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Abstract: Identifying and categorizing drilling-induced fractures is pivotal for understanding the
mechanisms underlying wellbore instability, drilling fluid loss, and assessing reservoirs using imaging
logging data. This study employs a linear elastic stress model around the wellbore, coupled with a
tensile failure criterion, to establish a predictive framework for the orientation of drilling-induced
fractures. It investigates how engineering parameters like wellbore trajectory and bottomhole pressure
influence the distribution of principal stresses around the wellbore, as well as the angle and orientation
of drilling-induced fractures relative to the wellbore axis, across various faulting scenarios. The results
indicate that drilling-induced fractures exhibit structured arrangements and consistent patterns, often
appearing at approximately 180◦ symmetric intervals and descending in similar orientations. This
provides a theoretical basis for their systematic identification and classification. Under different
stress conditions, these fractures can manifest as feather-like shapes, “J”-shaped, or transitional states
between feather-like and “J”-shaped orientations, as well as “V”-shaped or “M”-shaped orientations.
Accurate detection and classification of these fractures are essential for interpreting effective fractures,
conducting thorough reservoir evaluations, and predicting appropriate drilling fluid densities to
mitigate the wellbore failure risk. Moreover, this knowledge aids in effectively determining the
magnitude and direction of in situ stress inversion.

Keywords: wellbore stability; induced fracture; fault mechanism; fracture characteristics; inclined well

1. Introduction

Wellbore instability has been a crucial focus of scientific efforts, with extensive re-
search conducted on the collapse, fracturing, and reinforcement of wellbores. Significant
achievements have been made in this regard. For instance, Rahimi et al. [1] conducted
hydraulic tests on cement paste to study the influence of adding lost circulation materials
on increasing the fracture initiation pressure and fracture reopening pressure. The authors
compared five crack width models estimated by Morita, Fuh [2], Wang et al. [3], Hillerborg
et al. [4], Alberty and McLean [5], and Carbonell and Detournay [6], respectively, with the
experimental results of pressure plugging tests. They found that the model proposed by
Carbonell and Detournay [6] best matched the experimental results. Zhang and Yin [7]
statistically analyzed the leakage pressures of hundreds of wells and found that, for salt
rock formations, the fracture pressure exhibited a linear relationship with overlying rock
pressure. However, in non-salt rock formations, the Eaton method underestimates the
fracture pressure gradient. Aadnøy and Belayneh [8] found that the linear elastic wellbore
fracturing model underestimated the formation fracture pressure, and the results also
predicted that the wellbore fracturing pressure, considering the shielding effect of drilling
fluid particle size distribution on crack propagation, matched the experimental test results
more closely.
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While these studies have predominantly focused on predicting formation fracture pres-
sures, the process of formation leakage involves the initiation and propagation of formation
fractures under excessive liquid column pressure, and natural fractures or pre-existing
fractures in subsurface rocks may serve as pathways for well leakage [9–12]. However,
there have been few reports on predicting the initiation positions and morphological char-
acteristics of drilling-induced fractures (DIFs) around the wellbore [13–15]. Understanding
the generation mechanism and propagation characteristics of DIFs can assist in inferring
the stress inversion, determining the optimal drilling fluid density window, and optimizing
the particle size distribution of plugging materials [16,17].

DIFs are fractures generated promptly under the combined effects of in situ stress
and engineering disturbances [18–20]. They are characterized by regular arrangement and
strong regularity, and are closely related to in situ stress. In contrast, natural fractures often
result from multiple tectonic movements and are subsequently modified by groundwater
dissolution and precipitation, resulting in highly irregular distributions [21–25]. Natural
fractures are often affected by dissolution and folding, leading to irregular fracture surfaces
and significant variations in fracture width [26–30]. In contrast, DIFs exhibit relatively regu-
lar sealing shapes and minimal variations in width with limited radial extension. Therefore,
careful identification and differentiation of various image features are necessary for accurate
interpretation [31–35]. In many cases, the identification of DIFs from natural fractures is
based on the collective shape of the fractures, the presence of certain characteristic surfaces,
and the occurrence of mineralization [36–38]. In imaging logging and core analysis, DIFs
appear as closely spaced delayed lines, curves, and downward-diffusing forms, sharing
the same trend [39–42]. These DIFs extend at least three times the diameter of the wellbore
on both sides and significantly increase the permeability compared to scenarios without
these fractures [43–46]. Although the effect of DIFs on fluid production is short-term,
their extension and enlargement can eventually have positive effects [47–50]. The accurate
detection and identification of DIFs are crucial for effective reservoir management, wellbore
design, and accurate interpretation of fractures and reservoir evaluation [51–57]. There-
fore, this study establishes a predictive model for drilling-induced fractures around the
wellbore, investigates the influence of engineering parameters, such as wellbore trajectory
and internal liquid column pressure, on the characteristics of drilling-induced fractures
under different stress conditions, and provides quantitative parameters for evaluating the
effectiveness of drilling fluid leakage prevention and plugging.

