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Abstract: The modeling of fibrotic effects on fluid flow and metabolism in the liver can be compu-
tationally challenging. This paper combines innovative concepts based on fundamental physics to
address such issues at the level of the liver functional unit, the lobule, and upscales and extends this to
a multi-lobule tissue scale analysis. Fibrosis effects on fluid flow and metabolism are introduced using
percolation theory and its consequences are explored for single lobule and multi-lobule patterns,
without and with distortion.
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1. Introduction—Liver Inflammation Response and Fibrosis

The liver, the body’s primary metabolic organ, operates across multiple time and
spatial scales. Anatomically, the liver consists of three vascular networks: two supply trees
stemming from the portal vein and hepatic artery, and one drainage tree leading to the
hepatic vein. These blood vessels undergo several levels of branching down to the terminal
arterioles and venules, which are organized into portal tracts alongside a terminal bile duct.
Surrounding these terminal vessels are liver cells known as hepatocytes, arranged in plates
that are interspersed with sinusoids, which serve as the liver’s capillaries, and the spaces
of Disse, representing the liver’s extravascular spaces. Blood is eventually collected and
drained by the hepatic venules.

At a microscopic level, the liver plays a critical role in the biotransformation of xenobi-
otics, including drugs, aiding in their elimination from the body. Its primary function is to
prevent the accumulation of various chemical compounds in the bloodstream by convert-
ing them into forms suitable for excretion. However, these vital processes can potentially
damage liver tissue and impair its function. Research on hepatic clearance has shown that
the efficiency of substance extraction is influenced not only by damaged hepatocytes but
also by the liver’s intrinsic enzymatic ability to eliminate drugs, the resistance to drug
transport from the blood to the liver cells, and the hepatic blood flow itself. Alterations
in hepatic blood flow, such as those caused by diseases like cirrhosis or by aging, can
significantly affect the systemic clearance of harmful substances. Therefore, a quantitative
understanding of the relationship between liver structure and function, which can be
achieved through computational modeling, is highly valuable. In silico modeling of liver
performance and structural integrity can, for instance, aid in predicting the hepatotoxicity
of drug candidates. Given the liver’s complex architecture, developing models for blood
flow within it is a challenging task that necessitates multi-scale approaches.

Fluid flow effects range from large vascular conduits (portal vein and hepatic artery
to hepatic vein) to the small sinusoidal capillary networks. Temporal variations in these
processes range from milliseconds for changes in metabolic processes (like oxygen and
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glucose) to minutes or hours for drug metabolism and enzyme activity, and even to days or
months for structural changes in the liver (such as fibrosis, steatosis, or hepatitis). In silico
techniques hold the potential to quantify these processes and seamlessly integrate them
across these multiple scales.

Liver fibrosis is a pathological condition characterized by the excessive accumulation of
extracellular matrix proteins, particularly collagen, in response to chronic liver injury. This
condition represents the liver’s attempt to repair damaged tissue; however, the continuous
cycle of injury and repair leads to the scarring of liver tissue. Over time, this scarring
disrupts the normal architecture of the liver, impeding its ability to function properly. The
primary causes of liver fibrosis include chronic hepatitis, prolonged alcohol abuse, and
non-alcoholic fatty liver disease, among others. As fibrosis progresses, the liver becomes
increasingly stiff, leading to impaired blood flow and reduced liver function.

If left unchecked, liver fibrosis can advance to cirrhosis, a severe and irreversible
stage of liver disease where the organ becomes extensively scarred and may eventually
fail. Cirrhosis can result in life-threatening complications, including portal hypertension,
liver cancer, and liver failure. The progression from fibrosis to cirrhosis is influenced by
the balance between tissue repair and scar formation, which, when disrupted, favors the
accumulation of fibrotic tissue. Understanding the underlying mechanisms of fibrosis
is crucial for developing therapeutic strategies aimed at halting or even reversing its
progression, thereby preventing the devastating consequences associated with advanced
liver disease.

As fibrosis develops, the liver’s architecture becomes increasingly distorted [1]. The
excessive buildup of collagen and other matrix proteins leads to the formation of fibrous
bands that encase liver cells, disrupting the normal liver structure and impairing its blood
flow. This disruption has significant implications for liver function, as the liver’s ability to
filter blood, produce essential proteins, and detoxify harmful substances is compromised.
The progression of fibrosis is typically silent, with few or no symptoms in the early stages,
making it difficult to detect until the disease has advanced. Over time, if the underlying
cause of the liver injury is not addressed, fibrosis can evolve into cirrhosis, characterized
by irreversible scarring, loss of liver function, and a heightened risk of liver cancer. This
progression underscores the importance of early diagnosis and intervention to prevent the
severe consequences of advanced liver fibrosis.

We begin by summarizing the liver’s basic inflammation response leading to fibrosis
and chronic liver injury [2–4]. Inflammation of the liver begins with agent attack on hepa-
tocytes. This agent can be naturally occurring (non-alcoholic fatty liver disease (NFALD),
hepatitis B virus (HBV), hepatitis C virus (HCV)) or an artificially injected agent (ethanol
(EtOH), thioacetamide (TAA), carbon-tetrachloride (CCl4), acetaminophen (APAP)). The
latter substances are often used for research characterization of the inflammation response.

The “injured” hepatocytes thereafter chemically signal Kupffer cells (also called
macrophages—15% of lobule cell types) to begin the inflammation response. These
cells produce both pro-inflammatory (e.g., tumor necrosis factor alpha (TNFa)) and anti-
inflammatory (e.g., transforming growth factor beta (TGFb)) as soluble-diffusing cytokines.
As production of TGFb tends to inhibit the production of further TNFa, typically there is a
rapid spike in TNFa production followed by a significant decline as TGFb levels increase
and stabilize. This is characterized by an extended period of TGFb availability.

Hepatic stellate cells (HSC—5% of lobule cell types) are converted to myo-fibroblasts
and portal fibroblasts in the presence of the pro-inflammatory TNFa, and these cells in
turn generate collagen when stimulated by the anti-inflammatory TGFb agent. Portal
fibroblasts are naturally located near the portal inlet zones and are responsible for high
fibrotic responses (e.g., portal hyper-tension), while myo-fibroblasts are more randomly
distributed throughout the lobule. Collagen deposition typically occurs over a much longer
time frame than the initial pro-inflammatory response. We note that increased fibrosis can
limit O2 distribution in the lobule, and as O2 is naturally lower near the central outlet, we
can expect increased hypoxia and cell necrosis here with fibrosis.
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A mechanistic simulation model that considers flow would address all aspects of this
wound response process. In Supplementary Material S1, we provide an initial approach
to time-dependent collagen deposition modeling. In the main text, we employ a more
phenomenological inflammation approach to explore aspects of increased fibrosis on flow
and metabolism. This can be furthermore coupled with increased matrix stiffness effects of
fibrosis as we have discussed previously [5]. Aspects of this problem related to deformation
are illustrated in Supplementary Material S2. As such, we are essentially ignoring the
early time wound healing stages while focusing on the longtime consequences. Our earlier
review article [5] presents a comprehensive overview of experimental and modeling issues
associated with liver fibrotic behavior.

