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Abstract: In recent years, digital twin (DT) technology has garnered significant interest from both
academia and industry. However, the development of effective fault detection and diagnosis models
remains challenging due to the lack of comprehensive datasets. To address this issue, we propose
the use of Generative Adversarial Networks (GANs) to generate synthetic data that replicate real-
world data, capturing essential features indicative of health-related information without directly
referencing actual industrial DT systems. This paper introduces an intelligent fault detection and
diagnosis framework for industrial triplex pumps, enhancing fault recognition capabilities and
offering a robust solution for real-time industrial applications within the DT paradigm. The proposed
framework leverages Conditional GANs (CGANs) alongside the Harris Hawk Optimization (HHO)
as a metaheuristic method to optimize feature selection from input data to enhance the performance
of machine learning (ML) models such as Bagged Ensemble (BE), AdaBoost (AD), Support Vector
Machine (SVM), K-Nearest Neighbors (KNNs), Decision Tree (DT), and Naive Bayes (NB). The
efficacy of the approach is evaluated using key performance metrics such as accuracy, precision,
recall, and F-measure on a triplex pump dataset. Experimental results indicate that hybrid-optimized
ML algorithms (denoted by “ML-HHO”) generally outperform or match their classical counterparts
across these metrics. BE-HHO achieves the highest accuracy at 95.24%, while other optimized models
also demonstrate marginal improvements, highlighting the framework’s effectiveness for real-time
fault detection in DT systems, where SVM-HHO attains 94.86% accuracy, marginally higher than
SVM’s 94.48%. KNN-HHO outperforms KNNs with 94.73% accuracy compared to 93.14%. Both DT-
HHO and DT achieve 94.73% accuracy, with DT-HHO exhibiting slightly better precision and recall.
NB-HHO and NB show near-equivalent performance, with NB-HHO at 94.73% accuracy versus NB’s
94.6%. Overall, the optimized algorithms demonstrate consistent, albeit marginal, improvements
over their classical versions.

Keywords: machine learning; fault diagnosis; digital twins; conditional GANs (CGANs); Harris
Hawk Optimizer (HHO); industrial control systems; Internet of Things (IoT)

1. Introduction

Recently, predictive analytics has been considered a key field within data science
through the use of statistical models and machine learning algorithms to forecast future oc-
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currences or behaviors in many applications such as fault diagnosis, customer segmentation,
demand estimation, risk management, and healthcare improvement, among others.

The advancements in recent technologies such as the Internet of Things (IoT), cloud
computing (CC), machine learning (ML), and Cyber–Physical Systems (CPSs), coupled with
developments in telecommunication, have revolutionized information transmission. This
revolution, attributed to digitalization, has permeated all aspects of life and given rise to
the concept of digital twins (DTs) in the context of Industry 4.0. The DT represents a virtual
replica of a physical product within the framework of Cyber–Physical Systems, mimicking
the behavior of the real system throughout its lifecycle. By integrating digital and physical
twins, efficient management, control, and decision-making processes are enabled during
the operation of the real system. The DT captures data from physical sensors to monitor
the system’s response and predicts and diagnoses its behavior to anticipate faults, enabling
proactive maintenance actions. However, the performance and reliability of predictive
maintenance models may be affected greatly by the unavailability of enough data or by the
existence of imbalanced datasets. This lack of data may ultimately cause performance bias,
misclassification, or poor analysis, thus causing the breakdown of maintenance systems.

Across various industries, including the manufacturing, healthcare, and automotive
fields, the DT has become an invaluable asset [1–3]. DT technology supports data fusion,
modeling, and technology integration by simulating physical systems, enabling effective
problem-solving for complex interdisciplinary challenges. Central to the DT concept is
the exchange of data streams from learning components and remote sensors in simulation,
which are crucial for developing intricate processes and exploring “what-if” scenarios.
Notably, the field of environmental sciences has also recognized the importance of the DT,
encompassing areas such as hydrology, agriculture, smart farming, animal farming, remote
sensing, and earth sciences [4–11].