2. Induced Fractures Prediction Model

Drilling-induced fractures (DIFs) around the wellbore refer to fractures formed in the
vicinity of the wellbore during the drilling process due to changes in stress [53]. Unlike
natural fractures, DIFs are generated by engineering disturbances; hence, they follow
certain patterns and can be predicted under different operating conditions by establishing
models to predict their morphology [54]. To predict the characteristics of the DIFs around
the wellbore, it is essential to first establish a model of the stress distribution on the wellbore
wall. During drilling, as the rock is removed, the hydrostatic pressure of the drilling fluid
replaces the rock in balancing the in situ stress, causing the redistribution of stress around
the wellbore. Many scholars have conducted research on this topic, with Kirsch being
one of the earliest to establish equations for the stress around the wellbore in linear elastic
formations. Building on this foundation, this study establishes a predictive model for
drilling-induced fractures.

2.1. Coordinate Transformation

To characterize the stress distribution around the wellbore, it is essential to initially
transform the in situ stress into a global coordinate system [58]. As shown in Figure 1,
XG-YG-ZG represents the global coordinate system, where XG denotes the true north direc-
tion, YG denotes the true east direction, and ZG denotes the vertical direction. XS-YS-ZS
represents the stress coordinate system, representing the horizontal maximum stress, hor-
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izontal minimum stress, and vertical stress, respectively. To transform the in situ stress
into a global coordinate system, three coordinate transformations are necessary. Firstly, the
first step involves rotating the global coordinate system around the ZG axis by an angle
α1 to obtain the X′-Y′-Z′ coordinate system. Secondly, the second step involves rotating
the X′-Y′-Z′ coordinate system around the Y′ axis by an angle β1 to obtain the X′′-Y′′-Z′′

coordinate system. Thirdly, the third step involves rotating the X′′-Y′′-Z′′ coordinate system
around the X′′ axis by an angle γ1 to finally convert it to the XG-YG-ZG coordinate system.
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Figure 1. Three steps of the transformation between the global coordinate system (GCS) and in situ
stress coordinate system (ICS) [58].

Based on geometric knowledge, a transformation matrix is established as shown in
Equation (1),

R1 =

 cos α1 cos β1 sin α1 cos β1 − sin β1
cos α1 sin β1 sin γ1 − sin α1 cos γ1 sin α1 sin β1 sin γ1 + cos α1 cos γ1 cos β1 sin γ1
cos α1 sin β1 cos γ1 − sin α1 sin γ1 sin α1 sin β1 cos γ1 + cos α1 sin γ1 cos β1 cos γ1

 (1)

The stress tensor σG represents the stress components in the geodetic coordinate
system, while σS represents the stress components in the stress coordinate system. The
relationship between the two can be expressed as shown in Equation (2),

σG = RT
1 σSR1 (2)

where, σS = [σH, 0, 0; 0, σh; 0, 0, 0, σv], σH represents the maximum horizontal stress, in
MPa; σh represents the minimum horizontal stress in MPa; σv represents the vertical stress
in MPa.

After converting the stress from the Earth coordinate system to the borehole coordinate
system, further analysis should be conducted. The transformation relationship between the
geodetic coordinate system (GCS) and the borehole coordinate system (BCS) is illustrated
in Figure 2, where XB-YB-ZB represents the borehole coordinate system, α2 represents the
angle between the borehole trend and the true north direction, commonly referred to as the
azimuth angle; β2 represents the angle between the borehole axis and the vertical direction,
commonly referred to as the inclination angle. Using σB to represent the stress tensor in
the borehole coordinate system, according to the research by Lee et al. [15], the conversion
relationship between σB and σG is shown in Equation (3),

σB = R2σGRT
2 (3)
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The transformation matrix R2 is represented as shown in Equation (4),
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2.2. Wellbore Stress Distribution