2. Methods: Single DLA Lobule Including Fibrosis Effects

A fine-scale idealized model of an isolated lobule with statistically varying properties
forms a basis for our analysis [6,7]. A more realistic hexagonal lobule model utilizing
diffusion-limited aggregation (DLA) methods [8] is then introduced to create complex
sinusoid (Figure 1A) and fibrotic patterns (Figure 1B), again affecting fluid flow and
metabolism. Gaudio et al. [9] give some indication of the fractal nature of lobule sinusoidal
networks without and with cirrhosis that motivate this approach. Model properties are
calculated from basic physics concepts. Basic flow and mechanical properties of this unit
are summarized in Tables 1 and 2. Details of basic model equations and computational
approach can be found in our earlier papers, especially [8].

Table 1. Geometrical and fluid properties of a single DLA lobule (original vs. upscaled).

Parameter 256 × 256 × 49 90 × 90 × 37

x, y, z grid size (×10−4 cm, variable z size) 6 × 6 × (6, 12, 6, 12, 6...) 17 × 17 × (17, 13, 17, 13, 17. . .)
Gross formation volume (cm3) 8.5996 × 10−4 9.4556 × 10−4

Formation pore volume (cm3) 3.3930 × 10−4 3.8880 × 10−4

Aqueous phase volume (cm3) 2.2956 × 10−4 2.8944 × 10−4

Oil phase volume (cm3) 1.0974 × 10−4 9.9352 × 10−5

Areal sinusoid permeability (cm2): KH,sin 1.1250 × 10−8 7.6955 × 10−9

Vertical sinusoid permeability (cm2): KV,sin 1.1250 × 10−8 1.1069 × 10−9

Tissue permeability (cm2): Ktis 7.3500 × 10−10 7.3500 × 10−10

Sinusoid porosity: f sin 7.8540 × 10−1 6.0390 × 10−1

Tissue porosity: f tis 2.3820 × 10−1 2.3820 × 10−1

Flow rate (cm3/min) 1.4330 × 10−3 1.26940 × 10−3

1 Darcy = 0.9869 × 10−12 m2 = 0.9869 × 10−8 cm2 in engineering permeability units. Reference O2 concentration
unit = 0.1872 mM = 3.37 × 10−6 mole-fraction.

Table 2. Implicit and explicit fluid properties of a single DLA lobule (original vs. fibrotic).

Parameter Original Fibrotic (Implicit) Fibrotic (Explicit)

Sinusoid permeability (cm2): Ksin 1.1250 × 10−8

Upscaled sinusoid permeability (cm2): KH,sin 6.4613 × 10−9 6.4613 (12.922) × 10−10 7.3500 (14.700) × 10−12

Upscaled sinusoid permeability (cm2): KV,sin 1.7092 × 10−9 1.7092 (3.4184) × 10−10 7.3500 (14.700) × 10−12

Tissue permeability (cm2): Ktis 7.3500 × 10−10 7.3500 (14.700) × 10−11 7.3500 (14.700) × 10−12

Sinusoid porosity: f sin 7.8540 × 10−1

Upscaled sinusoid porosity: 7.8370 × 10−1 6.0200 (6.6070) × 10−1 1.4240 (1.6670) × 10−3

Tissue porosity: f tis 2.3820 × 10−1 1.4240 (1.6670) × 10−1 1.4240 (1.6670) × 10−3

PAC/PAC-OH diffusion (cm2/min): Dsin 2.5000 × 10−4 1.9162 (2.1031) × 10−4 1.9162 (2.1031) × 10−6

PAC/PAC-OH diffusion (cm2/min): Dtis 2.5000 × 10−5 1.4945 (1.7496) × 10−5 1.4945 (1.7496) × 10−7

O2 diffusion (cm2/min): DO2-sin 1.8000 × 10−3

O2 diffusion (cm2/min): DO2-tis 1.2000 × 10−3

1 Darcy = 0.9869 × 10−12 m2 = 0.9869 × 10−8 cm2 in engineering permeability units. Reference PTX concentration
unit = 1 ug/gm = 1.8 × 10−8 mole-fraction.
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Figure 1. (A) A regular base case (270 × 270 × 49 grid) hexagonal lobule with DLA sinusoids: perme-
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(D) A regular upscaled (90 × 90 × 37) grid hexagonal lobule with explicit DLA progressive fibrosis: 

Figure 1. (A) A regular base case (270 × 270 × 49 grid) hexagonal lobule with DLA sinusoids:
permeability distribution (units mD) where red are sinusoids and green are normal tissue. (B) A
regular base case (270 × 270 × 49 grid) hexagonal lobule with explicit DLA progressive fibrosis:
permeability distribution (units mD) where red are sinusoids, blue are explicit fibrotic tissue, and
green are implicit fibrotic tissue. (C) A regular upscaled (90 × 90 × 37 grid) hexagonal lobule with
DLA sinusoids: permeability distribution (units mD) where red are sinusoids, and green are implicit
fibrotic tissue. (D) A regular upscaled (90 × 90 × 37) grid hexagonal lobule with explicit DLA
progressive fibrosis: permeability distribution (units mD) where red are sinusoids, blue are explicit
fibrotic tissue, and green are implicit fibrotic tissue.
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Numerous other authors [10–13] have presented analogous single lobule perfusion
models and analysis, as the lobule represents the liver’s basic functional unit. These
models did not consider explicit sinusoid flow path representations and instead used
averaged “porous media” flow properties. Ricken et al. [14–16] extended this average
perfusion approach to consider mechanical and metabolic processes for the lobule. In
contrast, Debbaut’s group have furthermore studied normal and cirrhotic liver tissue at
the sub-lobule scale, defining explicit sinusoid network paths by both experimental and
computational approaches [17–19].