Digital twins are increasingly being integrated with ML algorithms for fault diagnosis
schemes based on machine learning and digital twins for fault-tolerant systems. However,
there are a lack of available industrial data, so there is a serious need to provide a promising
approach for solving the scarcity of fault data by generating synthetic data with better
adaptability like Conditional Generative Adversarial Networks (CGANs). CGANs are
considered an advanced deep learning model capable of generating realistic data samples
based on provided criteria. CGANs generate highly convincing outputs by combining
generative models and adversarial training. Figure 1 shows the general steps of the Fault
Diagnosis Model for industrial control systems.
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Nevertheless, the development of effective fault detection and diagnosis models re-
mains challenging due to the lack of comprehensive datasets. To address this issue, we
propose the use of Generative Adversarial Networks (GANs) to generate synthetic data
that replicate real-world data, capturing essential features indicative of health-related infor-
mation without directly referencing actual industrial DT systems. This paper introduces
an intelligent fault detection and diagnosis framework for industrial triplex pumps, en-
hancing fault recognition capabilities and offering a robust solution for real-time industrial
applications within the DT paradigm.
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Therefore, this paper introduces an efficient fault diagnosis framework for industrial
digital twin systems. The framework aims to achieve accurate and efficient fault detection
and diagnosis by incorporating Conditional Generative Adversarial Networks (CGANs) for
generating synthesis industrial pump data and hybrid-optimized machine learning meth-
ods with Harris Hawk Optimization (HHO). The novelty of the work is in the combination
of CGAN with the HHO for the feature selection process in machine learning models. This
approach renders a significant improvement in the performance of models used in fault
detection systems. This resolves a very typical challenge in industrial fault detection where
such datasets are often unbalanced, enhancing the generalization and performance of the
model. Therefore, the key contributions of this paper can be summarized as follows:

• Develop a smart and vigorous fault detection and diagnosis framework for industrial
triplex pumps, enhancing fault recognition capabilities and offering a robust solution
for real-time industrial applications within the DT paradigm.

• The proposed framework leverages Conditional GANs (CGANs) alongside the Harris
Hawk Optimization (HHO) metaheuristic method to optimize feature selection from
input data effectively for machine learning (ML) models such as Bagged Ensemble
(BE), AdaBoost (AD), Support Vector Machine (SVM), K-Nearest Neighbors (KNNs),
Decision Tree (DT), and Naive Bayes (NB). The efficacy of the approach is evaluated
using key performance metrics such as accuracy, precision, recall, and F-measure on a
triplex pump dataset.

• From the experimental results, the suggested hybrid-optimized ML algorithms outper-
form or match their classical counterparts across various metrics. BE-HHO achieves
the highest accuracy at 95.24%, slightly surpassing BE’s 95.17%. SVM-HHO attains
94.86% accuracy, marginally higher than SVM’s 94.48%. KNN-HHO outperforms
KNNs with an accuracy of 94.73% compared to 93.14%. Both DT-HHO and DT achieve
94.73% accuracy, with DT-HHO displaying slightly better precision and recall. NB-
HHO and NB show nearly equivalent performance, with NB-HHO at 94.73% accuracy
versus NB’s 94.6%. Although AD-HHO and AD have lower accuracies at 92.57% and
92.06%, respectively, AD achieves higher recall.

• Hybrid-optimized machine learning models using the HHO will outperform classical
models in terms of accuracy, precision, and recall in diagnosing faults in industrial
pump systems.

Thus, this research proposes an innovative approach that successfully exploits both the
features optimization and the synthetic data production to fit the needs of typical dynamic
industrial environments based on the digital twin.

The structure of the paper is as follows: In Section 2, relevant work on the paper’s
theme is explored, while a brief overview of Conditional GAN (CGAN) and Harris Hawk
Optimization (HHO) as they pertain to the proposed system is provided in Section 3. The
suggested framework is explained and clarified in Section 4, while a high-level proposed
framework for remote fault monitoring and detection in smart industrial IoT systems
is delivered in Section 5. Section 6 shows the experimental findings and comparative
effectiveness of the suggested approaches in comparison with classical ML models, while
the paper’s conclusion and future scope of this innovative topic are explored in Section 8.

2. Previous Studies

To identify and diagnose defective equipment, this study intends to develop and
use a digital twin system for the triplex pump. For several industrial processes, fault
detection and diagnosis have been carried out to boost effectiveness, safety, and continuous
production. In recent decades, numerous Artificial Intelligence techniques for failure
diagnosis have been introduced to increase the reliability and security of sophisticated
equipment. One of the effective machine learning techniques used is Generative Adversarial
Networks (GANs). GANs have shown promising results in various fields, including fault
diagnosis [12–15]. These studies show how GANs can be used to diagnose faults in a range
of sectors, including manufacturing, energy, and transportation. However, there are still
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several issues and open research paths in this field, including how to deal with imbalanced
data, how to deal with the absence of labeled data, and how to use other GAN techniques
in fault diagnosis.

