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Abstract: A large number of construction practice projects have found that there are many joints and
microcracks in rock, concrete, and other structures, which cause the complexity of rock mechanical
properties and are the main cause of geological or engineering disasters such as earthquakes, land-
slides, and rock bursts. To establish a rock fracture toughness evaluation method and understand the
distribution range of fracture toughness of Longmaxi Formation shale, this study prepared three-point
bending semi-circular disk shale samples of Longmaxi Formation with different crack inclination
angles. The dimensionless fracture parameters of the samples, including the dimensionless stress
intensity factors of type I, type II, and T-stress, were calibrated using the finite element method.
Then, the peak load of the samples was tested using quasi-static loading, and the load–displacement
curve characteristics of Longmaxi Formation shale and the variation in fracture toughness with crack
inclination angle were analyzed. The study concluded that the specimens exhibited significant brittle
failure characteristics and that the stress intensity factor is not the sole parameter controlling crack
propagation in rock materials. With an increase in crack inclination angle, the prefabricated crack
propagation gradually transitions from being dominated by type I fracture to type II fracture, and
the T-stress changes from negative to positive, gradually increasing its influence on the fracture. An
excessively large relative crack length increases the error in fracture toughness test results. Therefore,
this paper suggests that the relative crack length a/R should be between 0.2 and 0.6. The fracture
load distribution range of shale samples with different crack angles is 3.27 kN to 10.92 kN. As
the crack inclination angle increases, the maximum load that the semi-circular disk shale samples
can bear gradually increases. The pure type I fracture toughness of Longmaxi Formation shale
is 1.13–1.38 MPa·m1/2, the pure type II fracture toughness is 0.55–0.62 MPa·m1/2, and the T-stress
variation range of shale samples with different inclination angles is −0.49–9.48 MPa.

Keywords: three-point bending semi-circular disk; stress intensity factor; T-stress; fracture toughness;
shale

1. Introduction

A large body of research has shown that the fracture toughness of rocks has a sig-
nificant influence on the fracture morphology and initiation pressure of cracks in rocks.
Meanwhile, in engineering structures, especially in large-scale engineering structures, the
geometric dimensions are increasing, the working environments are becoming more com-
plex, and the functions and purposes are becoming more specialized [1–3]. The integrity
and durability of these structures are crucial for ensuring personnel safety and normal
operation, carrying significant societal and economic implications. For example, large-scale
engineering constructions and mechanical equipment, such as nuclear reactors, offshore
drilling platforms, oil and gas pipelines, ships, and warships, are at risk of catastrophic
accidents if cracks occur, leading to the destruction or disintegration of rock masses or
structures [4]. These issues fall within the realm of fracture mechanics, a field of great
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importance for preventing such failures. The fracture mechanics parameters of rock ma-
terials, such as fracture toughness, significantly impact the rock fragmentation process in
engineering problems like petroleum drilling and tunnel excavation. Consequently, the im-
portance of rock fracture toughness is increasingly emphasized in geotechnical and mining
engineering. The presence of numerous joints and microcracks in natural or engineering
materials, such as rocks and concrete, complicates their mechanical properties and is a
major cause of geological or engineering disasters, including earthquakes, collapses, and
rock bursts [5,6]. The complex stress state in engineering or deep rock masses, where crack
tips are subjected to tensile and shear stresses, often results in I–II mixed-mode fracture.
Therefore, research on the fracture toughness and propagation paths of rock cracks with
I–II mixed-mode fracture has significant theoretical and engineering significance.