Our flow protocol used first simulates reactive–convective–diffusive for O2 distribu-
tion, using developed models for O2 utilization. The resulting lobule O2 profile is assumed
to determine the spatial patterns of a metabolizing CYP enzyme. (O2 distribution is thought
to be a major determinant of liver lobule zonation for multiple processes [20,21], including
fibrosis itself [22]. Paclitaxel reactive–convective–diffusive drug metabolism is then pre-
dicted, based on the enzyme distribution. This basic hexagonal lobule model protocol is
here utilized to include fibrotic patterns, again utilizing DLA methods (Figure 1B). Fluid
flow and metabolism are directly affected by fibrosis as we now explore. Our dynamic
model considers non-steady, spatially non-uniform flows, and metabolite distributions in
principle (solution of partial differential equations), although approach to steady state can
often occur quite rapidly, especially in the absence of fibrotic effects.

Inflammation-induced fibrosis can lead to several severe liver pathologies (hepatitis,
cirrhosis, liver cancer). For this reason, a great deal of effort has been made to quantify
such effects experimentally [19,23–25] and theoretically [18]. Our earlier review article [5]
presents a comprehensive overview of experimental and modeling issues associated with
liver fibrotic behavior. Details of our modeling approach within the context of the work of
other authors are presented in the next section.

2.1. Scale-Dependent Modeling of Collagen Fibrosis: Concepts

Collagen is a triple helix dominated by the amino acid glycine, proline, and hydrox-
yproline. Basic molecular tropocollagen forms a triple helix of amino acids of total length
300 nm and 1.5 nm diameter. Numerous studies of the self-assembly of type I collagens,
rod-like proteins, to form elongated fibrils have been conducted. These fibrils vary in
length from 300 to 1000 nm with diameters from 20 to 200 nm. Further aggregation of these
fibrils into larger collagen fibers can then occur. Earliest fibril packing theories propose
a staggered stacking of 5 units over integral multiples of a repeat distance of D = 67 nm,
with a quasi-hexagonal packing perpendicular to this major axis [26,27]. Silver et al. [28]
investigated fibril formation using a cylinder model of tropocollagen plus a simple binding
rule with a 3.4 D overlap coiling adjacent molecules into concentric layers. Buehler [29,30]
developed computational approaches to fibril self-assembly based on advanced molecular
dynamics models that allowed upscaling to continuum mechanical modeling.

A model of collagen fibrogenesis based on DLA has been proposed by Parkinson
et al. [31,32], later generalized to include stress responses [33]. These models again recog-
nized the staggered stacking with repeat distance of D = 67 nm and generated structures
of collagen fibrils including the elongated morphology and tip growth observed in ex-
periments. Fractal dimensions and aggregate densities are estimated with this method.
The size of the fibrils generated (50,000 molecules) are limited by the lattice grid size used
(approximately 16 nm) and computer limitations.

We follow the DLA method here in part but recognize the necessary scale dependence
of the desired fibrotic effects. First, the collagen network of normal tissue is handled
implicitly through assumed porosity/permeability properties. This follows theories on
fibrous porous media discussed further below. Next, we estimate the effects of additional
fibrotic changes caused by inflammation via a two-step approach. Recognizing the spatial
grid scale utilized by Parkinson et al. (~5 nm) in their DLA approach is much smaller
than that treated here (~5 um) requires considering both an explicit and implicit fibrosis
treatment. Explicit fibrotic grid regions are created using the DLA growth method for larger-
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scale collagen fibers. Our method further recognizes they are more likely to form in grid
regions adjacent to sinusoids emerging from portal veins, leading to portal hypertension.
This is based on histopathological features observed in liver sections from rats treated with
carbon tetrachloride (CCl4) (see [9,34]). Conversely, implicit fibrotic changes (corresponding
to smaller scale fibrils) are quantified by rescaling our fibrous porous media flow properties,
as illustrated next. Here we note that our previous (unpublished) work analyzing flow
on [19] fibrotic/cirrhotic liver images at this smaller scale gave overall flow reduction
factors of 0.20 based on the ratio of healthy to cirrhotic flows.

2.2. Fibrotic Effects on Permeability

Theories on flow in fibrous porous media have been discussed by many authors,
basically correlating permeability change with porosity change. Conceptually, this porosity
change with fibrosis is related to extra collagen deposition (as discussed in Supplemen-
tary Material S1). Here the standard porous media concept of “permeability” quantifies
the relative ease of fluid flow through porous media and has units of length2. (Perme-
ability is rescaled with geometric factors and fluid viscosity to calculate fluid flow for
specific situations).

Standard porous media flow correlations relating porosity and permeability include
the Kozeny–Carmen equation [35], as used in STARS) originally developed to model packed
beads and sand grains:

K(ϕ) = K0

(
ϕ
ϕ0

)p

(
1−ϕ
1−ϕ0

)2 , (1)

where “p” is an adjustable power. STARS default is p = 3 but we will use p = 4 here.
The aforementioned can be compared with alternate fibrous media correlations, such

as that by Jackson and James (1986):

K(ϕ)
r2

f
=

3
20

ln(1 − ϕ) + 0.931
1 − ϕ

. (2)

Later idealized modeling of fibrous matrices [36–38] confirm the correctness and
limitations of such correlations. Interestingly, Costa [39] and Zhu et al. [40] both emphasize
that CK-type correlations can usefully be applied to fibrous beds as well. We take this
approach here.

For our correlations, we assume for fibrous tissue ϕtis-f = 0.1424, while for fibrous
sinusoids ϕsin-f = 0.6020 in order to generate K = 0.1K0 for both sinusoids and tissues based
on an extensive level of collagen deposition of ρc = 0.4002 in tissue and ρc = 0.2335 in
sinusoids. We correspondingly assume an extensive permeability reduction of 1/100 for
the grid cells with extensive explicit fibrosis.

Moderate fibrosis can be treated similarly using these same equations. Thus, for the
case of moderate implicit fibrosis, tissue ϕ = 0.1667, while for fibrous sinusoids ϕ = 0.6607
in order to generate K/K0 = 0.2, based on a moderate level of collagen deposition of
ρc = 0.3000 in tissue and ρc = 0.1588 in sinusoids. We correspondingly assume a less
extensive permeability reduction of 1/50 for the grid cells with moderate explicit fibrosis.

These parameter choices are discussed further in Supplementary Material S1.