One of the well-known and effective methods for defect diagnosis is the model-based
approach, in which an accurate complicated apparatus model is built by different analytic
terms [16–18]. Physically and mathematically informed approaches have been effectively
employed to tackle the intricacies of sophisticated industrial machinery, leveraging es-
tablished model-based methodologies. Nevertheless, the profound complexity of certain
equipment often necessitates a thorough comprehension of the underlying physical princi-
ples to create an accurate model. Due to its potential to revolutionize several industries,
including gaming, education, healthcare, and manufacturing, the ideas of industrial digital
twins have attracted significance recently.

On the other hand, digital twins are virtual representations of actual things, systems,
or settings that can be used for testing, simulation, and monitoring. Numerous industries,
including engineering, architecture, urban planning, and healthcare, use them. The pub-
lication by Grieves et al. [19], which presents the idea of digital twins and explores their
potential advantages and disadvantages, is one of the foundational works on this topic. The
authors contend that digital twins can enhance consumer experience, lower expenses, and
improve product development. Although the present DT schemes and executions are still
in their initial phases and require significant effort, they have been successfully integrated
into various applications such as healthcare systems, various industries including aviation
and farming, smart cities, and climate prediction [20,21].

Designing a competent digital twin system for any physical system requires the exper-
tise of specialized engineers and computer scientists. Their duties comprise constructing
and proposing the necessary product model and creating a comprehensive description of
the virtual system. The authors demonstrate the effectiveness of their approach in reducing
costs and improving transparency. Also, Wang et al. [22] create a digital twin platform for
smart cities that combines data from several sources to offer in-the-moment monitoring
and optimization of municipal infrastructure. However, they also note the difficulties in
managing data, scaling, and cybersecurity that come with building and sustaining digital
twins. A framework for building digital twins of the triplex pump and using hybrid ma-
chine learning for fault diagnosis in the industrial system is given in [23]. Fault diagnosis
becomes faster, more accurate, and more cost-effective, leading to improved operational
efficiency and reduced downtime in various industries, such as manufacturing, energy, and
transportation [24,25].

The current state of the art in industrial IoT applications is characterized by a scarcity of
contributions focused on the integration of digital twins and machine learning algorithms.
In response to this gap, this study proposes a novel fault prediction framework comprising
four phases, namely (1). a Data Acquisition Step (DAS), (2). a Data Synthesizing Step (DSS),
(3). ML-based Model Training and Testing (MLMT2), and finally (4). a Failure Diagnosis
Step (FDS). The proposed framework seeks to develop an advanced powerful forecast
digital twin-assisted AI framework that leverages Generative Adversarial Networks (GANs)
in combination with diverse HHO-based optimized machine learning techniques, such
as Bagged Ensemble (BE), AdaBoost (AD), Support Vector Machine (SVM), K-Nearest
Neighbors (KNNs), Decision Tree (DT), and Naive Bayes (NB) to identify and classify
faults effectively.

In conclusion, this section presents a critical review of the literature on fault detection
and diagnosis (Table 1) using digital twins and Artificial Intelligence techniques, specifically
Generative Adversarial Networks (GANs) and machine learning algorithms. Various
studies are summarized, highlighting their objectives, methodologies, key findings, and
their pros and cons.
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Table 1. A critical review of the literature on fault detection and diagnosis.

Reference Objective Methods Findings Pros Cons

[12–15] Use GANs for fault
diagnosis across
various sectors (e.g.,
manufacturing, energy,
transportation)

Generative
Adversarial
Networks (GANs)

GANs can enhance
fault detection but
challenges remain with
imbalanced and
unlabeled data

High accuracy in
fault detection

Issues with
imbalanced data,
absence of labeled
data

[16–18] Model-based approach
for defect diagnosis
using physical and
mathematical models

Physically and
mathematically
informed
model-based
methodologies

Effective for
sophisticated
machinery, but building
accurate models is
complex

In-depth
understanding of
machinery
mechanics

Requires deep
understanding of
physical principles

[19] Exploring the concept
of digital twins and
their applications
across various
industries

Digital twin
framework design
and
implementation

Digital twins improve
user experience, reduce
costs, and enhance
product development

Enhanced
transparency and
reduced costs

Initial
implementation
phases, requires
further
development

[22] Develop a digital twin
platform for smart
cities, focusing on
real-time monitoring
and optimization

Digital twin
platform
combining data
from multiple
sources

Improved real-time
infrastructure
monitoring but faces
challenges with scaling
and cybersecurity