The stress tensor σB, i.e., [σx, σy, σz, τxy, τxz, τyz], represents the stress distribution
around a wellbore wall in a borehole rectangular coordinate system, for conveniently, the
σB, should be transformed to the polar coordinate system, as shown in Equation (5), which
represents the effective stress around any deviated wellbore.
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2
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)
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2

(
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w
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w
r4
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w
r4
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2

(
1 + 3 r4

w
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)
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(
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w
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)
sin 2θ − Pw

r2
w
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(
σx − σy

) r2
w

r2 cos 2θ − 4ντxy
r2

w
r2 sin 2θ − αPp

τrθ =

[
(σx+σy)

2 sin 2θ + τxy cos 2θ

](
1 + 2 r2

w
r2 − 3 r4

w
r4

)
τrz =

[
τyz sin θ + τxz cos θ

](
1 − r2

w
r2

)
τθz =

[
−τxz sin θ + τyz cos θ

](
1 + r2

w
r2

)

(5)

where rw represents the radius of the wellbore in meters; r denotes the distance from any
point around the wellbore to the axis of the wellbore in meters; Pw stands for the bottomhole
hydrostatic pressure, in MPa; Pp represents the formation pore pressure, in MPa; θ denotes
the azimuth angle around the wellbore, which is the angle rotated clockwise from a
certain point around the wellbore to the X-axis of the coordinate system Xb, in degrees;
and α signifies the Biot’s effective stress coefficient, ranging from 0 to 1, dimensionless.
This equation for the stress around the wellbore is established based on the plane strain
condition, assuming no displacement in the Zb direction. Kirsch initially proposed a linear
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elastic stress model around the wellbore, but it only describes the stress state when the
wellbore axis is parallel to the principal stresses. Al-Ajmi et al. [29] have derived stress
equations for deviated wellbores.

Once the stress distribution around the wellbore is determined, it needs to be in-
tegrated into the rock strength criteria to evaluate the stability of the surrounding rock.
Given that rock strength criteria are typically formulated in terms of principal stresses, the
stresses around the wellbore must be converted into principal stress forms. The equation
for converting the stress around the wellbore in polar coordinates to principal stresses is
shown as follows, 

σi = σr

σj = (σθ + σz)/2 +
√
(σθ + σz)

2 + 4τ2
θz/2

σk = (σθ + σz)/2 −
√
(σθ + σz)

2 + 4τ2
θz/2

(6)

The relative magnitudes of the three principal stresses at any point around the wellbore
vary with changes in the bottomhole fluid pressure. To accurately distinguish between
the three principal stresses around the wellbore, substitute the expression obtained from
Equation (6) into Equation (7).

σ1 = max
(
σi, σj, σk

)
σ3 = min

(
σi, σj, σk

)
σ2 = σi + σj + σk − σ1 − σ3

(7)

where, σ1, σ2 and σ3 are the principal stresses, MPa; σr is the radial stress, MPa; σθ is the
circumferential stress at wellbore wall, MPa; σz is the vertical stress, MPa; τθz is the is the
shear stress in the radial-tangential plane, MPa.

2.3. Solution of Induced Fracture Occurrence

Extensive research has been conducted on the collapse and fracturing of wellbores
and has yielded significant achievements. However, studies focusing on the prediction
of the initiation location of drilling-induced fractures and the morphology of fractures
around the wellbore are still scarce. Understanding the mechanisms and characteristics of
drilling-induced fractures is crucial for various purposes, such as ground stress inversion,
determining the optimal density window for drilling fluids, and optimizing the particle
size distribution of sealing materials.

It is widely accepted in petroleum engineering rock mechanics that if the stress around
the wellbore exceeds the tensile strength of the rock, it results in the initiation of induced
fractures. In this field, compressive stress is conventionally regarded as positive, whereas
tensile stress is viewed as negative. Therefore, as shown in Figure 3a, when σθ < σr and
σθ < −σt, the effective hydrostatic stress inside the wellbore is compressive stress, and the
circumferential stress around the wellbore is tensile stress. When this stress exceeds the
tensile strength of the rock, the formation is stretched circumferentially, as indicated by
the blue arrows in Figure 3a. At this point, no chunking occurs, but it may lead to drilling
fluid leakage. Conversely, when σθ > σr and σr < −σt, the formation pressure exceeds
the hydrostatic pressure inside the wellbore, resulting in an effective hydrostatic pressure
inside the wellbore tensile stress. Exceeding the tensile strength of the rock leads to peeling
of the rock surrounding the wellbore, as indicated by the blue arrows in Figure 3b. In this
case, there is no drilling fluid leakage, but inward concave features with pointed, elongated,
and plate-like chunks may form.
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Figure 3. Schematic diagram of induced fracture initiation mechanism around the wellbore.

