementation of this technique reached its peak in the automotive sector [12]. Recent
articles have extensively improved the performance of FMEA by integrating fuzzy logic
theory with critical sector applications. For example, Testik and Unlu [13] implemented the
FMEA technique to identify risks in testing and calibration laboratories. They compared
the advantages of using the conventional technique with the one improved with fuzzy logic.
Moreover, Ilczuk and Kycko [14] analyzed the risks based on a fuzzy FMEA in investment
processes to improve safety in railway traffic control. In their study, Goksu and Arslan [15]
proposed a fuzzy FMEA to evaluate risks in the naval industry and thus improve ship
operating conditions. Furthermore, Cruz-Rivero et al. [16] combined FMEA with fuzzy
logic to evaluate the functionality of a prototype that quantifies methane gas and carbon
dioxide in the livestock industry. In each study cited above, the risk assessment is carried
out in an environment of linguistic uncertainty, and stochastic uncertainty is not considered,
unlike in the present research, which proposes an evaluation system that integrates the two
types of uncertainty to generate a robust evaluation framework.

Furthermore, in the work of Ribas et al. [17], the authors propose an important
Mamdani-type Fuzzy Inference System (FIS) to evaluate failure modes in a hydroelec-
tric power plant. In addition to the three RPN criteria, the FIS incorporates a criticality
index that allows prioritization of the risks in a dam–energy generator. Alizadeh et al. [18]
used a fuzzy FMEA with the stages of the Mamdani method to analyze and evaluate the
risks associated with the physical processes of a wastewater treatment plant. Additionally,
in the work of Łapczyńska and Burduk [19], the authors used the Mamdani method, with
which they proposed a FIS to analyze the risks in the machinery of a production process.
Pacana and Siwiec [20] developed a valuable proposal incorporating a qualitative environ-
mental indicator to a diffuse FMEA to analyze the risks in the quality of the product and
the natural environment. The study of Alshehhi et al. [21] proposes a Mamdani-type FIS in
the criticality analysis and FMEA to classify the risks associated with acquiring Artificial
Intelligence systems for public sectors. The works cited above are characterized by evaluat-
ing the occurrence criterion using a comparative table with established categories, where
the table also contains a column of assigned probabilities as a reference base to assign the
category. Therefore, in this investigation, the natural frequency of each failure mode is
determined based on events that have occurred and not on comparative tables. Thus, in
the first stage of the Mamdani method, probabilistic values are used in the input linguistic
variables.

Consequently, only some studies have examined the effect of stochastic and linguistic
uncertainty during experts’ criteria evaluation. For example, Wu and Wu [22] proposed a
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model that simultaneously integrates the two types of uncertainty and solves the complex
problem using Markov Chains and Monte Carlo simulation methods. They integrate
fuzzy theory, Bayesian statistical inference, and the beta–binomial distribution in the
evaluation phase. In a differentiated way, our approach integrates both types of uncertainty
but respects the stages of a Mamdani-type fuzzy model where probabilistic concepts are
introduced based on historical data. Furthermore, Jang [23] developed an essential proposal
to overcome the limitations of FMEA by constructing a time-dependent probabilistic model.
This study considered that the longer the time that had passed since the failure occurred, the
greater the loss it caused in the process or system. However, the authors only deal with the
probabilistic aspect without considering the linguistic environment and the participation of
experts during the evaluation of failure modes, which, in actual practice, is essential. In
this research, both the information from experts and the statistical information of events
that occurred are considered in the evaluation stage.

In addition, Gul et al. [24] developed an innovative FMEA system based on Bayesian
networks and the best–worst method under the fuzzy concept. De Aguiar et al. [25]
successfully combined fuzzy logic and product FMEA to evaluate and prioritize failure
modes in a cutting module of an agricultural machine. Ceylan [26] developed a fuzzy
rule-based FMEA to analyze and evaluate the risks associated with shipboard compressor
systems. In doing so, they made an essential contribution to the maritime sector. Certa
et al. [27] propose an FMEA based on the Dempster–Shafer Evidence Theory (DST) as
a mathematical framework to deal with information with epistemic uncertainty. They
apply the methodology to assess risks in the propulsion system of a fishing vessel. In the
research of Ghasemi and Rahimi [28], the authors analyze and evaluate the risks of personal
fall arrest systems using an FMEA in a fuzzy, intuitionistic environment. The results
provide a framework for predicting user safety. On the other hand, the study by Awodi
et al. [29] presents a novel tool to assess the risks of nuclear decommissioning projects using
a Technique of Order Preference by Similarity Order to Ideal Solution (TOPSIS). This allows
risk management and optimal decision-making. In the cited research [24–29], the authors
do not address stochastic uncertainty in their models; they also use the conventional RPN
scale of 1 to 1000 to prioritize failure modes. In our research, the classification of failure
modes is simple and easily interpretable, with a scale of 1 to 10.