Real-time
monitoring and
optimization of
smart city
infrastructure

Challenges with
data management,
scaling, and
cybersecurity

[23–25] Hybrid machine
learning for fault
diagnosis in the
industrial system,
focusing on triplex
pumps

Hybrid ML-based
model with GANs
and HHO
algorithms (BE,
AD, SVM, KNNs,
DT, NB)

Faster and more
accurate fault diagnosis,
reducing downtime
and improving
operational efficiency

Cost-effective and
precise fault
diagnosis

Complexity in
integrating hybrid
machine learning
models

3. Background

This section discusses the topics of Conditional GAN (CGAN) and Harris Hawk
Optimization (HHO) as they pertain to the proposed system.

3.1. Conditional GAN (CGAN)

A new kind of deep learning network model called a Generative Adversarial Network
directly generates similar distributions from real data. Due to GAN’s powerful data-
generating capabilities, data imbalance is a common problem that it is utilized to solve. The
Generative Adversarial Network (GAN), which is used as a machine learning framework
for training generative models, is extended to create the conditional generative adversarial
network (CGAN). Therefore, to simulate real data input to the networks, synthetic data can
be produced using conditional Generative Adversarial Networks (CGANs).

The CGAN uses a conditional setting, which contains two networks: generator and
discriminator, as shown in Figure 2. New data generated by the generator network have
the same structure as the real data and correspond to the same label. By the discriminator
network, on the other hand, observations are categorized as “real” or “generated.” When
presented with batches containing both actual and created labeled data, the discriminator’s
goal is to avoid being “fooled” by the generator. The discriminator and generator both rely
on additional data, such as class labels or details from different modalities [26].
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Consequently, the detailed explanation of how a CGAN operates is summarized as
follows: First, it is necessary to have a sizable collection of genuine data samples that fit the
desired criteria. This dataset will act as our CGAN’s “teacher”. The next step is to construct
a generator network that outputs a synthetic data sample from an input random noise
vector. The instructor dataset’s real data samples are used to train the generator network
to reduce the difference between its output and those samples. Then, a discriminator
network is constructed to produce a probability score that indicates whether each sample
of real and synthetic data is real or fraudulent. The discriminator network is skilled at
telling the difference between true samples and false ones. Two loss functions—one for the
generator and one for the discriminator—are specified during training. The discriminator
loss function promotes the discriminator to accurately distinguish between real and false
samples, whereas the generator loss function encourages the generator to create synthetic
samples that are comparable to the real data samples. The generator and discriminator
networks are optimized with each training cycle. Fixing the discriminator network will
allow the model to assess the generator network’s loss. The generator network is then
updated to reduce this loss. After the generator network has been fixed, it is used to
calculate the discriminator network’s loss. The discriminator network is then updated to
maximize this loss. Subsequently, we carry out the generator and discriminator networks’
optimizations once more until they reach a stable conclusion.

3.2. Harris Hawk Optimization (HHO)

A metaheuristic algorithm called the Harris Hawks Optimization (HHO) algorithm
is a bio-inspired optimization technique that mimics the behavior of hawks to optimize a
problem [27]. Its purpose was to solve issues with non-linear objectives and many local
optima. Utilizing a set of prey items that serve as potential solutions to the problem, the
algorithm searches iteratively for better alternatives. Each prey item has a fitness rating
assigned to it that describes how it stacks up against other prey items. The algorithm
searches for fresh prey items and gradually increases their fitness values by combining
exploration and exploitation tactics. The HHO has been successfully applied in various
domains such as power systems, control engineering, biomedical applications, and com-
munication systems. In the context of feature selection, the HHO can be used to identify
the most relevant features in a dataset. The following is a high-level overview of how the
HHO works for feature selection:

1. Initialize the population: Start by randomly selecting a subset of features from the
original dataset. This initial population represents the first generation of hawks.

2. Evaluate the fitness: Assess the fitness of each individual in the population based
on its ability to predict the target variable. In this case, the fitness function would
evaluate the accuracy of the model built using the selected features.
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3. Mating Pool: Select the fittest individuals from the current population to form the
mating pool. The size of the mating pool determines the number of offspring produced
in the next generation.

4. Crossover and Mutation: Apply crossover and mutation operators to the members
of the mating pool to generate new offspring. Crossover involves combining two
parent individuals to produce a single offspring, while mutation involves introducing
random changes to an individual.

5. Replacement: Replace the least fit individuals in the current population with the
newly generated offspring. This maintains the diversity of the population and pre-
vents the algorithm from getting stuck in the local optimum.