2.3. Fibrotic Effects on Diffusion

Reactive drug transport requires the additional consideration of diffusive flows and
reactions. These effects are typically characterized by two dimensionless numbers: the
Peclet number describing the ratio of convective to diffusive transport, and the Damkohler
number describing the ratio of reactive rates to diffusive transport [35]. Resultant ob-
served behavior can vary widely when these dimensionless variables change significantly.
Changing fibrosis effects can impact these processes at multiple scales as we discuss next.
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Effective diffusion is impacted by the presence of tissue fibers and depends on three
factors—concentration of fibers cf = (1 − ϕ), fiber radius rf (often estimated as square root
of tissue permeability), and molecule size rs (molecular radius). Ogston [41] gave a first
representation of such effects with s = rs/rf:

De f f (ϕ) = Dm exp
(
−s
√

1 − ϕ
)

, (3)

where Dm is molecular diffusion constant in water or blood. Here fiber size rf is usually
expressed as (K/ϕ)0.5 where the permeability is also a function of porosity as we discussed
previously. Thus, the Ogston expression results in:

De f f (ϕ) = Dm exp

(
−rs

√
(1 − ϕ)ϕ

K

)
, (4)

where generally we still might need perm as a function of ϕ (e.g., Carmen–Kozeny expres-
sion or [42] estimation of fibrous permeability).

Johnson et al. [43] compare these expressions and other effective medium expressions
to experiment. Note using ratios of these expressions for different fiber volume fractions
allows estimations of changing levels of fibrosis on diffusion.

A simpler expression [44], assuming a fixed solute size and a fixed fiber radius,
might be:

De f f (ϕ) = Dm
ϕ

τ
, (5)

with the tortuosity approximated by τ = 1 − 0.5 ln(ϕ), for example. If we ignore this latter
dependence, we obtain the idea that Deff is approximately Deff ≈ Dm ϕ.

These ideas can also be used to rescale the diffusion coefficient through changing
levels of fibrosis, e.g., assume a linear relation:

D(ϕ) =

(
ϕ

ϕ0

)
D0, (6)

where generally we still might need perm as a function of ϕ, e.g., Carmen–Kozeny or
Jackson and James.

As a reference, our basic models for PAC used previously [8]:
Deff-0 = Dm for sinusoids (with ϕ0 = 0.7854)
Deff-0 = 0.1 Dm for tissue (with ϕ0 = 0.2382)

So, these are reasonable adjustments of molecular diffusion for these ϕ choices.
These lead to a linear porosity adjustment with fibrosis as:
Deff = (ϕ/ϕ0) Deff-0 for each of our tissue and sinusoid choices for Deff-0 (with Deff-0 = 0.1

Dm and Deff-0 = Dm, respectively). Typically, we have for an extensive fibrosis:(
ϕ
ϕ0

)
tis

= 0.1424
0.2382 ,

and(
ϕ
ϕ0

)
sin

= 0.6020
0.7854 ,

(7)

for tissue and sinusoid, respectively. For a moderate fibrosis, the ratio will be as follows:(
ϕ
ϕ0

)
tis

= 0.1667
0.2382 ,

and(
ϕ
ϕ0

)
sin

= 0.6607
0.7854 .

(8)
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2.4. Fibrotic Effects on Reaction

The role of fibrosis (or fiber deposition) on our kinetic rate processes is to limit acces-
sibility, as the fibers are not involved directly in the reactions of interest. The continuum
assumption of complete mixing which defines the base reaction rate can be expected to
overestimate the rate as fibrosis levels increase. This concept has been discussed in detail
when upscaling porous media bimolecular reactions by [45,46].

More concretely, non-classical fractal reaction kinetics can be expected with behavior
on percolation networks [47–51] which generally takes two forms: rate constants with
power law time dependence for transient processes, and anomalous reaction orders (very
high powers) for steady state kinetics. These have been demonstrated with explicit drug
metabolism application cases by numerous authors [52–55].

3. Methods: Upscaling Flow and Metabolism Properties for Single Lobule

Our original structure was a 256 × 256 × 49 DLA lobule with the dimensions of
6 × 10−4 × 6 × 10−4 × 6 × 10−4 cm3, see Tables 1 and 2 for details. The z-layer alternates
between the sinusoid layer with a thickness of 6 × 10−4 cm and tissue layer with a thickness
of 12 × 10−4 cm. Because of the DLA method used for sinusoid generation, each realization
can result in a small but observable variation of flow results and spatial profiles. These
comments also hold for any upscaling, fibrosis realizations, and deformation models we
present below. When comparing models, we always ensure that initial volumes in place
are compatible, although not specifically presented.

We use a standard DLA algorithm that randomly clusters a specified number of parti-
cles (here Npar) with aggregation particle size (dp × dp − pixel2). As shown in Figure 1A,
green dots represent no particle on that site (to be used as hepatocytes) and red dots repre-
sent a particle on the site (to be used as sinusoids). For this case, we used Npar = 350 and
dp = 1 pixel for both central and corner sinusoid networks. A more detailed explanation of
the process is described in [8].

To address fibrosis in the lobule, we introduced two different scales of fibrosis, im-
plicit and explicit fibrotic properties. All sites, regardless of sinusoid or hepatocytes, will
have implicit fibrotic properties to account for fine scale (smaller than grid size) collagen
fibril deposition.

Explicit fibrotic grid cells (collagen fibers on the scale of grid size) are introduced using
the same DLA algorithm with the two conditions: (a) they are hepatocyte cells and (b) are
in proximity of the sinusoid networks [56]. As shown in Figure 1B, blue dots represent
the cells with explicit fibrotic properties. Depending on the severity of fibrosis, the value
of Npar will be different to produce different fibrotic structures. Here Npar = 1000. This
value has been calculated based on the percentage of number of explicit fibrotic sites to
sum of explicit and implicit hepatic sites. For all extreme cases that are discussed here, the
percentage is about 30%.

Note that in our DLA method, we always simulate aggregation of a particle with a size
1 pixel2 for both sinusoid and fibrotic structures. Parkinson et al. [31,32] discussed how the
final aggregated structure would change by increasing the particles’ size. Specifically, they
increased the particle size in one direction (e.g., 1 × 10 pixel2) and found that the resulting
structures were aggregated in one direction rather than spreading out areally, as expected
in a normal DLA distribution.

Creating a 7-lobule structure with the above dimensions is computationally demand-
ing. Therefore, we decided to upscale our geometry in order to represent an actual lobule
but in a smaller size. This should be done carefully as the new smaller lobule is required to
have similar geometrical and fluid properties as the original one. The process of upscaling
also affects the fluid properties used in a grid as it now flows through different grid size
structures. Therefore, it is necessary to upscale the sinusoidal properties such as permeabil-
ity, porosity, and diffusion to effective values that reproduce similar results as the original
structures. It is worthwhile to note that in this scenario, the tissue properties (including
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tissue diffusion coefficients and reaction rates) would not be expected to change as there is
no flow upscaling in tissue cells.

To preserve the same volume as the original 256 × 256 × 49 lobule, we created a
90 × 90 × 37 lobule with an upscaled dimension for each grid cell as 17 × 10−4 × 17 ×
10−4 × 13 × 10−4 cm3 (x × y × z, respectively).