Some research has been carried out whose focus is to strengthen the FMEA by reducing
the uncertainty associated with the multiple opinions of experts when evaluating failures,
for which there is a high level of subjectivity. In this regard, a few studies have addressed
this topic. However, some relevant works are presented below. Ghoushchi et al. [30]
developed a three-phase method where they develop an FMEA to identify failure modes
in a critical automotive spare parts manufacturing process. Furthermore, to determine
the factors O, D, and S, they used the fuzzy best–worst (FBWM) method and assigned
weights to the factors based on the experts’ experience. Their contribution is relevant
when prioritizing failures using Multi-Objective Optimization and Z fuzzy number theory
(Z-MOORA), which incorporate the concepts of uncertainty and reliability. The research of
Buffa et al. [31] developed an FMEA with criticality analysis to support a risk assessment
of a high-activity gas recovery system in failures due to components and human errors.
They improved the fuzzy RPN through Evidence Theory. They established normalization
stages by calculating a weighted function and constructing discrete distribution functions
of the factors. They assigned weights to factors and considered it essential to reduce the
uncertainty associated with various expert opinions. It should be noted that experts give
greater importance to the O and S factors. Following the same approach, this research
proposes three fuzzy inference expert systems to consider the opinion of each of the experts
to reduce uncertainty due to the subjectivity present when experts issue their opinions.
The opinions are grouped to unify the evaluation of the factors (O, S, and D). Furthermore,
works [30,31] operate with different scales, making them difficult to compare with the
conventional RPN scale. In contrast, this work uses a simple scale of [1–10] that is easily
comparable.
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After reviewing the literature, it is possible to highlight the efforts to improve FMEA
performance through hybrid approaches with techniques involving Artificial Intelligence,
Multicriteria Decision Making, Event Theory, and Markov Chains. However, it is possible
to conclude that additional research is required regarding approaches that simultaneously
treat information with linguistic and stochastic uncertainty in an integrative model. There-
fore, the present study proposes a probabilistic fuzzy system to evaluate failure modes
during FMEA implementation. The system is based on the theory of fuzzy logic, which
deals with the environment of linguistic uncertainty. Also, probability theory is used to
deal with stochastic uncertainty. Therefore, the proposed system offers a robust and reliable
tool for evaluating potential risks, thereby eliminating or mitigating harmful effects on a
system/process. The present research was validated in a textile company, specifically in
knitting machinery.

The main contributions of this research are as follows:

1. Linguistic and stochastic uncertainty is integrated into a robust mathematical model.
2. Poisson distribution is used to determine the probabilistic values of the occurrence

criterion.
3. Binomial distribution determines the probabilistic values of the detection and severity

criteria.
4. The outputs of the probabilistic fuzzy system are obtained in a simple and easy range

of [1, 10], which allows straightforward interpretation when classifying each failure
mode.

This article is organized as follows: Section 2 presents the proposed approach and the
techniques used. Section 3 develops the case study in the textile sector. Section 4 presents
the discussion, and finally, Section 5 presents the research conclusions.

2. Materials and Methods

The methodology used in this research consists of three phases, each of which allows
the evaluation and classification system of failure modes to be structured by integrating
fuzzy logic and probability theory techniques (See Figure 1).
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Figure 1. Methodology.

The basis of the evaluation system begins with the analysis (Phase I) of the failure
modes, as well as the effects and their causes. Also, the integration of the work team is
crucial, given that their experience in the system or process is essential for evaluating the
events (criteria). In this phase, the occurrence event is significant since historical data are
analyzed to establish the frequency of failure modes. With this in mind, the proposed
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approach establishes that it is based on evidence or events that have already occurred. The
failure rate is obtained, which is a necessary parameter to determine the Poisson probability
distribution function. Also, the parameters of the severity and detection events necessary
for the binomial probability distribution are determined. In the evaluation (Phase II), the
variables and linguistic labels for each event are established, and, with their corresponding
degree of probability, they are entered into the knowledge base so that these distribution
functions perform a classification. Three fuzzy inference expert systems are used to combine
multiple points of view. Finally, in the prioritization phase (Phase III), a simulation process
is carried out to verify the system outputs and classify the failure mode under study.