Various geometric configurations of test specimens are used for rock fracture tough-
ness testing, including short rod (SR), chevron-notched three-point bending round bar
(SECRBB), chevron-notched three-point bending round bar (CB), straight-through crack
Brazilian disk (CSTBD), chevron-notched Brazilian disk (CCNBD), and straight-through
notch semi-circular bending (SCB) specimens [7–10]. The International Society for Rock
Mechanics (ISRM) has recommended SR, CB, CCNBD, and SCB specimens for type I static
fracture toughness testing due to their reliability and consistency across different rock
types. Testing methods for rock fracture toughness can be classified by loading methods
into direct tensile, compressive, and bending types. Indirect tensile methods, such as disk
tests, are particularly popular due to their simplicity and ease of implementation [11–14].
These methods have become standard practice in rock fracture toughness testing, provid-
ing valuable insights into the mechanical properties and failure mechanisms of various
rock types [15–18]. According to the shape of prefabricated cracks, specimens are divided
into chevron-notched, straight-notched, and unnotched types [19]. So far, ISRM has rec-
ommended four methods for testing rock type I fracture toughness: chevron-notched
three-point bending round bar, chevron-notched short rod, chevron-notched Brazilian disk,
and straight-notch three-point bending semi-circular disk specimens [20]. In recent years,
straight-notch semi-circular disk three-point bending specimens have gained increasing
popularity among rock mechanics researchers both domestically and internationally due
to their unique advantages. However, during the test process, the influence of T-stress on
fracture toughness and crack initiation angle test results is generally not considered. Li
et al. [18] believed that cracks in a state of compressive stress still experience tensile–shear
stress at the crack tip, and their experiments found a proportional relationship between
type I fracture toughness and compressive strength. Gunsallus [19], Whittaker [20], Bha-
gat [21], and others [22–25] have identified a proportional relationship between rock type
I fracture toughness and tensile strength. However, their work primarily involves data
fitting formulas based on statistical methods, with limited theoretical analysis of this rela-
tionship. Deng et al. [22] provided a theoretical demonstration of the correlation between
rock fracture toughness and tensile strength, explaining that the strong correlation is due
to their identical failure mechanisms. Additionally, Zhang [24] found a power function
relationship between type I fracture toughness and tensile strength in various rock types.
Despite the different factors considered in these studies, the relationship between rock
type I fracture toughness and tensile strength still requires further research. Beyond tensile
strength, Jianguo Chen et al. [25] discovered that shale fracture toughness is positively
correlated with its density and sonic velocity, but negatively correlated with its organic
content. Chang et al. [23] used a linear function to fit the relationship between rock type I
fracture toughness and its sonic velocity, uniaxial compressive strength, Young’s modulus,
Poisson’s ratio, density, and porosity. The results showed that fracture toughness is best
correlated with sonic velocity (R = 0.80). Ren et al. [10] proposed a notched deep beam
(NDB) specimen with an aspect ratio of 2.0 for testing rock mixed-mode fracture, and cali-
brated the crack tip fracture parameters in 2D and 3D using the finite element method. The
NDB specimen, combined with a three-point bending test, can test tensile–shear fracture
toughness with any degree of load mixing between pure type I and pure type II. Using
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CSTBD and SCB specimens, many domestic and foreign scholars [26–30] have conducted
extensive mixed-mode fracture tests on rocks, obtaining the crack propagation paths and
fracture strengths of different rocks under various loading conditions. The test results
were compared in detail with some fracture criteria, further strengthening the application
of fracture criteria in rock mechanics. Related results also show that the ratio of type II
fracture toughness to type I fracture toughness in rocks is generally less than 1. Compared
with the comprehensive understanding of the mixed-mode fracture strength and crack
propagation paths in rocks, there is little discussion and research on the fracture surfaces
and inherent fracture mechanisms formed under mixed loading by domestic and foreign
scholars [31–34]. Traditional solid mechanics assumes that materials are homogeneous, but
rocks are typical porous materials with defects such as microscopic cracks and voids of
various shapes and sizes [35–38]. At the same time, rocks are also typical crystalline particle
materials, where macroscopic fractures originate from microscopic trans-granular, inter-
granular, and coupled fracture modes. Because of the microscopic structural characteristics
of rock materials, the fracture surfaces formed are not completely smooth, with shallow
hills, ravines, etc., always present on the rock fracture surface [39–42]. Therefore, studying
the microscopic characteristics of rock fractures helps to understand the microscopic failure
mechanisms of rocks. In deep oil and gas extraction and other fields, studying the fracture
surfaces formed under mixed loading also helps to understand the coupling mechanisms
between fluids and solid fracture surfaces during fracturing [39,43]. Additionally, Xie
et al. [40] believe that the irregularity of rock fracture surfaces also affects the fracture
toughness of rocks. Therefore, it is necessary to meticulously characterize the rock fracture
surfaces formed under mixed loading. Lin et al. [43] used scanning electron microscopy at
1000× magnification on a micron scale to study the rough surfaces formed by mixed-mode
fracture in CSTBD specimens of limestone, finding that the load mixing degree influences
the morphological characteristics of rock fracture surfaces at microscopic dimensions. Ren
et al. [10] used the maximum shear stress criterion, minimum strain energy density factor
criterion, maximum energy release rate criterion, and improved R criterion to predict the
mixed-mode fracture strength of sandstone, studying the intrinsic fracture mechanisms of
rocks under mixed loading. The results show that the crack propagation paths and fracture
toughness predicted by the improved R criterion are closest to the actual experimental
values, with a good match between predicted and experimental fracture surfaces. Su
et al. [26] compared the engineering applicability of different criteria in terms of cracking
angle, critical load, and mixed fracture toughness, showing that the von Mises stress-based
mixed fracture criterion is more advantageous for evaluating structural bearing capacity.
Tong et al. [27] used finite fracture mechanics theory, coupling energy and stress, to study
the failure load of cracks at arbitrary angles, achieving more accurate predictions. Based
on the linear elastic mechanics solution of the crack tip stress field, R.G. Irwin [41] first
proposed the concept of the stress intensity factor to characterize stress concentration at the
crack tip. Many scholars have conducted extensive theoretical and experimental research
on the crack tip stress field using the dynamic strength factor. Feng et al. [32] studied the
effect of T-stress on the fracture behavior of closed cracks under compression, establishing
a theoretical solution for stress near the closed crack tip. Their results showed that under
compressive load, stress at the closed crack tip includes both the singular term of the stress
intensity factor (K) and the non-singular terms of the three T-stress components (Tx, Ty, and
Txy). Theoretical predictions incorporating these T-stress components matched experimen-
tal results for sandstone and PMMA specimens. Tang et al. [31] used the maximum tensile
strain crack extension criterion considering T-stress to derive formulas for critical water
pressure and initial cracking angle, studying factors such as crack inclination, confining
pressure, critical crack zone size, T-stress, and Poisson’s ratio.