To distinguish between different types of wellbore tensile failure, it is necessary to
quantitatively analyze the relationship between the three major principal stresses around
the wellbore. Furthermore, it is important to compare the relationship between the mini-
mum principal stress around the wellbore and the tensile strength of the rock, as shown in
Equation (8),

σ3 ≤ −σt (8)

When σr is equal to σ3, and Equation (8) holds true, the wellbore experiences the
type of failure depicted in Figure 3b. When σr is not equal to σ3, and Equation (8) holds
true, the wellbore experiences the type of failure depicted in Figure 3a. When the type of
tensile failure depicted in Figure 3b occurs, no induced fractures are generated around the
wellbore and the uniform enlargement of the wellbore diameter along the circumference is
caused by the spalling of the surrounding rock. However, when the type of failure depicted
in Figure 3a occurs, induced fractures are generated around the wellbore, and when the
liquid column pressure is higher than the formation pressure, it may result in drilling fluid
loss. The relationship between the angle of the induced fractures and the well axis stress is
given by Equation (9).

tan 2ω =
2τθz

σz − σθ
(9)

In the equation, ω represents the angle between the drilling-induced fractures and
the wellbore axis, measured in degrees, as illustrated in Figure 4, which denotes the angle
between the direction of maximum principal stress around the wellbore and the wellbore
axis. After determining the stress field, well trajectory, and internal hydrostatic pressure,
the principal stresses at various points around the wellbore are computed to identify the
type of tensile failure. Then, the angle between each point around the wellbore and the
wellbore axis is calculated, yielding the developmental morphology of the drilling-induced
fractures under this particular operational condition.
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To prepare representative samples from fractured formations, it is crucial to com-
prehend the characteristics of fractures around the wellbore, encompassing both natu-
ral fractures and those induced by drilling. Accurate identification of natural fracture
features can only be achieved using imaging logging techniques. However, the charac-
teristics of drilling-induced fractures can be predicted based on construction parameters
and geo-mechanical parameters. Therefore, this study established a predictive model for
drilling-induced fractures and provided examples for calculating their characteristics.

3. Effect of In Situ Stress Mechanism on Induced Fracture Morphology

The Earth’s stress refers to the forces acting within the Earth’s interior, which primarily
consist of three main types, as shown in Figure 5. When the vertical stress is the maximum
principal stress, the stress type is normal faulting. When the vertical stress is an intermediate
principal stress, the stress type is strike-slip faulting. When the vertical stress is the
minimum principal stress, the stress type is reverse faulting.
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Figure 5. Types of in situ stress.

Stress within the Earth’s crust is a significant factor in tectonic processes and rock
deformation, representing a crucial physical phenomenon within the Earth’s interior. It
has important implications for the Earth’s structure, seismic activity, rock mechanics, and
engineering projects. Understanding the type and distribution of stress is essential for
many geological and engineering applications. This study investigates the location and
morphology of induced fractures in wellbores within formations of different stress types.
The input parameters used in this study are presented in Table 1.

Table 1. Inputting Parameters.

Depth h/m
Maximum In

Situ Stress
σ1/MPa

Intermediate In
Situ Stress

σ2/MPa

Minimum In
Situ Stress

σ3/MPa

Pore Pressure
Pp/MPa

Bottom Hole
Pressure
Pw/MPa

Tensile
Strength
σ1/MPa

1808.86 50 40 30 25 50 0

3.1. Normal Fault

Under normal faulting mechanisms, the wellbore’s circumferential principal stress,
induced fracture characteristics, and their angles with respect to the wellbore axis are
illustrated in Figures 6–13 for different trajectories.
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Figure 6. Variation in principal stress and induced fracture angle in vertical wells.
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Figure 7. Induced fracture occurrence in a vertical well at different azimuths.

Figures 6 and 7 illustrate the circumferential minimum principal stress and induced
fracture characteristics around the vertical wellbore. When the azimuth angle of the
wellbore is 0◦, the minimum principal stress around the wellbore reaches its minimum
value in the direction of the maximum horizontal stress. Additionally, the induced fractures
always maintain a 0◦ angle with respect to the wellbore axis. Therefore, two vertically
oriented fractures, spaced 180◦ apart and symmetrically distributed, are formed around
the wellbore in the direction of the maximum horizontal stress. As the azimuth angle of the
wellbore increases, the induced fractures around the vertical wellbore always appear in the
direction of the maximum horizontal stress. Moreover, since no shear stress is generated in
the vertical wellbore, the induced fractures always exhibit a vertical orientation.
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Figure 8. Variation in the principal stress and induced fracture angle with βb = 30◦ at different
azimuths.