2.1. FMEA

The FMEA is a structured and simple but potentially effective technique; it also allows
us to analyze and evaluate the various ways in which a system fails, as well as establishing
the necessary actions to reduce the occurrence of failures. O, D, and S are the three criteria
of importance. Higher values of O indicate a greater frequency of failure occurring. Higher
values of D mean that it is more difficult to find and prevent a failure before it happens.
Criterion S classifies damage to the system [32]. Traditionally, these criteria are evaluated
with subjective categories and using a scale between 1 and 10. Based on the expert group’s
opinion, the criteria presented in Table 1 were categorized and adapted according to the
scale and description proposed by Cardiel-Ortega and Baeza-Serrato [33].

Table 1. Categorization of criteria.

Linguistic Ranking

Ranking S O D

1 None Very remote Almost certain
2 Very weak Remote Very High
3 Weak Rarely Major
4 Extremely low Not frequently Important
5 Low Low Moderate
6 Moderately Moderately Medium
7 High Moderate high Scarce
8 Extremely high High Remote
9 Hazardous Extreme Very remote
10 Extremely Extremely None

The RPN metric is used with Equation (1) to evaluate each failure mode’s risk level.
Therefore, a larger RPN implies more critical failure modes, and attention should be paid
to improving the system performance [34].

RPN = (O)× (D)× (S) (1)

FMEA is implemented in a five-step procedure:

1. Establish the objective and integrate a multidisciplinary team of experts.
2. Identify and analyze failure modes, their effects, causes, and detection controls.
3. Establish the level of occurrence, severity, and detection.
4. Obtain the risk priority number.
5. Formulate a final report with the recommended actions and modifications to reduce

or eliminate risks in the system/process.

2.2. Evaluation System

The evaluation system proposed in this research deals with information with linguistic
uncertainty. It is classified based on the interpretation and knowledge of experts. Lotfi
Zadeh developed a tool to deal with this type of uncertainty in 1965, using fuzzy sets to
model imprecise information. Moreover, the Mamdani method is the most frequently used
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in fuzzy systems because it has a simple, understandable, and intuitive structure, making
it more suitable for expert system applications [35]. The proposed system considers the
stages of the Mamdani method: initially, the input linguistic variables xi are determined. In
this case, the variables are O (x1), D (x2) y S (x3). The universe of discourse for the three
variables was established in a range [1,10] suggested in the literature. The input linguistic
variables were categorized into three labels: low (L), medium (M), and high (H), whose
values are the parameters obtained by the frequency of failures and the experts’ opinions.
Afterward, fuzzification was carried out by associating the probability corresponding to
each level of the input variables through probability distribution functions. Subsequently,
the knowledge base is established through fuzzy probabilistic inference rules of the if–then,
type, giving way to implication and aggregation. Finally, the system output is obtained to
perform individual failure mode classification. The output variable also has a discourse
universe of [1,10], enabling simple and easy classification that helps decision-making.

3. Case Study

The proposed approach was validated in a company in the clothing textile sector,
specifically in the manufacture of knitted clothing. The company is in the south of Guana-
juato, Mexico. The manufacturing process consists of eight stages, from processing yarn
fibers in the weaving area to obtaining a children’s clothing item. The stages are presented
in Figure 2.
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The study focuses on knitting, where yarn fibers are transformed into knitting can-
vases with rectilinear machines. The correct functioning of this area is essential for the
process because, in each operation, value is added to the canvases obtained from this area.
Therefore, it is relevant to offer experts a reliable and robust tool to evaluate and classify
the failure modes in rectilinear machines based on fuzzy logic techniques and probability
theory. Below are the steps of Phase I corresponding to the analysis.

3.1. Expert Team Integration

The team consists of four experts who have a direct relationship with knitting and
extensive knowledge of machinery. Table 2 presents the main characteristics of the equipment.

Table 2. Expert team.

Expert Area Experience Education

E1 Mechanical 31 years Technical
E2 Operational 23 years Technical
E3 Electronic 29 years Engineer
E4 Manufacture 13 years Engineer

A multidisciplinary team is essential due to the experience and knowledge they
provide with regard to analyzing failure modes, effects, and causes. A team’s participation
in the evaluation process and decision-making enriches the analysis phase, given that
different points of view can offer a more satisfactory solution to the problem.