The study of fracture toughness is fundamental to fractured rock mass engineering.
Selecting a suitable fracture toughness specimen is crucial for successful experimental
research [42,43]. Among various specimens, the semi-circular bend (SCB) specimen has
unique advantages: it is easy to process with prefabricated cracks, it allows testing of I–II
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mixed-mode fracture toughness, it employs a simple three-point bending method, and
it is material-efficient. Since Chong and Kuruppu’s initial studies [44,45], Ayatollahi and
Aliha [2] have used the SCB specimen for rock fracture toughness testing. The International
Society for Rock Mechanics [46–48] recommended the SCB specimen for such tests. This
study focuses on using the SCB specimen to test the fracture toughness of Longmaxi Forma-
tion shale. By analyzing the SCB load curve, obtaining I–II mixed-mode fracture toughness
values, and determining the crack initiation angle, this research enhances understanding of
the fracability of Longmaxi Formation shale. The findings provide a basis for designing
and optimizing fracturing construction schemes.

2. Testing Method and Sample
2.1. Experimental Equipment and Procedure

The experiment utilized an automatic servo material testing machine that indepen-
dently developed by Southwest Petroleum University, as shown in Figure 1. This apparatus
has a maximum normal load capacity of 1200 kN and a stroke length of 100 mm. It is
capable of measuring various rock parameters, including uniaxial compressive strength,
tensile strength, and hardness.
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Figure 1. Automatic servo material testing machine.