We note that in the upscaling process, one needs to upscale the corresponding param-
eters aerially and vertically, capturing the geometrical properties of the lobule. As stated,
the lobule structure is generated in layers with variable thicknesses.

Therefore, for aerial upscaling of the sinusoidal permeability:(
17 × 10−4 cm

) α

Knew
H,sin

=

(
6 × 10−4 cm

) α

Kold
H,sin

+

(
11 × 10−4 cm

) α

Kold
H,tis

, (9)

and for the vertical upscaling of the sinusoidal permeability:

Knew
V,sin ×

(
17 × 10−4 cm

) β
= Kold

V,sin ×
(
6 × 10−4 cm

) β
+ Kold

V,tis ×
(
11 × 10−4 cm

) β. (10)

Here, 17 × 10−4 cm is divided into 6 × 10−4 cm for sinusoid and 11 × 10−4 cm for
tissue thicknesses.

Furthermore, the porosity will be modified as:

∅new
sin ×

(
17 × 10−4 cm

) γ
= ∅old

sin ×
(
6 × 10−4 cm

) γ
+∅old

tis ×
(
11 × 10−4 cm

) γ. (11)

Here α, β, and γ are exponents determined by the geometry properties of the structure
and Kold

H,sin = Kold
V,sin and Kold

H,tis = Kold
V,tis. Since our lobule structures are generated by DLA

algorithm, we follow [57] to upscale these properties properly. Again, after many rounds
of simulation, we find the best parameters that approximately reproduce the original non-
scaled results can be obtained by choosing α ≈ 5, β ≈ 2, and γ ≈ 0.3. See Tables 1 and 2 for
calculated values.

4. Methods: Comparison Simulations for Single Lobule

Starting with our original fine-scale DLA single lobule model (270 × 270 × 49 grid [8]),
we consider upscaling both non-fibrotic and fibrotic cases. After many rounds of simulation,
we find the best parameter choice to encompass a sinusoid upscaled structure will be a DLA
model with a 90 × 90 × 37 DLA lobule with the dimensions described in Tables 1 and 2.
The notation (270 × 270 × 49) and upscaled (90 × 90 × 37) indicates the base 3D Cartesian
grid dimensions considered, although the areal shapes are converted to hexagonal lobule-
like patterns using null non-active grid cells—see Supplementary Materials S1 and S2 for
explicit representations of this technique. As discussed more completely in our original 3D
DLA model [8], the third-dimension accounts for varying densities of sinusoids vertically,
and are created independently using the DLA method. The different grid sizes contain the
same lobule volumes in all our comparative 3D models.

We compare in Figure 1, the permeability spatial distribution for a single base case
regular hexagonal lobule with six portal veins and one central artery at our two levels
of discretization, without and with fibrosis. Here, a DLA-created sinusoid network is
shown along with two levels of DLA-explicit fibrosis densities: (1A) 0%, (1B) 50%. Note the
change in scale maximum (i.e., reduction) with fibrosis (Figure 1A versus Figure 1B) for the
fine-scale model as well as the coarse-scale versions (Figure 1C versus Figure 1D). In our
simulations, we have considered numerous levels of fibrosis up to a very cirrhotic liver, but
we report only a typical fibrotic state here. The case with zero fibrosis has been analyzed in
detail in our previous paper [8].

To generate DLA structures for the upscaled lobule, we used Npar = 40 and dp = 1 pixel
for both central and corner sinusoid networks. A similar method has been used for the
fibrotic cases.
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Figure 2 shows the resultant effects of fibrosis on reactive O2 spatial distribution for
these comparative cases, following the methods and oxygen parameters of our earlier paper.
It is clear our upscaling methods produce essentially equivalent profiles. The impacts of
these O2 profiles on drug distributions and reactions are explored in detail in the following
sections using our appropriately upscaled multi-lobule models. Here, steady O2 profiles
essentially distribute quite evenly throughout the lobule in the non-fibrotic base case (see
Figure 2A,C), due in part to the large O2 diffusion coefficient. In contrast, low levels of O2
distribute in the fibrotic example, (see Figure 2B,D), run under the same pressure gradient
boundary condition. Again, importantly, our upscaling method predicts equivalent profiles.

Figure 3 shows the resultant effects of fibrosis effects on overall flow and O2 production
behavior, again utilizing a matched pressure boundary condition. Here, as demonstrated in
Figure 3A, fibrosis significantly reduces the flow rate across the lobule for a given specified
injection/production pressure gradient, dependent on fibrosis level. Correspondingly,
Figure 3B shows the level of produced O2 also varies with fibrosis level and applied
boundary condition. Low fibrotic flow rates lead to low O2 production while matched flow
rates lead to high O2 production and lower O2 utilization. This is consistent with the steady
O2 distributions across the lobule as shown in Figure 2. Although not shown explicitly, the
flows shown in Figure 3 for the upscaled single lobule models are essentially identical with
the fine-scale model flows. The impacts of these changes with fibrosis on convective and
dispersive flows on drug distributions and reactions are also highlighted in the following
multi-lobule sections.
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Figure 2. (A) Reactive O2 spatial profiles, concentration (units mole-fraction), for regular base case
(270 × 270 × 49 grid) hexagonal lobule. (B) Reactive O2 spatial profiles, concentration (units mole-
fraction), for regular (270 × 270 × 49 grid) hexagonal lobule with progressive fibrosis. (C) Reactive
O2 spatial profiles, concentration (units mole-fraction), for regular upscaled (90 × 90 × 37 grid)
hexagonal lobule. (D) Reactive O2 spatial profiles, concentration (units mole-fraction), for regular
upscaled (90 × 90 × 37 grid) hexagonal lobule with progressive fibrosis.

Two idealized flow boundary conditions can be envisioned to capture the effects of
fibrosis and contrast with the non-fibrosis base case. The first is to maintain the same pres-
sure differential as with no fibrosis, as shown in Figures 2 and 3. This results in predicted
flow rates that are significantly reduced, with the reduction dependent on the amount of
fibrosis. A second boundary condition approach is to specify flow rates comparable to
the non-fibrosis case. This results in large increases in portal injection pressures, with the
pressure increase dependent on the amount of fibrosis. This also results in different O2
utilization. The first boundary condition (pressure gradient fixed to non-fibrotic gradient)
and the second boundary condition (flow rates fixed to non-fibrotic rates) can be used to
illustrate different fibrosis consequences in the multiple lobule cases.