Processes 2024, 12, x FOR PEER REVIEW 10 of 30 
 

 

  
(a) αb = 0°  (b) αb = 30° 

  
(c) αb = 60°  (d) αb = 90° 

Figure 8. Variation in the principal stress and induced fracture angle with βb = 30° at different azimuths. 

  
(a) αb = 0°  (b) αb = 30° 

  
(c) αb = 60°  (d) αb = 90° 

0 60 120 180 240 300 360 0 60 120 180 240 300 360

0 60 120 180 240 300 360 0 60 120 180 240 300 360

Figure 9. Induced fracture occurrence in wells with βb = 30◦ at different azimuths.
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Figure 11. Induced fracture occurrence in wells at βb = 60◦ at different azimuths.
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Figure 12. Variation in the principal stress and induced fracture angle with βb = 90◦ at different
azimuths.
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Figure 13. Induced fracture occurrence in wells at βb = 90◦ at different azimuths.
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When the wellbore inclination angle is 30◦, the circumferential principal stress and the
angle between the induced fractures and the wellbore axis are shown in Figures 8 and 9
for different azimuth angles of the wellbore. In Figure 8, the left vertical axis indicates the
principal stress, and the purple “+” and right vertical axis indicate the angle between the
drilling-induced fracture and the borehole axis, in addition, the orange line represents the
minimum principal stress around the wellbore wall, the blue line and red line represent
the maximum principal stress intermediate principal stress respectively. Analysis reveals
that when the azimuth angle is 0◦, the minimum principal stress around the wellbore
generates tensile stress in the range of 33◦ to 147◦ and 215◦ to 327◦ around the wellbore.
During this time, the angle between the induced fractures and the wellbore axis remains
relatively constant, resulting in the formation of feather-shaped induced fractures around
the wellbore. As the azimuth angle increases, the variation in the angle between the
induced fractures and the wellbore axis gradually increases when the minimum principal
stress around the wellbore is tensile stress. Consequently, the morphology of the induced
fractures changes from feather-shaped to “J”-shaped and then approximates a sinusoidal
shape. In the image logging interpretation shown in Figure 9d, the induced fractures are
prone to be confused with natural fractures, emphasizing the need for special attention
during the identification of effective fractures and reservoir evaluation.

When the wellbore inclination angle is 60◦, the circumferential principal stress and the
induced fracture morphology for different azimuth angles of the wellbore are shown in
Figures 10 and 11. In Figure 10, the left vertical axis indicates the principal stress, and the
purple “+” and right vertical axis indicate the angle between the drilling-induced fracture
and the borehole axis, in addition, the orange line represents the minimum principal stress
around the wellbore wall, the blue line and red line represent the maximum principal stress
intermediate principal stress respectively. When the azimuth angle is 0◦, the minimum
principal stress around the wellbore is tensile stress along the entire circumference of
the wellbore, and the angle between the induced fractures and the wellbore axis varies
significantly, showing a complex trend. Consequently, the induced fractures exhibit the
morphology as shown in Figure 11a. When the azimuth angle is 30◦ and 60◦, the wellbore
develops “J”-shaped induced fractures, while at an azimuth angle of 90◦, the wellbore
exhibits induced fractures with an approximately sinusoidal shape.

For horizontal wells, the circumferential principal stress and the induced fracture
morphology for different azimuth angles of the wellbore are shown in Figures 12 and 13.
In Figure 12, the left vertical axis indicates the principal stress, and the purple “+” and
right vertical axis indicate the angle between the drilling-induced fracture and the borehole
axis, in addition, the orange line represents the minimum principal stress around the well-
bore wall, the blue line and red line represent the maximum principal stress intermediate
principal stress respectively. When drilling along the direction of the maximum or mini-
mum horizontal stress, the wellbore axis aligns with the stress field, leading to negligible
shear stress around the wellbore. Consequently, vertically induced fractures emerge in the
direction of the maximum horizontal stress. When drilling a horizontal well at azimuth
angles of 30◦ and 60◦, the induced fractures exhibit a transitional morphology between
feather-shaped and “J”-shaped configurations.