Processes 2024, 12, 1197 7 of 20

3.2. Failure Analysis

Through sessions to study potential risks, the expert team categorized the machinery
into subsystems to facilitate the identification of failure modes. Figure 3 shows the location
of these subsystems.
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Figure 3. Subsystems of rectilinear machines.

During the analysis phase, it was necessary to consider the relationship between
the different subsystems of the machine. The top tension subsystem has an electronic
relationship with the controller subsystem. When detecting a fiber knot, the sensors send
a signal to the controller subsystem to stop the machine and activate the alert light, with
which the operator identifies what happened. Subsystems 3, 4, 5, and 6 also have a
mechanical relationship. When one of the failure modes occurs in the top tension, it affects
the other subsystems, resulting in a knitted fabric with errors or low quality. Figure 4 shows
the schematic of this subsystem.
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Continuing to analyze the potential risks, the expert team determined that the scope is
the development of a process FMEA. For each subsystem, the potential failure modes that
can significantly affect the operation of the machinery were established. We only expose
subsystem 1 (top tension) in the present study. Through this subsystem, the different yarn
fibers are fed to the machine to allow it to weave the knitted fabric canvases.

Each component must work correctly, given that a certain tension is generated during
the fiber’s path that, if not controlled correctly, can alter the main parameter of knitted
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fabrics, which is called the loop length. Table 3 shows the analysis result of this subsystem,
its corresponding failure modes, the classification of the components according to where
these failures occur, and the effects that failures can produce in the machinery, process, or
product.

Table 3. Failure modes of the top tension subsystem.

No. Failure Component Effect Secondary Effect

FM1 Large knot Electronic/Mechanical
Breakup of the fiber and detachment of the

knit fabric. Machine stop

Deformation of the needle hook Machine stop

FM2 Small knot Electronic/Mechanical
Deformation of the needle hook Machine stop

Defective knit fabric Canvas with low quality

FM3
Tensioner out of

adjustment Mechanical
Alteration in fiber tension Loop length alteration

Mark and relief on the canvas Canvas with low quality
FM4 Damaged lamp Electronic Delay in identifying the faulty device Machine stop
FM5 Up tension wire Mechanical Change in yarn tension Canvas with low quality

Next, Figure 5 shows the components of the top tension subsystem and presents the
five potential failure modes considered by the expert team.

Processes 2024, 12, x FOR PEER REVIEW 8 of 21 
 

 

Continuing to analyze the potential risks, the expert team determined that the scope 
is the development of a process FMEA. For each subsystem, the potential failure modes 
that can significantly affect the operation of the machinery were established. We only ex-
pose subsystem 1 (top tension) in the present study. Through this subsystem, the different 
yarn fibers are fed to the machine to allow it to weave the knitted fabric canvases.  

Each component must work correctly, given that a certain tension is generated dur-
ing the fiber’s path that, if not controlled correctly, can alter the main parameter of knitted 
fabrics, which is called the loop length. Table 3 shows the analysis result of this subsystem, 
its corresponding failure modes, the classification of the components according to where 
these failures occur, and the effects that failures can produce in the machinery, process, or 
product. 

Table 3. Failure modes of the top tension subsystem. 

No. Failure Component Effect Secondary Effect 

FM1 Large knot 
Electronic/Me-

chanical 

Breakup of the fiber and detachment of 
the knit fabric. 

Machine stop 

Deformation of the needle hook Machine stop 

FM2 Small knot 
Electronic/Me-

chanical 
Deformation of the needle hook Machine stop 

Defective knit fabric Canvas with low quality 

FM3 
Tensioner out of ad-

justment Mechanical 
Alteration in fiber tension Loop length alteration 

Mark and relief on the canvas Canvas with low quality 
FM4 Damaged lamp Electronic Delay in identifying the faulty device Machine stop 
FM5 Up tension wire Mechanical Change in yarn tension Canvas with low quality 

Next, Figure 5 shows the components of the top tension subsystem and presents the 
five potential failure modes considered by the expert team. 

 
Figure 5. Components—top tension. 

Phase II, or evaluation, of the probabilistic fuzzy system, comprises six main steps 
described below. With the system proposed in this research, the failure modes are evalu-
ated individually based on historical data (frequency) and the experts’ experience. Each 
criterion is related to a probability distribution function for discrete variables. 

  

Figure 5. Components—top tension.

Phase II, or evaluation, of the probabilistic fuzzy system, comprises six main steps
described below. With the system proposed in this research, the failure modes are evaluated
individually based on historical data (frequency) and the experts’ experience. Each criterion
is related to a probability distribution function for discrete variables.