The experimental loading apparatus and specimens are shown in Figure 2. The
requirements for the three-point bending loading apparatus are as follows; firstly, ensure
that the loading apparatus makes line contact with the specimen. Secondly, the loading
position of the upper indenter should be at the apex of the semi-circular disc. Thirdly,
the spacing of the lower support points should be symmetrical around the central axis of
the semi-circular disc. Fourthly, the supporting rollers must be aligned in the same plane.
Fifthly, the diameter of the rollers should be determined based on the specimen diameter.
The ISRM-recommended standard ratio of roller diameter to specimen diameter is 1:20, but
the minimum roller diameter should not be less than 5 mm. Sixthly, to ensure quasi-static
loading, the loading rate of the indenter on the material testing machine should not exceed
0.2 mm/min.
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2.2. Specimen Preparation

Numerous studies by international scholars have demonstrated that the fracture
toughness of rock exhibits a size effect, meaning that fracture toughness values for the same
rock material can vary depending on the specimen size and type. The ISRM standard [48,49]
for testing the fracture toughness of rock specifies several guidelines for the dimensions
of semi-circular bend (SCB) specimens. The requirements for standard SCB specimen
dimensions are as follows; firstly, the diameter of the semi-circular disc must be at least
10 times the grain size or 76 mm, whichever is greater. Secondly, the thickness must be at
least 0.4 times the diameter or 30 mm, whichever is greater. Thirdly, the optimal range for
the ratio of the pre-crack length to the radius is between 0.4 and 0.6. Fourthly, the optimal
range for the ratio of the support span to twice the radius is between 0.5 and 0.8. Fifthly,
the cutting plane should not deviate more than 0.2 mm from the core diameter, and the
flatness of the plane should be within 0.5◦. Sixthly, the relative pre-crack length should
be the average of the measurements obtained on the two flat faces of the semi-disc, and
the machining error of the crack length on both faces should be within 2%. Seventhly, the
thickness of the specimen must be consistent, with a deviation of no more than 0.2 mm.
Eighthly, the measurement errors for the specimen diameter (D), thickness (B), and pre-
crack length (a) should be within 0.2 mm. Ninthly, the thickness of the cutting tool should
not exceed 0.05 times the diameter (D); otherwise, corrections should be made to the
specimen diameter and crack length, as shown in Figure 3. Tenthly, the tensile strength of
the material should be measured prior to the fracture toughness test. These specifications
ensure the accuracy and reliability of fracture toughness measurements and account for the
size effects observed in rock materials.
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be ignored.

In the fracture process of rock materials, a fracture process zone (FPZ) exists. When
the radius of this zone is excessively large, it extends beyond the scope of linear elastic
fracture mechanics (LEFMs). Therefore, it is crucial to ensure that the SCB specimens are of
sufficiently large size so that the dimensions of the FPZ can be considered negligible [48].
This consideration ensures that the assumptions of LEFMs remain valid during testing.
Specifically, the SCB specimens should be large enough to contain the FPZ within the linear
elastic region, minimizing the influence of the nonlinear processes occurring within the
FPZ on the overall fracture toughness measurements. By adhering to this requirement, the
validity and reliability of the fracture toughness tests are maintained, providing accurate
and meaningful results for engineering applications. Ensuring an adequately sized SCB
specimen helps to maintain the integrity of the fracture mechanics analysis and ensures that
the test results are representative of the material’s true fracture toughness, unaffected by
significant nonlinear effects within the FPZ. Chong et al. [45] suggested that the diameter
of the SCB specimen should meet the requirement shown in Equation (1):

D ≥ 2.0
(

KIc
σt

)2
(1)

where σt represents the tensile strength of the rock, MPa. However, recent studies have
shown that the prediction results from the above equation are rather conservative. Cur-
rently, the reasonable size of the SCB specimen has not been clearly defined, and the size of
the fracture process zone is related to the particle size of the rock material. The ISRM [49]
recommends using a certain number of SCB specimens with different diameters to test
their fracture toughness, and the diameter of the smallest specimen that remains consistent
with the larger size measurement value is considered the reasonable size to ensure effective
fracture toughness testing. Taking into account the above requirements, this paper designs
the dimensions of the required semi-circular disc specimens as shown in Table 1.
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Table 1. Three-point bending half-disk specimen size.