3.2. Strike-Slip Fault

Under the strike-slip fault mechanism, the circumferential principal stress and the
induced fracture morphology for wellbores with different trajectories are illustrated in
Figures 14–21. In Figure 14, the left vertical axis indicates the principal stress, and the
purple “+” and right vertical axis indicate the angle between the drilling-induced fracture
and the borehole axis, in addition, the orange line represents the minimum principal stress
around the wellbore wall, the blue line and red line represent the maximum principal stress
intermediate principal stress respectively.
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Figure 15. Induced fracture occurrence in vertical wells at different azimuths.
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Figure 16. Variation in the principal stress and induced fracture angle with βb = 30° at different azimuths. 
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Figure 16. Variation in the principal stress and induced fracture angle with βb = 30◦ at different
azimuths.
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Figure 17. Induced fracture occurrence of wells with βb = 30◦ at different azimuths.
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Figure 18. Variation in the principal stress and induced fracture angle with βb = 60° at different azimuths. 

  

Figure 18. Variation in the principal stress and induced fracture angle with βb = 60◦ at different
azimuths.
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Figure 19. Induced fracture occurrence of wells with βb = 60° at different azimuths. 
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Figure 19. Induced fracture occurrence of wells with βb = 60◦ at different azimuths.
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Figure 20. Variation in the principal stress and induced fracture angle with βb = 90° at different azimuths. 
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Figure 20. Variation in the principal stress and induced fracture angle with βb = 90◦ at different
azimuths.

Processes 2024, 12, x FOR PEER REVIEW 19 of 30 
 

 

  
(a) αb = 0°  (b) αb = 30° 

  
(c) αb = 60°  (d) αb = 90° 

Figure 20. Variation in the principal stress and induced fracture angle with βb = 90° at different azimuths. 

  
(a) αb = 0°  (b) αb = 30° 

  
(c) αb = 60°  (d) αb = 90° 

0 60 120 180 240 300 360 0 60 120 180 240 300 360

0 60 120 180 240 300 360 0 60 120 180 240 300 360

Figure 21. Induced fracture occurrence of wells with βb = 90◦ at different azimuths.
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Similar to the case of a normal fault, for vertical wells in which the wellbore axis is
parallel to the vertical stress, no shear stress is induced around the wellbore. Therefore,
fractures parallel to the wellbore axis are generated. Since tensile stress initially occurs in the
direction of maximum horizontal stress, induced fractures are consistently symmetrically
distributed at intervals of 180◦ around the direction of maximum horizontal stress.

When the well inclination angles are 30◦ and 60◦, the variations in wellbore principal
stresses and induced fracture patterns around the wellbore follow similar trends as the
azimuth angle increases, as shown in Figures 16–19. In Figures 16 and 18, the left vertical
axis indicates the principal stress, and the purple “+” and right vertical axis indicate the
angle between the drilling-induced fracture and the borehole axis, in addition, the orange
line represents the minimum principal stress around the wellbore wall, the blue line and
red line represent the maximum principal stress intermediate principal stress respectively.
With increasing azimuth angle, the relationship between the induced fractures and the
wellbore axis becomes more complex as a function of the azimuthal angle. The induced
fractures transition from feather-shaped to “J”-shaped. When the wellbore is drilled along
the direction of maximum horizontal stress, “V”-shaped induced fractures are generated.

For horizontal wells drilled in different directions, the wellbore principal stresses
and induced fracture patterns around the wellbore are illustrated in Figures 20 and 21. In
Figure 20, the left vertical axis indicates the principal stress, and the purple “+” and right
vertical axis indicate the angle between the drilling-induced fracture and the borehole axis,
in addition, the orange line represents the minimum principal stress around the wellbore
wall, the blue line and red line represent the maximum principal stress intermediate
principal stress respectively. When drilling the wellbore along the direction of the minimum
horizontal stress, the minimum principal stress around the wellbore reaches its lowest
values at 90◦ and 270◦. Consequently, the angle between the induced fractures and the
wellbore axis remains 0◦. Therefore, two parallel fractures perpendicular to the vertical
stress are generated along the direction of maximum horizontal stress. When drilling at an
azimuth angle of 30◦, the minimum principal stress around the wellbore rotates along the
wellbore wall, resulting in tensional stresses throughout a full rotation, with the maximum
tensile stress occurring at 0◦ and 180◦. Combining this with the angle between the induced
fractures and wellbore axis, the induced fracture pattern is as shown in Figure 21b. Similarly,
when drilling at a 60◦ azimuth, the minimum principal stress around the wellbore also
reaches its maximum tensile stress at 0◦ and 180◦, but the variation in the angle between the
induced fractures and wellbore axis is small. Therefore, feather-shaped induced fractures
are produced. When drilling along the direction of the maximum horizontal stress, the
minimum principal stress around the wellbore reaches its maximum tensile stress at 0◦

and 180◦, resulting in two parallel fractures perpendicular to the direction of the minimum
horizontal stress.