3.3. Opinions

During the evaluation of the factors (O, D, and S), the expert expresses his opinion or
point of view, which generates linguistic uncertainty. Therefore, three fuzzy inference expert
systems were developed to consider the multiple opinions of the expert team members.
Each expert system allows multiple opinions to be combined and thus reduces subjectivity
in the evaluation. Table 4 presents the main characteristics of the inference systems.
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Table 4. General configuration of fuzzy inference expert systems.

Stages Characteristics/Parameters

Input variables:

Opinion E1
Opinion E2
Opinion E3
Opinion E4

Output variable—Expert System 1:
Output variable—Expert System 2:
Output variable—Expert System 3:

Group assignment—Occurrence
Group assignment—Detection
Group assignment—Severity

Label parameters:
Low (1, 3, 7)

Medium (1, 5, 8)
High (2, 7, 10)

Membership function: Sigmoid function

Universe: [1–10]

Implication method: Min

Aggregation method: Max

Defuzzification method Centroid [33]

The output generated by each system is an overall evaluation of the team for each
factor. These outputs are established as the values of the input variables to the probabilistic
fuzzy system. The systems were structured with a Mamdani-type model and if–then-type
inference rules were established. Considering three linguistic labels and the participation
of four experts, (34) inference rules were determined. The centroid defuzzification method
proposed by [33] was used.

3.4. Frequency

Today, it is common in manufacturing environments to collect historical data on the
frequency of failures or to have a plan to track the data. Therefore, a probability distribution
function must be used based on historical frequency data to statistically estimate the level
of failure occurrence. The frequency data of the top tension subsystem’s failure modes
were collected for 50 weeks between 2022 and 2023 (See Figure 6). It should be noted that
failure mode FM4 did not occur during the observed period.
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Figure 6. Failure mode frequencies: (a) large knot, (b) small knot, (c) tensioner out of adjustment and
(d) up tension wire.
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The frequency of each failure mode determines the average rate of occurrence. The
Pareto chart in Figure 7 shows the average failure rates (λ) and their corresponding
percentages. To simplify the steps of the proposed approach and given that it is the most
frequent event in this subsystem, only the FM2 small knot failure mode is used.
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Occurrence

The Poisson distribution allows us to model the number of times a failure mode
occurs in a specific time interval. This type of distribution only considers the parameter λ.
Therefore, it is possible to model the average failure rate in terms of the positive parameter
λ. We state that the random variable X has a Poisson distribution with parameter λ > 0,
whose probability function is presented in Equation (2).

f (x) =
{

e−λ λx

x! f or x ∈ {0, 1, · · ·}
0 in another case

(2)

Considering the occurrence criterion, we define the parameters as follows:

λ = Average rate or average number of times a failure mode occurs.
e = 2.71828
x = the number of occurrences of the failure mode
f (x) = probability of x occurrences in the interval

Table 5 shows the probability values and Poisson parameters for each label (H, M, and
L) corresponding to the occurrence event of failure mode FM2.

Table 5. Probability values—occurrence of FM2.

Universe λH=6 λM=3.68 λL=2

1 0.015 0.085 0.271
2 0.045 0.161 0.271
3 0.089 0.204 0.180
4 0.134 0.194 0.090
5 0.161 0.148 0.036
6 0.161 0.094 0.012
7 0.138 0.051 0.003
8 0.103 0.024 0.001
9 0.069 0.010 0.000
10 0.041 0.004 0.000
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The graphs in Figure 8 present the Poisson Probability Density Function (PDF) corre-
sponding to the occurrence criterion. They also show how the probabilities associated with
each label’s occurrence level are distributed. The lines connecting the points are a visual
guide and do not indicate continuity. Each value of the discourse universe is associated
with the probability of occurrence of the failure mode corresponding to the classified label.
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3.5. Assignment

Based on their knowledge, experts evaluate the severity of the effects when a failure
mode occurs and the degree to which the existing control detects the failure. These two criteria
are modeled through the Binominal probability distribution. In the research by Wu and
Wu [22], the authors point out that the severity and detection criteria are evaluated through
expert qualification; each evaluation result is a discrete value distributed in the interval [0,
10]. This evaluation result is analogous to the Binomial beta distribution where n = 10. For
example, evaluation result 3 is analogous to the success of 3 out of 10 Bernoulli experiments.