Diameter D/mm Thickness B/mm Support Points
Spacing S/mm Crack Length a/mm B/D S/R a/R

100 40 60 25 0.4 0.6 0.5

To test the fracture toughness of the rock under mixed-mode I-II loading and fracture
angles, as the crack angle increases, the variation of fracture parameters intensifies. To
investigate the dominant mode II fracture behavior, cracks were densified within the range
of 40◦ to 50◦. Therefore, for this paper, we designed eight semi-circular disc specimens
with different crack angles. The specimen model is illustrated in Figure 4.
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Figure 4. Schematic diagram of composite crack processing for three-point bending half-disk.

The 100 mm diameter cylindrical rock core was cut into two semi-circular discs using
a wire saw. After determining the center and crack tip points, an XA5032 vertical milling
machine independently developed by Southwest Petroleum University was employed to
cut the crack. The tool thickness was 0.4 mm. The process of cutting the crack and the
milling machine setup is illustrated in Figure 5.
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Figure 5. Semi-disc prefabricated crack processing device.

Shale fracture toughness test specimens with different crack angles were prepared as
shown in Figure 6. Semi-circular bend specimens with a relative crack length of 0.5 and
crack angles of 0◦, 10◦, 20◦, 30◦, 40◦, 43◦, 47◦, and 50◦ were prepared, with two specimens
fabricated for each predetermined crack angle.
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2.3. Physical Properties of Rock Sample

Ultrasonic transmission testing is a reliable method for studying the mechanical
properties of shale rock. It intuitively reflects fundamental physical properties such as
mechanical parameters, cementation conditions, porosity, and fractures. In this section,
we conduct ultrasonic time-difference tests on cores used for fracture toughness testing to
understand and evaluate the characteristics of the cores.

Table 2 presents the P-wave and S-wave transit time parameters for the rock cores
used in the fracture toughness test. As shown, the P-wave transit times for shale range
from 217.47 µs/m to 288.5 µs/m, while the S-wave transit times range from 342.44 µs/m to
427.02 µs/m.

Table 2. Dimensions and ultrasonic parameters of semi-circular shale specimens for three-point bending.

Pre-Cracked
Angle/◦

Specimen
Diameter D/cm

Specimen
Thickness B/cm

Pre-Cracked
Length a/mm

P-Wave Transit
Time/µs/m

S-Wave Transit
Time/µs/m

0
9.95 4.01 25.02 260.71 365.56
9.96 4.12 25.04 257.17 396.89

10
9.94 4.08 25.01 278.87 427.02
9.92 4.05 25.12 272.71 388.13

20
9.96 4.01 25.03 273.5 410.46
9.97 4.03 25.07 274.39 402.53

30
9.98 4.08 25.08 255.19 379.19

10.51 4.07 25.13 263.21 384.44

43
10.21 4.05 25.12 288.5 420.43
10.22 4.09 25.04 239.95 379.92

47
9.56 4.11 25.01 225.49 385.38
9.87 4.08 25.09 229.03 371.97

50
9.94 4.10 25.08 233.26 342.44
9.74 4.09 25.13 217.47 376.27

This study also included a microscopic examination of the experimental samples using
a scanning electron microscope. The microstructure of the shale, as shown in Figure 7,
reveals the development of pores and microcracks, with local occurrences of clay minerals
and stratification features.
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Figure 7. SEM observation images of the microstructure of rock samples.