6. Repeat: Go back to step 2 and repeat the process until a stopping criterion is met,
such as reaching a maximum number of generations or achieving a desired level
of accuracy.

7. Selection of final features: Once the algorithm converges, select the top-ranked
features from the final population as the optimal set of features for the given dataset.

The key advantage of the HHO is its ability to handle complex, non-linear problems
and its robustness against noise and outliers in the data. Additionally, the HHO can be
easily parallelized, making it suitable for large datasets. However, the algorithm requires
careful parameter tuning for optimal performance.

4. Proposed Framework

In this work, we present a powerful scheme for automatically recognizing faults in
industrial DT systems. The proposed framework is demonstrated, which consists of a
hybrid-optimized ML model through the HHO method with different machine learning
methods such as Bagged Ensemble (BE), AdaBoost (AD), Support Vector Machine (SVM),
K-Nearest Neighbors (KNNs), Decision Tree (DT), and Naive Bayes (NB) on the CGANS-
based generated dataset. Furthermore, the detailed suggested framework comprises five
significant steps, as follows, to achieve the diagnostic procedure explained in Figure 3:

Stage 1: (Gaining and Gathering of Data): in this phase, the data will be gathered from
digital twin sources to handle the subsequent steps in the proposed system.
Stage 2: (Generating Synthetic Data): In this stage, the CGAN is utilized to create synthetic
data that resemble actual networks’ input. By utilizing labeled data, Conditional GANs
(CGANs) can generate synthetic samples that belong to specific, predefined categories.
Stage 3: (Generated Data Validation): In this phase, the principal component analysis
(PCA) is applied to assess the properties of both the created and actual signals. PCA enables
a complex dataset to be transformed into a set of uncorrelated variables, which are referred
to as the principal components. The goal of PCA is to use the numerical structures of the
actual data and assign the features of the created data to the same PCA subspace.
Stage 4: (Training/Testing the proposed model): At this point, the data generated in phase
one are used to train an effective ML model that diagnoses the fault of the optimized ML
methods to organize all the input data generated from the digital twin model. Then, the
HHO technique is applied to enhance the performance of the machine learning algorithm.
Finally, the data collected in real-time digital twins of machinery data are used to test
different machine learning algorithms. Therefore, the performing assessment indices are
applied to assess the suggested framework.
Stage 5: (Cloud-based Monitoring System for Fault Classification and Prediction): To
monitor machine data from their industrial systems, the supervisor operators in this step
use a cloud-based industrial monitoring tool of the proposed framework. To optimize
operations, operators can use this system to identify patterns and trends indicative of
impending failures, enabling proactive remediation before issues arise.
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5. High-Level Proposed Industrial IoT-Based DT Framework

The proposed framework aims to revolutionize the field of machinery fault diagnosis
by leveraging cutting-edge technologies such as digital twins, Cyber—Physical Systems,
cloud computing, and Artificial Intelligence. By harnessing these innovations, the sug-
gested framework offers real-time fault diagnosis and monitoring of industrial systems,
thereby significantly improving their overall efficiency. The proposed framework comprises
three distinct phases that collaboratively work towards achieving the desired outcomes.
Each phase has a defined set of tasks and operations that coordinate with the others to
deliver a seamless and effective solution. Figure 4 explains the suggested system with the
three phases as follows:

• Phase 1: industrial IoT can be used for real-time digital twin generated data gathering,
as shown in Figure 5.

• Phase 2: For storing and processing user data, the cloud infrastructure will serve
as a centralized repository and data will be transmitted remotely via the Internet.
Once received, the data will be sorted and organized, making it readily accessible for
comprehensive analysis and thorough assessment.
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• Phase 3: The industrial supervisor employs a cloud-based monitoring system to track
vital signs of their machinery in real-time. This intuitive dashboard provides super-
visors with simple access to critical data, allowing them to examine detailed reports
generated by the system’s advanced analytics capabilities. Armed with this infor-
mation, the supervisor can make informed decisions to optimize their equipment’s
performance and maintain maximum uptime.
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6. Experimental Study

The generated pump dataset and the experimental setup are provided in this section.
In conclusion, this section provides an analysis of the findings and a discussion of the
suggested framework.

6.1. Experiment Setup

The machine learning classifiers were developed in MATLAB on an AMD Ryzen-5000
series (7) CPU with 8 GB RAM running Windows 11; tests were conducted to assess the
suggested framework for problem diagnosis based on a triplex pump dataset.