3.3. Reverse Fault

Under the reverse fault mechanism, the distribution of wellbore principal stresses
and induced fracture patterns around the wellbore for different trajectories are illustrated
in Figures 22–28. In Figure 22, the left vertical axis indicates the principal stress, and the
purple “+” and right vertical axis indicate the angle between the drilling-induced fracture
and the borehole axis, in addition, the orange line represents the minimum principal stress
around the wellbore wall, the blue line and red line represent the maximum principal stress
intermediate principal stress respectively. For vertical wells, similar to the cases of normal
faults and strike-slip faults, induced fractures around the wellbore always appear in the
direction of the maximum horizontal stress, symmetrically spaced at intervals of 180◦, and
parallel to the wellbore axis.
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Figure 25. Induced fracture occurrence of well with βb = 30◦ at different azimuths.
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Figure 27. Induced fracture occurrence of well with βb = 60◦ at different azimuths.
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Figure 28. Variation in the principal stress and induced fracture angle with βb = 90◦ at different
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When the inclination angle is 30◦, the distribution of wellbore principal stresses and
the induced fracture patterns around the wellbore for different azimuths are shown in
Figures 24 and 25. In Figure 24, the left vertical axis indicates the principal stress, and the
purple “+” and right vertical axis indicate the angle between the drilling-induced fracture
and the borehole axis, in addition, the orange line represents the minimum principal stress
around the wellbore wall, the blue line and red line represent the maximum principal stress
intermediate principal stress respectively. When drilling along the direction of minimum
horizontal stress, the minimum principal stress around the wellbore exhibits tensile stress
within the range of 55◦ to 127◦ and 233◦ to 307◦ around the wellbore. At this point, the
variation in the angle between the induced fractures and the wellbore axis is within 20◦,
resulting in induced fractures in a transitional state between feather-like and “J-shaped”
patterns. As the azimuth increases, the variation in the angle between the induced fractures
and the wellbore axis gradually increases, and the induced fracture pattern around the
wellbore evolves into fractures with pronounced “J-shaped” characteristics. Eventually,
when drilling along the direction of the maximum horizontal stress, as shown in Figure 25b,
“M-shaped” induced fractures occur around the wellbore.

When the inclination angle is 60◦, the distribution of wellbore principal stresses and
the induced fracture patterns around the wellbore for different azimuths are shown in
Figures 26 and 27. In Figure 26, the left vertical axis indicates the principal stress, and the
purple “+” and right vertical axis indicate the angle between the drilling-induced fracture
and the borehole axis, in addition, the orange line represents the minimum principal stress
around the wellbore wall, the blue line and red line represent the maximum principal
stress intermediate principal stress respectively. When the wellbore is drilled along the
direction of minimum horizontal stress, the minimum principal stress around the wellbore
exhibits tensile stress within the range of 50◦ to 131◦ and 229◦ to 311◦ around the wellbore.
At this point, the variation in the angle between the induced fractures and the wellbore
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axis is below 20◦, resulting in induced fracture patterns in a transitional state between
feather-like and “J-shaped” patterns, as shown in Figure 27a. When the azimuth of the
wellbore is 30◦ and 60◦, the variation in the angle between the induced fractures and the
wellbore axis increases, leading to induced fractures with “J-shaped” characteristics, as
depicted in Figure 27b,c. When drilling the wellbore along the direction of maximum
horizontal stress and within the range where the minimum principal stress around the
wellbore becomes tensile stress, the angle variation between the induced fractures and the
wellbore axis remains less than 10◦. This condition leads to the formation of feather-like
induced fractures around the wellbore.