Clinically observed fibrosis effects can be expected to be a combination of both effects.
Indeed, the liver utilizes various mechanisms to overcome fibrotic flow restrictions. This
includes the induction of vasio-active chemicals such as nitric oxide, and a redistribution
of hepatic artery to portal vein flows (see [58]). Both would lead to time-dependent
flow behavior, indicating a change in appropriate boundary conditions at different stages
of fibrosis. A switch from pressure boundary conditions to flow boundary conditions
might occur as these mechanisms become active. This latter mechanism can even lead to
oscillatory rate/pressure flow behavior [58], which could provide a third mixed-boundary
condition we might consider in the future.
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Although our simulations have considered both methods, here we will display se-
lected results from either case while commenting on the missing behaviors in order to
save space. The next section considering the regular 7-lobule pattern will highlight the
matched pressure boundary condition results, while the following section considering the
irregular distorted lobule pattern will highlight results utilizing the matched flow boundary
condition. While differing in detail, behaviors from missing plots in each section can be
visualized by utilizing the corresponding plots from the alternate section.

5. Multi-Lobule Upscaled Tissue Model—Fibrosis and No Distortion

To extend this analysis to tissue-like scale, we next develop a multi-lobule hexagonal
tissue model invoking seven connected DLA hexagonal lobules into a hexagon tissue pat-
tern. Other authors have considered flows on a similar hexagon tissue pattern [15]. Again, a
base Cartesian grid is considered with null non-active grid cells utilized to convert the areal
shape to a 7-hexagonal lobule-like pattern, as shown below. DLA-derived independent
sinusoid densities are generated in the third dimension for each lobule.

To construct seven regular hexagonal lobule systems, we implemented a method based
on the technique discussed on the ‘Red Blob Games’ website for creating a hexagonal grid
system (Ref: https://www.redblobgames.com/grids/hexagons/ (accessed on 10 April

https://www.redblobgames.com/grids/hexagons/
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2022)). We started by selecting a set of points indicating corners for the central hexagon
and then proceeded to construct the neighboring hexagons as a result.

Here, we first utilize the same DLA techniques outlined above to generate sinusoid
and explicit fibrotic patterns for the 7-hexagonal lobule pattern. This is conducted at the
same scale as our upscaled single lobule system, implying that the upscaled parameters
previously derived are used directly here. Figure 4A,B illustrate the resulting multi-lobule
spatial patterns. Note for the multi-lobule case, there are 24 injector (portal) wells with
7 peri-central production wells, all of which are affected by the variable near-well sinusoidal
patterns. These again result in O2 spatial distributions reflecting the impact of fibrosis. In
the interest of conciseness, these distributions are not shown explicitly here.
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All multi-lobule spatial plots have all these injector/producer sites active, although
normally not indicated for simplicity. Here, Figure 4A also indicates explicitly the injector
well locations while Figure 4B indicates explicitly the producer well locations.

However, as discussed in detail by others and our earlier paper [8], O2 distribution di-
rectly impacts metabolic zonation of the liver lobules. In particular, CYP drug-metabolizing
enzymes are zoned, such that higher enzyme levels can be expected in the peri-central
region of each lobule. Figure 5A,B demonstrate the predicted relative spatial distributions
of this enzyme for the non-fibrotic and progressive fibrotic cases, using matched pres-
sure boundary condition. (Note the negligible CYP levels in sinusoid areas). Inter-lobule
variability of enzyme expression is seen clearly in Figure 5A, where higher levels of CYP
expression, corresponding to lower O2 distribution, are noted in three of the seven lob-
ules. With higher fibrosis levels, a general increase in CYP enzyme expression is observed,
especially in the peri-portal regions of each lobule (Figure 5B) under pressure boundary
conditions. This is attributed to the overall decrease in O2 availability with this boundary
condition. In contrast, the flow boundary condition results in much higher levels of oxygen
leading to overall low expression of the CYP enzyme (not shown explicitly).
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Based on these distributions, Figure 6A,B demonstrate the predicted relative spatial
distributions of the PAC-reacted metabolite PACOH for the non-fibrotic and progressive
fibrotic cases, respectively. In Figure 6A, the unreacted PAC distributions are the mirror
images of these distributions, such that the sum of these two values equal the injected PAC
concentration locally (assumed 1.8 × 10−8 mole fraction injected) as steady concentration
profiles are achieved. Figure 6A shows high levels of unreacted PAC (low levels of PACOH)
surrounding all portal injection points. Generally, there is extensive conversion to PACOH
throughout the remaining portions of the multi-lobule regions.
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Steady profiles are not yet achieved for the fibrotic case of Figure 6B as much as lower
levels of injected PAC occur by this same time point due to the lower fibrotic flow rates.
Spatial zonation is still obvious, however. The lower O2 distributions caused by fibrosis
should eventually lead to a higher expression of the zoned CYP enzyme and thus an
increased metabolic conversion of PAC to PACOH. The use of a matched flow boundary
condition increases the reactive PACOH distribution significantly.

The magnitude of diffusion flow has a further large impact on the zonation profiles.
The above spatial profiles assume essentially molecular diffusion constants for PAC and
PACOH (and that fibrosis has a minor effect on these values). Alternatively, we could
assume nanoparticle-sized drug delivery vehicles for PAC, employed to overcome the very
low molecular solubility of PAC in water or blood. Examples of such nanoparticles include
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the standard Taxol micelle vehicle (with size 13 nm diameter [59]) or other even larger
nanoparticle formulations with sizes approaching 200 nm [60], or other block co-polymer
formulations [61].

Such formulations would imply an almost negligible diffusion contribution to flow,
both with and without fibrosis (see our earlier discussion on diffusion of large particles
through porous media). Figure 7A,B show the predicted PACOH metabolite distributions
under the condition of negligible diffusive flows and matched pressure boundary condition,
with a further marked reduction in PACOH levels. This is especially apparent for the fibrotic
case. Again, however, there is still an observable zonation effect throughout. The use of a
matched flow boundary condition increases the reactive PACOH distribution significantly,
approaching more closely that of the non-fibrosis case. The spatial distributions are different,
however, as fibrosis alters flow paths.
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hexagonal lobules with limited diffusion. (B) Reactive PACOH spatial profiles, concentration (units
mole-fraction), for regular 7-hexagonal lobules with progressive fibrosis and limited diffusion.