6.2. Triplex Pump Dataset

To develop an automated fault diagnosis algorithm for the triplex pump, a simulated
model of the pump was introduced [28]. This allowed for the generation of 1575 pump
output flow measurements, with 760 healthy signals and 815 faulty signals. The statistical
characteristics of these real signals were analyzed using principal component analysis
(PCA) to compare them to the created signals from the CGAN. Next, different machine
learning models were trained based on the generated signals from the CGAN and tested
on the real signals to determine their ability to accurately classify healthy and faulty
signals. The trained models were then used to obtain predicted labels for the actual signals.
The following steps were taken to train different machine learning models based on the
generated signals from CGAN and then predict whether a real signal was healthy or faulty:

• Create a training dataset using the generated signals.
• Create a test dataset using the real signals.
• Train the model using the training dataset.
• Obtain the predicted labels for the actual signals using the trained model under the test.

6.3. Assessment Criteria

The proposed framework blends ML with a Conditional GAN to enhance the classi-
fication accuracy of fault detection in industrial control systems. We evaluate proposed
ML different classifiers using precision, recall, and F-measure as our primary performance
metrics. On each classifier, these metrics are computed for both positive (‘P’) and negative
(‘N’) categorized documents, as depicted in the confusion matrix presented in Table 2. This
table provides a comprehensive overview of four crucial parameters—true positive (TrueP),
true negative (TrueN), false positive (FalseP), and false negative (FalseN)—that are essential
in evaluating the performance of a classification model. TP represents the accurate identifi-
cation of anomalies, whereas TN refers to the incorrect estimation of regular instances. On
the other hand, FP signifies the misclassification of regular instances as anomalies, while FN
denotes the failure to identify actual anomalies. By carefully considering these parameters,
we can gain effective perceptions of the robustness and weaknesses of each classifier and
optimize our framework for enhanced reliability and accuracy in fault detection.

Table 2. Confusion matrix for fault detection.

Predicted Heathy Predicted Faulty

Actual Healthy TrueP FalseN

Actual Faulty FalseP TrueN

Assessment metrics like accuracy, precision, recall, and F1-Score can be processed after
finding the parameters in the confusion matrix as follows [29–32]:

Accuracy: To ensure the reliability and accuracy of our system, it is imperative to determine
certain key parameters that influence the quality of the model. Specifically, we must evalu-
ate the symmetry of the datasets and the balance between false positive and false negative
rates, as expressed in Equation (1). A well-balanced dataset with minimal disparity between
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these rates will enable us to achieve the highest possible F1-Score, thereby validating the
efficacy of our proposed approach.

Accuracy =
TrueP + TrueN

TrueP + FalseP + FalseN + TrueN
(1)

Precision: the correlation between actual positive predicted values and full positive pre-
dicted values is depicted in Equation (2).

Precision =
TrueP

TrueP + FalseP
(2)

Recall: Recall, as quantified by the ratio of anticipated true positive values to submitted
expected true positive values minus predicted false negative values (Equation (3)), serves
as a vital metric for evaluating the performance of our proposed approach. A higher recall
value indicates a greater likelihood of detecting actual anomalies within the data, thereby
underscoring the effectiveness of our methodology.

Recall =
TrueP

TrueP + FalseN
(3)

F1-Score: It is a general indicator of a model’s accuracy that blends recall and precision in
the strange way that both multiplication and addition combine two components to create a
whole new item. Equation (4) illustrates that the F1-Score is equal to twice the product of
the precision and recall submission multiplied by two.

F1-score = 2 ∗ Precision ∗ Recall
Precision + Recall

(4)

6.4. Results Analysis

To thoroughly assess the effectiveness of the proposed classification framework, it is
crucial to investigate the individual performance of each classifier in distinguishing between
normal and problematic states in machinery pump data. The CGAN generates the synthetic
data for the triplex pump to be utilized as the training set for our model to judge the validity
and accuracy of the proposed framework. The CGAN model used in the proposed model
is depicted in Figure 6. Then, we test different ML models including Bagged Ensemble,
Support Vector Machine (SVM), K-Nearest Neighbors (KNNs), AdaBoost, Decision Tree
(DT), and Naïve Bias (NB) models using the real data gained from the actual system.
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Therefore, the data generated from CGAN are used to train the different algorithms,
and then the real data are used to examine the performance of the proposed algorithm. The
advantage of this technique is that there is no need for splitting the actual data and one can
test the proposed algorithm on whole actual data. We can grasp its capabilities due to this
approach. From Figure 7, the distribution of the generated signals is like the distribution
of the real signals. Both faulty and healthy signals, whether generated or real, lie in the
same region of the PCA subspace, indicating that the properties of the generated signals are
equivalent to those of the real signals. Table 3 shows a comparison of the results and these
are also depicted in Figure 8. Figure 9 shows a confusion matrix for different ML methods
and Figure 10 displays the confusion ROC curve for all algorithms in the ML framework.
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Table 3. Comparison results of proposed system for fault detection.