In Figure 28, the left vertical axis indicates the principal stress, and the purple “+”
and right vertical axis indicate the angle between the drilling-induced fracture and the
borehole axis, in addition, the orange line represents the minimum principal stress around
the wellbore wall, the blue line and red line represent the maximum principal stress
intermediate principal stress respectively. For horizontal wells operating under the reverse
fault stress regime, where the vertical stress represents the minimum horizontal stress, the
maximum tensile stress around the wellbore is observed at a wellbore angle of 90◦. When
the wellbore is oriented in the direction of the maximum or minimum horizontal stress, the
angle between the induced fractures and the wellbore axis is 0◦, resulting in two fractures
perpendicular to the vertical stress. When the azimuth of the wellbore is 30◦ and 60◦, and
the minimum principal stress around the wellbore is tensile stress, the variation in the angle
between the induced fractures and the wellbore axis significantly increases. This leads to
induced fracture patterns resembling sine waves, as illustrated in Figure 29b,c.
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4. Field Application

In reservoir evaluation, accurately and effectively identifying natural fractures, as
well as distinguishing and excluding the influence of induced fractures, is crucial. This is
especially challenging in the Ordovician carbonate reservoirs of the Shunbei oil and gas
field, where heterogeneity is significant, reservoir types vary widely, and fractures exhibit
diverse morphologies. Therefore, correctly identifying induced fractures is particularly
important in this context.

Shunbei oil and gas field is located in the main part of the Shuntoguole low uplift in
the Tarim Basin, with an area of 2.8 × 104 km2. The northern Shaya uplift in the Shunbei
area generally shows the development of “X” type strike-slip fault system, while the
southern part of Tazhong Uplift and Shuntogule low uplift (Shunbei 2–Shunbei 4 and
Shunnan 1–Shunnan 2) mainly develops NE or NNE trending single-shear strike-slip fault
system. Shunbei Area 1 is located in the transition zone between the “X” type strike-slip
fault system and the single-shear strike-slip fault system. This study takes the Ordovician
fractured carbonate reservoir in the Shunbei oil and gas field No. 5 fault zone as the
research object. According to the actual drilling data of the exploration well in the working
area, the Ordovician stratum in Shunbei has a high fracture degree and poor cementation.
Taking the Shunbei No. 5 fault zone as an example, which is affected by tectonic stress, the
fault zone is divided into translation, extrusion, and tension sections from south to north
(Figure 30). In the process of drilling, the reservoirs in the extrusion section and the pull
section are typical fractured carbonate formations, and the problem of wellbore instability
is prominent.

Figure 30. Distribution of fault zones in the Shunbei oil and gas field.

Based on the predictive model established in this study for the orientation of drilling-
induced fractures, inputting the construction parameters and geological mechanical param-
eters of Well X in the No. 5 fault zone of the Shunbei Oil and gas field, predictions were
made for the occurrence of vertical fractures, feather fractures, and “J-shaped” fractures
parallel to the wellbore axis in different sections of the well. By segmentally identifying the
fracture characteristics on the imaging logging chart of the well, we were able to clearly
distinguish between vertical fractures, feather-shaped fractures, and “J-shaped” drilling-
induced fractures, as shown in Figure 31. The model’s predicted results were in good
agreement with the results shown in the well’s imaging logging chart, confirming the feasi-
bility of the approach proposed in this study. The accurate detection and identification of
induced fractures can provide assistance in the rational interpretation of reservoir fractures
and reservoir evaluation in the Northwest Oilfield.
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5. Conclusions

This study yields several key conclusions. Firstly, drilling-induced fractures, swiftly
formed due to stress and engineering disturbance, closely correlate with stress distribution.
These fractures present distinct regularity and symmetry, typically appearing in pairs with
an approximately symmetrical spacing of 180◦. Their consistent characteristics offer a theo-
retical framework for identifying and categorizing them, effectively distinguishing them
from natural fractures. Generally, these fractures exhibit uniform surfaces with minimal
width variations and limited radial extensions. Secondly, when the wellbore axis aligns
with any principal stress direction, shear stress is absent around the wellbore, resulting
in drilling-induced fractures oriented parallel to the wellbore axis at a 0◦ angle. Conse-
quently, symmetrically distributed fractures parallel to the wellbore axis typically form. For
example, the induced fractures around the vertical wellbore or horizontal wells drilled in
the direction of in situ horizontal stresses always appear in the direction of the maximum
principal stress and always exhibit a vertical orientation. Thirdly, in the strike-slip fault,
with different well trajectories, drilling-induced fractures may display varied orientations
under different stress regimes, including feather-shaped, “J-shaped”, transitional states
between feather and “J-shaped”, “V-shaped”, and “M-shaped” configurations. The research
results are helpful in distinguishing the natural fractures in the imaging logging and the
drilling-induced fractures and then accurately evaluating the degree of development of
natural fractures in the reservoir.
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