The physical and mechanical properties of the experimental rock samples were tested
and summarized in Table 3. The shale samples used in the experiments had an average
density of 2.53 g/cm3, a porosity of 1.6%, a permeability of 10−4 mD, a uniaxial compressive
strength of 88.6 MPa, and a tensile strength of 5.8 MPa. Based on the understanding of
the basic physical properties of the rock samples, this paper further explores the fracture
toughness of shale, as discussed below.

Table 3. Basic physical properties of three-point bending semi-circular shale samples.

Density/(g/cm3) Porosity/% Permeability/mD Uniaxial Compressive
Strength/MPa Tensile Strength/MPa

2.53 1.6 0.0003 88.6 5.8

3. Calibration of Fracture Parameters

The calculation of rock fracture toughness requires the use of maximum load, di-
mensionless fracture parameters, and specimen dimensions. The dimensionless fracture
parameters generally include the mode I dimensionless stress intensity factor, mode II
dimensionless stress intensity factor, and dimensionless T-stress. Methods commonly used
to determine fracture parameters include analytical methods, numerical analysis methods,
and semi-analytical/semi-numerical methods. These parameters are independent of speci-
men type and are only functions of specimen size and loading conditions. Since there are
no analytical results for the dimensionless fracture parameters of the three-point bending
semi-circular bend specimens, this study established finite element models of semi-circular
bend specimens with different crack lengths and spans to solve for the dimensionless stress
intensity factors and T-stress values. The International Society for Rock Mechanics (ISRM)
provides a calculation model for the fracture toughness of three-point bending semi-circular
bend specimens, as shown in Equations (2)–(4):

KI =
P
√

πa
2RB

YI(a/R, S/2R) (2)

KII =
P
√

πa
2RB

YII(a/R, S/2R, θ) (3)

T =
P

2RB
T∗(a/R, S/2R, θ) (4)

where P represents the maximum load on the rock fracture test load–displacement curve,
kN; KI denotes the rock mode I fracture toughness, MPa·m1/2; KII represents the rock
mode II fracture toughness, MPa·m1/2; T signifies the rock T-stress, MPa; YI, YII, and T*,
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respectively, denote the dimensionless stress intensity factors for mode I, mode II, and
T-stress of the SCB specimen; R stands for the radius of the semi-circular bend specimen,
mm; B represents the thickness of the semi-circular bend specimen, mm; S is the distance
between the two bottom supports, mm; a is the crack length, mm; and α is the inclination
angle of the crack.

A finite element model of a three-point bending semi-circular disk was established
using ABAQUS 6.14. The material was set to be linear elastic, with an elastic modulus of
4.87 GPa and a Poisson’s ratio of 0.388. The analysis assumed a disk diameter of 60 mm,
and the model elements were eight-node quadrilateral plane strain elements (CPE8s). A
“collapse element” was placed at the crack tip to simulate the stress singularity at the crack
tip, with the contour integral radius set to 2 mm and divided into 20 equal parts, as shown
in Figure 8.
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Theoretically, the J-integral is path-independent, allowing for the selection of any
contour path. However, due to stress singularities near the crack tip, integral results close
to the crack tip often exhibit significant errors. To improve the accuracy of finite element
calculations, this study employed contour paths far from the crack tip. The dimensionless
T-stress simulation results for a semi-circular disk with a relative crack length of 0.5 in pure
mode I fracture are shown in Figure 9. It can be observed that the integral results for various
contour paths are almost identical, ensuring the path independence of the J-integral.
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Based on this model, the stress intensity factor (K) and T-stress were calculated for
various crack lengths (a), crack inclinations (θ), and support point distances (S) in the
three-point bending semi-circular disk. The dimensionless fracture parameters of the
semi-circular bend specimen are calibrated as shown in Table 4 and Figure 10. From
Figure 10, it can be observed that the dimensionless stress intensity factor for opening
mode YI decreases gradually as the loading angle increases. The dimensionless stress
intensity factor for sliding mode YII initially increases, and then decreases, with the loading
angle, and it approaches 0 when the loading angle is 0. The dimensionless T-stress of the
semi-circular bend (SCB) specimen gradually increases as the angle between the applied
load and the pre-crack plane increases. When the angle is small, the T-stress is negative
and approaches zero. Therefore, in the I–II mixed-mode fracture pattern, where sliding
mode fracture predominates, the influence of T-stress on the fracture toughness of rock
microcracks and the initiation angle of fractures becomes more significant.