Severity and Detection

Considering a discrete random variable, we can use the mathematical formula (See
Equation (3)) to calculate the probability of any value for this probability function:

f (x) =
n!

x!(n − x)!
ρx(1 − ρ)n−x x = 0, 1, · · · , n (3)

where
n = the number of trials
ρ = the probability of success in a trial
x = number of successes in n trials
f (x) = probability of x successes in n trials

Table 6 presents the probabilities and parameters on each label of the Binomial distri-
bution for the detection event.

The probabilistic behavior of each label for the detection criterion is shown in the
graph in Figure 9.
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Table 6. Probability values—detection of FM2.

n = 10 n = 10 n = 10

Universe ρH = 0.9 ρM = 0.6 ρL = 0.3

1 0.000 0.002 0.121
2 0.000 0.011 0.233
3 0.000 0.042 0.267
4 0.000 0.111 0.200
5 0.001 0.201 0.103
6 0.011 0.251 0.037
7 0.057 0.215 0.009
8 0.194 0.121 0.001
9 0.387 0.040 0.000
10 0.349 0.006 0.000

Finally, Table 7 presents the probabilities for the severity criterion of the FM2 failure
mode. The first column shows the range (universe), and the following columns show the
parameters used, with the probabilities corresponding to each one listed.

Table 7. Probability values—severity of FM2.

n = 10 n = 10 n = 10

Universe ρH = 0.95 ρM = 0.65 ρL = 0.35

1 0.000 0.001 0.072
2 0.000 0.004 0.176
3 0.000 0.021 0.252
4 0.000 0.069 0.238
5 0.000 0.154 0.154
6 0.001 0.238 0.069
7 0.010 0.252 0.021
8 0.075 0.176 0.004
9 0.315 0.072 0.001
10 0.599 0.013 0.000

In Figure 10, we can see the distribution of the probabilities associated with the values
at the severity criterion levels. The lines connecting the dots are only visual guides.
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3.6. Knowledge Base

The knowledge base represents the inference rules with the conventional structure of the
if–then type formed by the antecedent part (criterion) and the consequent part (classification).
Furthermore, these parts are associated with the degrees of probability corresponding to
the different levels of the input variables. The number of rules results from the possible



Processes 2024, 12, 1197 13 of 20

combinations between the number of input variables and the linguistic labels, defining a total
of Ri = (3)3 = 27 rules. Table 8 shows the rules operated according to Equation (4).

Ri : If P(x1) is y1 and P(x2) is y2 and P(xn) is yj Then, RPN is yj (4)

where P(xn) denotes the probability of the linguistic variables’ occurrence, detection, and
severity (x1 = O, x2 = D, x3 = S), the three levels of linguistic labels yj are classified as low,
medium, and high (y1 = L, y2 = M, y3 = H).

Table 8. Fuzzy probabilistic rules.

Rule
Antecedent (Criteria) Consequent

(Classification)

If P(O) is and If P(D) is and If P(S) is Then, RPN is

R1 L L L L
R2 L L M L
R3 L L H L
R4 L M L L
R5 L M H L
R6 L H L L
R7 L H M L
R8 M L L L
R9 H L L L
R10 L M M M
R11 M L M M
R12 M L H M
R13 M M L M
R14 M M M M
R15 M M H M
R16 M H L M
R17 M H M M
R18 H M M M
R19 B H H H
R20 M H H H
R21 H L M H
R22 H L H H
R23 H M L H
R24 H M H H
R25 H H L H
R26 H H M H
R27 H H H H

3.7. Implication and Aggregation

In this step, fuzzy probabilistic inference is carried out through the rules that represent
the knowledge of the experts when evaluating the failure mode criteria. The qualita-
tive evaluation carried out by experts is valuable for the knowledge they contribute to
decision-making based on their experience. However, it results in subjective and imprecise
information. Therefore, the evaluation system proposed in this research treats information
with linguistic uncertainty and with stochastic support by incorporating historical evidence
of the behavior of the frequency of failure modes through probability distribution functions.

For example, expert E4, when evaluating failure mode FM2, expressed the following
in qualitative terms: “Failure mode FM2 has a very high Occurrence, a lower Severity, and
a moderate Detection.” Quantitatively, and according to the traditional evaluation criteria
(See Table 3), the input linguistic variables have the following values: Occurrence = 8,
Detection = 4, and Severity = 5. The graphs in Figure 11 show the behavior of the proba-
bilities of the three input variables regarding the linguistic labels of the fuzzy probabilistic
rule R9. The red circles indicate the input value location and the associated probability.
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Therefore, the conventional metric for risk classification is RPN = 160. According to
these values, for example, the formulation of rule R9 has the following result, as shown in
Equation (5).