Figure 8A compares observed flow rates for the seven peri-central producers for the
non-fibrotic and fibrotic cases. Summation of these individual well rates would produce
curves equivalent to Figure 3A, except with total rates approximately 7 times the earlier
single lobule results (not shown explicitly). Figure 8A further illustrates that the fibrotic case
with pressure gradient matching the non-fibrotic case results in significantly reduced flows.
Alternatively, the fibrotic case employing matched flow boundary conditions results in
increased peri-portal injection pressures for all 24 injectors with some individual variability
(Figure 8B).
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Figure 8. (A) Production flow rates comparing regular 7-hexagonal lobules with and without fibrosis.
(B) Peri-portal injection pressures comparing regular 7-hexagonal lobules with and without fibrosis.
(C) Metabolized PACOH drug production rates (with diffusion) for regular 7-hexagonal lobules
without fibrosis.
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Figure 8C shows PACOH production behavior with diffusion for non-fibrotic case. The
variation between producer well concentrations are a result of the variation in individual
well flow rates shown in Figure 8A. Similar concentration production plots for the non-
fibrotic case with limited diffusion (not shown explicitly) demonstrate similar behavior but
with concentration levels approximately one-third that of that shown in Figure 8C. Note
the flow rates shown in Figure 8A are applicable to both cases.

With matched pressure gradient boundary condition, the corresponding comparative
PACOH plots for the fibrotic case over the same time period show concentration levels
roughly equivalent to the first 1/10th time period of Figure 8C. This is again due to
fibrotic flow rates being approximately 1/10th that of the non-fibrotic case (see Figure 8A).
Conversely, the matched flow boundary condition results in PACOH production profiles
similar to Figure 8C, except that fibrosis can somewhat alter the ordering of the dominant
PACOH producing wells. These plots are not shown explicitly here.

6. Multi-Lobule Upscaled Tissue Model—Fibrosis with Distortion

Lobule distortion is a normal characteristic of liver structure—see [62]. Furthermore,
normal body motion can cause further distortion of the relatively soft liver organ. Here, we
investigate the flow consequences of the distorted multi-lobule hexagonal tissue patterns.

Using the constructed platform for the seven regular hexagonal lobule systems as
discussed above, the irregular lobule is created by randomly relocating corners of each
hexagon. The new location of corners of seven hexagons is determined by an input
parameter setting a maximum offset value. Each corner will be displaced randomly from
the original regular hexagon locations within the range of zero to the maximum offset.

We then utilize the same DLA techniques outlined above to generate sinusoid and
explicit fibrotic patterns for the distorted 7-hexagonal lobule pattern. Figure 9A,B illustrate
the resulting multi-lobule spatial patterns. These again result in O2 spatial distributions
reflecting the impact of fibrosis (not shown explicitly). As mentioned previously, all multi-
lobule spatial plots also have all injector/producer sites active, although normally not
indicated for simplicity. Here, Figure 9A also indicates explicitly the injector well locations
while Figure 9B indicates explicitly the producer well locations.
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Figure 9. (A) Distorted 7-hexagonal lobules with DLA sinusoids: permeability distribution (units
mD) where red are sinusoids and blue are normal tissue. (B) Distorted 7-hexagonal lobules with
progressive fibrosis: permeability distribution (units mD) where orange are sinusoids, dark blue are
explicit fibrotic tissue, and light blue are implicit fibrotic tissue.

The resultant predicted relative spatial distributions of the CYP enzyme for the non-
fibrotic and progressive fibrotic cases are shown in Figure 10A,B, employing the matched
flow boundary condition. In addition to the negligible CYP levels in sinusoid areas, all
cases illustrate larger inter-lobule variability of enzyme expression in the distorted 7-lobule
pattern relative to the regular 7-lobule case, especially in one corner lobule. With higher
fibrosis level, the flow boundary condition results in much higher levels of oxygen leading
to overall low expression of the CYP enzyme (see Figure 10B), except in one corner lobule.
In contrast, a general increase in CYP enzyme expression is observed, especially in the
peri-portal regions of each lobule under pressure boundary conditions. This is attributed to
the overall decrease in O2 availability with this boundary condition.

Based on these distributions, Figure 11A,B demonstrate the predicted relative spatial
distributions of the PAC-reacted metabolite PACOH for the non-fibrotic and progressive
fibrotic cases, utilizing matched flow boundary condition. Spatial zonation is clearly
observed with the non-fibrotic case. The fibrotic case shows similar but redistributed lower
levels of PACOH. Using the pressure boundary condition, lower levels of PACOH are
observed in the fibrotic case at this time point, attributed to less injected PAC due to its
lower flow rate.

The magnitude of diffusion flow is also investigated here. The above profiles assume
essentially molecular diffusion constants for PAC and PACOH. The alternative case of
negligible diffusion contribution to flow, with and without fibrosis, are shown for compari-
son in Figure 12A,B, here applying the matched flow boundary condition. These clearly
show near injection well contributions to the overall spatial profiles. The reactive PACOH
distribution with fibrosis is similar to that of the non-fibrosis case. The spatial distributions
are different, however, as fibrosis alters flow paths. With the matched pressure boundary
condition, low levels of PACOH are seen throughout the lobules.
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Figure 10. (A) CYP enzyme spatial profiles, concentration (units normalized), for distorted 7-
hexagonal lobules. (B) CYP enzyme spatial profiles, concentration (units normalized), for distorted
7-hexagonal lobules with progressive fibrosis (flow B. C.).

Figure 13A compares observed flow rates for the 7 peri-central producers for the
non-fibrotic and fibrotic cases. A wider variation in flows is seen between the individual
wells, relative to the undistorted 7-hexagonal lobule pattern. Again, summation of these
individual well rates would produce curves equivalent to Figure 3A, except with total rates
approximately 7 times the earlier single lobule results (not shown explicitly).

Figure 13A further illustrates that the fibrotic case with pressure gradient matching the
non-fibrotic case results in significantly reduced flows, while the fibrotic case with matched
flows results in increased peri-portal injection pressures for all 24 injectors with some
individual variability (Figure 13B). In particular, injector K shows a significantly higher
peri-portal pressure, attributed to a combination of local reduced sinusoid connectivity
plus local distortion. The distinct spatial distributions of various species around this well
have been noted above.

Figure 13C shows PACOH production behavior with diffusion for the non-fibrotic
case. The wider variation between producer well concentrations relative to the regular
7-hexagonal case are a result of the wider variation in individual well flow rates shown in
Figure 13A. Similar concentration production plots for the non-fibrotic case with limited
diffusion (not shown explicitly) demonstrate similar behavior but with concentration levels
approximately one-third that of that shown in Figure 13C. Note the flow rates shown in
Figure 13A are applicable to both cases.