Table 4. SCB specimens with crack length ratio 0.5 and support point spacing ratio 0.6 have no
dimensional fracture parameters.

Crack inclination angle α/◦ 0 5 10 15 20 25 30

T* −0.46 −0.29 0.18 0.82 1.49 2.10 2.60
YI 4.58 4.49 4.21 3.80 3.28 2.72 2.15
YII 0 0.39 0.74 1.01 1.20 1.31 1.34

Crack inclination angle α/◦ 35 40 43 47 50 55 60

T* 2.98 3.27 3.40 3.55 3.64 3.75 3.82
YI 1.58 1.05 0.76 0.39 0.15 −0.22 −0.50
YII 1.31 1.24 1.17 1.06 0.97 0.80 0.60
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Figure 10. SCB specimens with crack length ratio 0.5 and support point spacing ratio 0.6 have no
dimensional fracture parameters.

4. Results and Discussion
4.1. Crack and Load Curve Analysis

To meet the requirements of static loading in rock fracture toughness testing, this study
chose displacement-controlled loading to control the loading of the specimen. The loading
rate of the material testing machine was set to 0.1 min/mm, allowing for static loading of
the load. During the experiment, the static test software automatically collected load data
and displayed it in real-time, loading until the rock fractured and stopping loading when
the load curve dropped.

Figure 11 shows the fracture paths of shale specimens with different crack angles in
the three-point bending semi-circular disk. From the figure, it can be observed that during
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Type I fracture, the specimen fractures along the pre-existing crack, forming a through-type
straight crack. During Type I–II composite fracture, the specimen initiates from the tip of
the pre-existing crack and gradually deviates toward the loading position. Due to natural
microcracks, bedding planes, and particle sizes inherent in shale, cracks may deflect during
propagation but gradually continue towards the loading position. Figures 12 and 13 display
the load–time curves of semi-circular disk shale specimens with different crack angles. The
symbol α indicates the inclination of the prefabricated crack in Figures 12 and 13. From
these figures, it is evident that the load suddenly drops after rising to a certain height. The
load curve exhibits a noticeable nonlinear loading stage, followed by linear loading until
the specimen ruptures, causing a sudden and rapid decrease in load.
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Figure 13. Load–time curve 2 of three-point curved half-disc shale sample.

From the load–time curves of the three-point bending semi-circular disk, it can be
observed that each curve undergoes a compacting stage, followed by a sudden failure
of the specimen as the load increases. Some shale specimens may spall out, causing a
sharp drop in load. The entire process lacks a yielding stage, and the specimens exhibit
significant brittle failure characteristics. The initial closure of internal defects within the
rock leads to a gradual increase in the slope of the load curve during the early loading
stages. Subsequently, the specimens enter a linear elastic stage until brittle failure occurs.

4.2. Fracture Toughness Analysis

Fracture toughness and T stress of the shale samples were calculated using Equations (2)–(4).
The angle between the crack initiation direction and the pre-existing crack was measured
using a goniometer to obtain the fracture strength and crack initiation angle of the Longmaxi
shale samples with different inclination angles, as shown in Table 5.
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Table 5. Test results of fracture parameters for SCB with different crack inclination angles.