Algorithm Accuracy Recall Precision F1-Score

BE 95.1746 96.5789 93.6224 95.0777

AD 92.0635 96.8421 87.9331 92.1728

SVM 94.6032 99.6053 90.2265 94.6842

KNNs 93.1429 99.8684 87.6443 93.3579

DT 94.4762 95.6579 93.0858 94.3543

NB 94.6032 97.3684 91.9255 94.5687

For the mentioned ML models, the resulting confusion matrices are indicated in
Figures 8 and 9 for the triplex model. Likewise, the ROC curves of the proposed system
are illustrated in Figure 10. The Harris Hawk Optimization (HHO) is applied to machine
learning algorithms to enhance the performance and boost the accuracy of the system. The
HHO is performed in a highly competitive manner in terms of the caliber of its exploration
and exploitation. The optimization algorithm is used for feature selection. The results in
Figure 11 show that the HHO reserves and enhances the performance of all the models.
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Figure 8. Results for ML models for fault detection without optimization.

Figure 11 and Table 4 show the performance of various machine learning (ML) al-
gorithms in their optimized and classical forms across four metrics: accuracy, precision,
recall, and F1-Score. The optimized versions are indicated with the suffix “-HHO” and
consistently outperform or closely match their classical counterparts.
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The BE-HHO shows slightly higher performance than BE, with an accuracy of 95.24%
compared to 95.17%, and similarly high precision, recall, and F1-Scores. AD-HHO and AD
have a notable difference in accuracy, with AD-HHO at 92.57% and AD at 92.06%, though
AD achieves higher recall. The SVM-HHO variant exhibits an accuracy of 94.86%, slightly
higher than the classical SVM at 94.48%, with both showing high recall values. KNN-HHO
surpasses KNNs in accuracy (94.73% vs. 93.14%) and demonstrates improved precision
and recall. DT-HHO and DT both have an accuracy of 94.73%, but DT-HHO has marginally
better precision and recall. NB-HHO and NB are almost equivalent, with NB-HHO having
a slightly higher accuracy of 94.73% compared to 94.6%. Overall, the optimized algorithms
demonstrate marginal but consistent improvements over their classical versions in most
metrics, as clarified in Figure 12.
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Table 4. Comparative study between optimized ML and classical ML.