R9 : IF P(x1 = 8) is H and P(x2 = 4) is L and P(x3 = 5) is L Then, RPN is L (5)

In the implication process, each rule was operated with the product of the probabilities
of the input variables. Therefore, Equation (6) shows the value of the implication for R9.

R9 = P[(0.10326)× (0.20012)× (0.15357)] = 0.00317 (6)

Table 9 contains the implication values for each fuzzy probabilistic inference rule.
Likewise, the values of the aggregation process are presented. Based on each rule’s conse-
quence, they were grouped according to the linguistic labels. The maximum operator was
used to obtain the value of each group of rules.

Table 9. Implication and aggregation values.

Rule Implication Aggregation
L Rule Implication Aggregation

M Rule Implication Aggregation
H

R1 0.00003

0.00317

R10 0.00001

0.00177

R19 0.00000

0.00317

R2 0.00003 R11 0.00065 R20 0.00000
R3 0.00000 R12 0.00000 R21 0.00317
R4 0.00001 R13 0.00036 R22 0.00000
R5 0.00000 R14 0.00036 R23 0.00177
R6 0.00000 R15 0.00000 R24 0.00000
R7 0.00000 R16 0.00000 R25 0.00000
R8 0.00065 R17 0.00000 R26 0.00000
R9 0.00317 R18 0.00177 R27 0.00000

Figure 12 depicts the values resulting from the implication stage for each rule. Like-
wise, the maximum value of each group of rules corresponding to the aggregate stage is
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indicated in red. As shown, for the evaluation of FM2, the maximum values correspond to
rules R9, R18, and R21.
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3.8. Defuzzification

This step of the probabilistic fuzzy system allows us to determine the system’s real
output, which in this case is the RPN value on a simple scale of 1 to 10 to evaluate the
failure mode. For the output variable RPN, the mathematical function that generates the
normal probability density function’s “bell curve” shape was used (See Equation (7)).

f (x) =
1

σ
√

2π
e−(x−µ)2/2σ2

(7)

where

µ = mean of the random variable x
σ2 = variance of the random variable x
σ = standard deviation of the random variable x
f (x) = probability of the random variable x

Table 10 presents the probability values for the RPN output variable in its three labels.
It also presents the mean and standard deviation parameters for each label.

Table 10. Probability values—RPN.

µH = 8 µM = 5 µL = 3

Universe σH = 1 σM = 1 σL = 1

1 0.0000 0.0001 0.0540
2 0.0000 0.0044 0.2420
3 0.0000 0.0540 0.3989
4 0.0001 0.2420 0.2420
5 0.0044 0.3989 0.0540
6 0.0540 0.2420 0.0044
7 0.2420 0.0540 0.0001
8 0.3989 0.0044 0.0000
9 0.2420 0.0001 0.0000
10 0.0540 0.0000 0.0000

Similarly, the graphical representation of the normal probability function is shown in
Figure 13.

The defuzzification method used was the centroid method (See Equation (8)).

z =
∑k

i=1 P(yi)µi

∑k
i=1 P(yi)

(8)

In this method, k is the number of probabilistic fuzzy sets, µi represents the center of
each probabilistic fuzzy set, and P(yi) is the output of the aggregation stage of each set.
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Continuing with the example developed, Equation (9) presents the value of the system’s
output.

z =
(0.00317 × 3) + (0.00177 × 5) + (0.00317 × 8)

(0.00317 + 0.00177 + 0.00317)
= 5.3911 (9)
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3.9. Simulation Process

The system’s performance was tested by generating random values in the range [1,10]
for each input variable (S, O, and D). Matlab R2014a software was used to create and execute
the simulation algorithm of the proposed system. The graphs in Figures 14–16 show a
comparison of the evaluation behavior of three groups of simulations with 20 evaluations
each. The scale of the output value of the probabilistic fuzzy system is from 1 to 10; in the
case of the conventional RPN values, they are in the commonly used range of 1 to 1000.
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Figure 14. Simulation—first group with 20 evaluations.
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Figure 15. Simulation—second group with 20 evaluations.
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Figure 16. Simulation—third group with 20 evaluations.

As we can see in the three groups of simulations, the behavior between the con-
ventional evaluation with the RPN and the system’s evaluation is similar in most cases.
Therefore, the proposed system with fuzzy probabilistic support reliably and robustly
classifies a failure mode. Furthermore, its classification is more straightforward and easily
interpretable.