Crack Angle θ/◦ Maximum Load
P/kN

Mode I Fracture
Toughness

KI/MPa·m1/2

Mode II Fracture
Toughness

KII/MPa·m1/2
T-Stress/MPa Crack Initial

Angle −θc/◦

0 4.30 1.38 0.00 −0.49 0
0 3.27 1.13 0.00 −0.26 0

10 3.93 1.16 0.20 0.18 33
10 6.59 1.94 0.34 0.30 35
20 5.29 0.53 0.19 0.85 56
20 6.23 1.43 0.52 2.32 54
30 8.11 1.22 0.76 5.27 57
30 6.98 1.05 0.66 4.54 58
40 4.53 0.33 0.39 3.70 66
40 7.37 0.54 0.64 6.02 67
43 6.56 0.14 0.21 2.18 76
43 10.92 0.58 0.90 9.28 75
47 10.68 0.29 0.79 9.48 79
47 10.67 0.29 0.79 9.47 80
50 9.15 0.10 0.62 8.33 86
50 8.15 0.09 0.55 7.42 85

For shale samples with different crack angles, the range of fracture loads varied from
3.27 kN to 10.92 kN. As the crack angle increased, the maximum load-bearing capacity of
the semi-circular shale samples gradually increased. The fracture toughness of Longmaxi
shale ranged from 1.13 MPa·m1/2 to 1.38 MPa·m1/2 for pure mode I fracture, and from
0.55 MPa·m1/2 to 0.62 MPa·m1/2 for pure mode II fracture. The range of T-stress for shale
samples with different crack angles was −0.49 MPa to 9.48 MPa. The variations of fracture
toughness (mode I and mode II), T-stress, and pre-existing crack initiation angle with crack
inclination angle are plotted in Figures 14–17, respectively. Analysis reveals that the fracture
toughness of shale in mode I decreases with an increase in crack inclination angle, while
mode II fracture toughness increases with the crack angle. Similarly, T-stress increases
with the crack inclination angle, indicating a transition from mode I-dominated fracture
to mode II-dominated fracture as the crack angle increases. Moreover, the influence of
T-stress increases, with negative T-stress at a crack angle of 0◦, suppressing mode I fracture
initiation. Additionally, the pre-existing crack initiation angle gradually increases with the
crack angle, exhibiting a strong linear relationship between the two factors.
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5. Conclusions

This study primarily addresses the machining requirements for semi-circular spec-
imen dimensions, the specifications for the three-point bending loading device, and the
experimental loading process. Sixteen specimens with eight different crack angles (0◦, 10◦,
20◦, 30◦, 40◦, 43◦, 47◦, and 50◦) were designed and processed. The fracture parameters of
the three-point bending semi-circular specimens, including mode I and mode II dimen-
sionless stress intensity factors and T-stress, were calibrated for various crack angles and
support-point distances. The basic physical properties and fracture toughness of Longmaxi
shale samples were tested. Through numerical simulation and laboratory experiments,
several conclusions were drawn:

(1) The diameter of the semi-circular specimen should be at least 10 times the particle size
or 76 mm, with a thickness of at least 0.4 times the diameter or 30 mm. The optimal
range for the relative pre-existing crack length a/R is 0.4 to 0.6, and for the relative
support point distance S/2R, it is 0.5 to 0.8.

(2) The load–time curves of the three-point bending semi-circular specimens all undergo
a compaction stage, followed by sudden failure with a sharp drop in load. Some shale
specimens may burst out during failure, and the load decreases abruptly. The entire
process exhibits significant brittle failure characteristics. The initial closure of internal
defects in the rock leads to a gradual increase in the slope of the load curve, followed
by entry into the linear elastic stage until brittle failure occurs.

(3) For Longmaxi shale samples with different crack angles, the range of fracture load
distribution is 3.27 to 10.92 kN. With an increase in crack angle, the maximum
load-bearing capacity of the semi-circular shale specimens gradually increases. The
fracture toughness of Longmaxi shale for pure mode I fracture ranges from 1.13 to
1.38 MPa·m1/2, and for pure mode II fracture, it ranges from 0.55 to 0.62 MPa·m1/2.
The variation range of T-stress for shale samples with different crack angles is −0.49
to 9.48 MPa.

(4) As the inclination angle of the pre-existing crack increases, crack propagation transi-
tions from being controlled by mode I fracture to being dominated by mode II fracture,
with the influence of T-stress becoming increasingly significant.
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