Processes 2024, 12, 1789 23 of 30

Processes 2024, 12, x FOR PEER REVIEW 23 of 31 
 

 

Figure 10. (A) CYP enzyme spatial profiles, concentration (units normalized), for distorted 7-hexag-

onal lobules. (B) CYP enzyme spatial profiles, concentration (units normalized), for distorted 7-hex-

agonal lobules with progressive fibrosis (flow B. C.). 

Based on these distributions, Figure 11A,B demonstrate the predicted relative spatial 

distributions of the PAC-reacted metabolite PACOH for the non-fibrotic and progressive 

fibrotic cases, utilizing matched flow boundary condition. Spatial zonation is clearly ob-

served with the non-fibrotic case. The fibrotic case shows similar but redistributed lower 

levels of PACOH. Using the pressure boundary condition, lower levels of PACOH are 

observed in the fibrotic case at this time point, attributed to less injected PAC due to its 

lower flow rate. 

 
(A) 

 
(B) 

Figure 11. (A) Reactive PACOH spatial profiles, concentration (units mole-fraction), for distorted 7-

hexagonal lobules with diffusion (no fibrosis). (B) Reactive PACOH spatial profiles, concentration 

(units mole-fraction), for distorted 7-hexagonal lobules with progressive fibrosis and diffusion (flow 

BC). 

Figure 11. (A) Reactive PACOH spatial profiles, concentration (units mole-fraction), for distorted
7-hexagonal lobules with diffusion (no fibrosis). (B) Reactive PACOH spatial profiles, concentra-
tion (units mole-fraction), for distorted 7-hexagonal lobules with progressive fibrosis and diffusion
(flow BC).

When applying a matched pressure gradient boundary condition, the corresponding
comparative PACOH plots for the fibrotic case over the same time period show concen-
tration levels roughly equivalent to the first 1/10th time period of Figure 13C. This is
again due to fibrotic flow rates being approximately 1/10th that of the non-fibrotic case
(see Figure 13A). Conversely, the matched flow boundary condition results in PACOH
production profiles similar to Figure 13C, except that fibrosis can significantly alter the
ordering of the dominant producing location—here, production well D and production
well E reverse their roles of dominant and least dominant PACOH producers, for example.
These plots are not shown explicitly here.
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Figure 12. (A) Reactive PACOH spatial profiles, concentration (units mole-fraction), for distorted
7-hexagonal lobules with limited diffusion. (B) Reactive PACOH spatial profiles, concentration (units
mole-fraction), for distorted 7-hexagonal lobules with progressive fibrosis and limited diffusion
(flow B. C.).

Comparing the multi-lobule liver functional unit results, without and with distortion,
gives a good indication of wider variation of inter-lobule variability with distortion (see
particularly Figure 8A,B, versus Figure 13A,B). This seems reasonable physically, but
because of the inherent variation in DLA property calculation, a more detailed analysis of
model generation and statistics is required to completely establish this conclusion.
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Figure 13. (A) Production flow rates comparing distorted 7-hexagonal lobules with and without
fibrosis. (B) Peri-portal injection pressures comparing distorted 7-hexagonal lobules with and without
fibrosis. (C) Metabolized PACOH drug production rates with diffusion for distorted 7-hexagonal
lobules without fibrosis.
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7. Conclusions

This paper explores the effects and basic consequences of fibrosis on fundamental liver
processes (fluid flow, metabolism), presented at the scale of a multi-lobule liver functional
unit utilizing several upscaling concepts. While faster computers can continuously allow
larger gridded problems to be simulated, the use of consistent upscaling concepts allows
a more complete understanding of the fundamental physical processes underlying any
calculated result.

Multi-scale modeling approaches to fibrosis has been previously reviewed in
depth [63,64]. In this article, we have emphasized how liver fibrosis and deformation
affects fluid flow paths, zonation, and drug metabolism/toxicity. This has been conducted
by a careful and consistent upscaling of single lobule results to a multi-lobule unit, both
without and with deformation. Our analysis focuses on the consequences of fibrosis at two
hypothetical time points (pre-fibrous and long-time fibrous state), applying contrasting
boundary conditions which may also vary over time. Similarly, deformation is treated as
an instantaneous process with no further dynamical responses.

Our grid-based approach to the fibrosis modeling approach considers two scales of
fibrosis—implicit (rescaling of grid flow parameters) and explicit (DLA generated localized
fibrotic grid cells). With these assumptions, we have investigated the consequences of
fibrosis and deformation on drug distribution and metabolism. Oxygen distribution can
affect zonation which affects drug metabolism. Fibrosis effects on flow and diffusion can
affect both oxygen and drug distribution, leading to feedback loops. Deformation further
distorts these interacting processes.

Our multi-lobule results indicate that upscaling single lobule process representations
require a distribution of reactive flow parameters to capture the variability of multi-lobule
behavior. Consideration of deformed structures results in a further increase in variability.
Our deformed multi-lobule pattern provides a useful, efficient upscaling methodology
to capture the interactions of a large number of factors, some of which we have treated
here. While there are a multitude of mechanisms involved in how the liver responds to
inflammation and fibrosis, we feel each must be represented in a numerical model to best
quantify their individual contributions. To date, our results indicate the liver lobule system
is remarkably flexible and resilient to various instabilities generated via inflammation
(within reason) by redistribution of flows.

We recognize that novel mechanistic details provided by recent experiments on liver
tissue constructs form a useful basis for future quantitative analysis of fibrosis and fibrotic
evolution [23–25]. Although conducted at spatial scales approximately consistent with a
single lobule size, these experiments do not incorporate the effects of sinusoidal flow paths.
Instead, they rely on simple diffusional transport of compounds and hence omit a critical
temporal feature. Our numerical approach will provide a useful method to incorporate
such missing flow effects.

Two appendices provide a further perspective on how our current modeling approach
fits into a more extensive investigation of the implication of fibrosis on drug response. The
dynamic evolution of fibrosis over weeks/months requires a more mechanistic model,
dynamically tracking numerous extra species (e.g., collagen, cytokines, and cell types) as
described in Supplementary Material S1. The mechanical application of instantaneous
loads and the further dynamic evolution of deformation via stress relaxation is described
simply in Supplementary Material S2. Both areas are topics for future work and can be
computationally intensive.

Further extension to larger tissue and organ scales in a computationally efficient man-
ner requires a dual continuum upscaling technique to efficiently capture all mechanisms,
as we have recently demonstrated [65].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pr12091789/s1, File S1: Simple mechanistic fibrosis model—single
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https://www.mdpi.com/article/10.3390/pr12091789/s1
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DLA lobule; File S2: Mechanical loading response—single DLA lobule with fibrosis. References [66–81]
are cited in the supplementary materials.
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Concentration (/cm3) c
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Diffusion constant (cm2/min) D
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