3.10. Classification

Each expert team member expressed their opinion regarding the occurrence, severity,
and detection factors to evaluate the risk represented by failure mode FM2 in the top
tension subsystem (See Table 11). The opinions in numerical form were established as input
values for each of the three expert systems.

Table 11. Evaluation of FM2 failure mode.

Expert Team Evaluation

Expert O D S Conventional
RPN

Classification
Probabilistic
Fuzzy System

Opinion E1 6 7 6 252 5.5902
Opinion E2 10 9 5 450 7.7133
Opinion E3 7 5 5 175 5.7856
Opinion E4 8 4 5 160 5.3911

Expert System 1 Expert System 2 Expert System 3 Conventional RPN
Classification

Probabilistic fuzzy
system

Group assessment 5 4 5 100 5.3908

Additionally, to reconcile the multiple opinions, a group assignment was generated
to reduce the uncertainty associated with the estimates of the expert team members. This
assignment is determined as the overall ranking. Therefore, the FM2 failure mode (small
knot) rating is 5.3908. The evaluation system proposed in this research supports decision-
making through consensus and integrates the environments of linguistic and stochastic
uncertainty.

The graph in Figure 17 compares the behavior of the assignments using the conven-
tional RPN and the classification generated by the probabilistic fuzzy system. Ranking
among experts is compared to group assignment. The scale of the proposed system is in an
easily interpretable range [1–10]. Additionally, for contrast, the results of the proposed ap-
proach are compared with the method reported in the literature by [33], which uses a fuzzy
approach. This shows that the proposed system generates a reliable group classification
with behavior similar to that of the conventional RPN and that reported in the literature.
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4. Discussion

Mitigating and reducing potential failures in a manufacturing system are among the
topics under constant study and continuous improvement through various methods, mainly
because the final objective is to ensure the system’s reliability and reduce maintenance
costs, work risks, and waiting times. By achieving this objective, companies can obtain
a higher level of competitiveness. During the implementation of the FMEA technique,
the evaluation stage stands out for its importance in prioritizing failure modes; this stage
determines how decisions are made to ensure the system’s reliability.

Unlike other studies, which propose novel methods to treat information with lin-
guistic uncertainty during the evaluation stage, the present study proposes an evaluation
system that integrates information with linguistic and stochastic uncertainty. The pro-
posed system allows individual evaluation of the failure modes detected in the analysis
phase. The conventional and qualitative evaluation is transformed into an evaluation with
probabilistic support, considering historical evidence. The above strengthens the system
design, since unique distribution functions are developed for each failure mode based
on its real frequency. Therefore, the occurrence criterion does not depend exclusively on
the expert’s experience but is complemented by historical data to offer a robust tool for
decision-making.

The RPN metric is easily obtained by calculating the product of the three criteria;
however, one of its shortcomings is that different combinations of criteria O, D, and S
produce the same value. This can lead to entirely different failure modes being classified
similarly. Therefore, it is highlighted that by individually analyzing the frequency of each
failure mode, the evaluation system proposed in this research allows us to overcome the
characteristic deficiency of conventional RPN by realistically classifying different failures
on a stochastic basis.

We highlight some limitations. The same Binomial distribution function is used for
the severity and detection factors. However, in future work, it will be possible to use
the Weibull distribution function for the detection factor to associate the reliability of the
machine components. Likewise, the Beta distribution can be used for the severity factor.
This will allow us to obtain better results. The use of a total of 27 rules in the knowledge
base is also considered to be a limitation. However, subsequent research integrating a
rule-reduction technique is currently under consideration.

5. Conclusions

It is essential that the implementation of the FMEA technique includes a risk evaluation
system that realistically classifies the potential failure modes that violate the reliability of
the systems. In the present research, both linguistic and stochastic uncertainty conditions
were integrated. The frequency rates of failure modes were analyzed during a period of
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operation of the textile machinery. In this way, the occurrence criterion is associated with
the Poisson probability distribution function, and the Binomial distribution function is
used for the detection and severity criteria. The evaluation system was developed using a
Mamdani-type model. The system was tested and validated using the simulation process
with the participation of the expert team. The failure modes of knitting machines’ first top
tension subsystem were analyzed. This analysis made it possible to offer decision-makers a
robust and reliable tool to generate risk mitigation and elimination actions in each of the
eight subsystems of textile machinery. Considering possible areas for improvement in the
present study, the probabilistic fuzzy system’s performance will be improved to increase
convergence. Additionally, the system will be developed with a Bayesian approach and
integrate different probability distribution functions for the factors in future work.
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