Algorithm Accuracy Precision Recall F1-Score

BE-HHO 95.24 93.854 96.447 95.133

BE 95.17 93.62 96.58 95.08

AD-HHO 92.57 89.448 95.921 92.571

AD 92.06 87.93 95.84 92.17

SVM-HHO 94.86 91.759 98.158 94.851

SVM 94.48 90.24 99.61 94.68

KNN-HHO 94.73 92.472 96.974 94.669

KNNs 93.14 87.64 99.87 93.36

DT-HHO 94.73 93.231 96.053 94.621

DT 94.48 93.09 95.66 94.35

NB-HHO 94.73 92.472 96.974 94.669

NB 94.6 91.93 97.37 94.57

From the results above, it is evident that different models have their own strengths,
with the best-performing ones being evaluated based on key metrics such as accuracy,
precision, recall, and F1-Score. These metrics provide a more general view of model
performance, beyond just accuracy. The BE-HHO model leads with the highest accuracy at
95.24%, followed closely by the BE model at 95.17%. Next, the SVM-HHO model has an
accuracy of 94.86%, slightly outperforming the classical SVM at 94.48%. KNN-HHO and
DT-HHO both have an accuracy of 94.73%, with KNN-HHO marginally outperforming
classical KNNs (93.14%) and DT-HHO closely matching classical DT (94.48%). The NB-
HHO model also has an accuracy of 94.73%, slightly higher than the classical NB at 94.6%.
AD-HHO and AD have the lowest accuracies at 92.57% and 92.06%, respectively, but AD
achieves the highest recall among all models. Therefore, the ranking of models based
on their performance is as follows: BE-HHO, BE, SVM-HHO, DT-HHO, KNN-HHO, NB-
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HHO, SVM, DT, NB, KNN, AD-HHO, and AD. Small improvements in recall, accuracy, or
precision can have a significant impact on predictive maintenance, fault detection quality,
and system reliability in industrial applications.. Any improvement, no matter how little,
helps to increase operational efficiency, lower risk, and improve decision-making in real-
world systems where faulty or inaccurate diagnostics can cause expensive disruptions. So,
the total cost of maintenance will be reduced.
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Table 5 provides a comparative analysis of different optimization strategies that can
be used to improve the accuracy of the Support Vector Machine (SVM) algorithm based
on accuracy, precision, recall, and F1-Score. Among the different methods evaluated,
the Harris Hawk Optimization (HHO) method emerges as the leader with a remarkable
accuracy of 94.86%, a precision of 91.76%, and an F1-Score of 94.85 for this task, clearly
demonstrating its ability in the detection of faults. Considering the results of all covered
methods, the HHO appears to be the most successful optimization approach for enhancing
ML-based fault detection.

Table 5. Comparative study between different optimization methods for SVM.

Optimization Accuracy Precision Recall F1

Partical Swarm Optimization 94.35 90.9646 98.0263 94.3635

Whale Optimization Algorith 92.8889 88.57 97.8947 93

Slime Mould Algorithm 90.6032 85.4988 96.9737 90.8755

Sine Cosine Algorithm 93.1429 89.2771 97.5000 93.2075

Generalized Normal
Distribution Optimization 94.1587 90.6326 98.0263 94.1846

Genatic Algorithm 93.6508 89.7590 98.0263 93.7107

HHO 94.8571 91.7589 98.1579 94.8506
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7. Limitation

While the research shows good prospects with using the HHO with CGANs in digital
twins for fault detection, some limitations have to be addressed to improve the robustness
and scalability of the proposed approach:

• Computation complexity and cost: The use of the HHO along with CGANs would
increase the computational complexity and cost. Both methods would involve heavy
computational loads—both the optimization for the HHO and CGANs, like any other
generative model, tend to require power-intensive calculations because of the need
to fit an auxiliary conditional variable in between, creating generator and discrimi-
nator networks. When these two are put together, the computational burden could
increase even more, thus inhibiting real-time applications of digital twins in fast fault
detection processes.

• Overfitting and biases in fault: As in the case of every other machine learning model,
there might be tendency of overfitting with the CGAN model, especially if it is trained
on small or unbalanced datasets. When the training data do not cover enough fault
types or some operating regimes, the learning algorithm may ‘overfit’ and learn to
always favor certain types of failures/diminish the importance of failures that are
less treated or are deemed rare. Such risk is more pronounced in large-scale complex
industrial systems where there are tendencies of faults happening frequently and
the amount of training data is small. Although the HHO is useful for the purpose of
finding the optimal parameter values, it is not a solution to the problem of limited data.

• Parameter sensitivity of HHO: In the absence of the self tuning nature of the HHO and
other metaheuristic algorithms, initialization parameter values in those cases tend to
impact the success of the HHO. With a small change in some parameters such as the
population size or even the number of iterations, the performance experienced may
be totally different. Such sensitivity probably causes the results obtained in different
scenarios of fault detection tasks to be quite different, most probably when real-time
data processing is involved, in particular in manufacturing systems.

• Data quality and representation: The effectiveness of Generative Artificial Intelligence
such as the CGAN heavily relies on the quality of the data used for training. Inaccurate,
incomplete, or biased datasets can lead to poor fault detection performance, particu-
larly when digital twins are expected to simulate real-world operational conditions.

These constraints can also be addressed and further researched to enhance the integra-
tion of the HHO with Generative Artificial Intelligence in digital twins for enhanced fault
detection, making it more effective, efficient, and applicable to more industries.

8. Conclusions and Future Scope

In recent years, fault detection has emerged as a pivotal component within industrial
DT systems, crucial for ensuring operational reliability and efficiency. This process involves
identifying deviations from expected behavior or performance in physical assets mirrored
by their digital representations. Furthermore, fault detection facilitates the implementation
of predictive maintenance strategies, enabling targeted repairs and the optimization of
asset performance in the industrial DT. This study proposes an efficient fault detection
framework leveraging conditional Generative Adversarial Networks (GANs) and meta-
heuristic machine learning for fault detection. The experimental results demonstrate that
hybrid-optimized ML algorithms, denoted as “ML-HHO”, consistently outperform or
closely match their classical counterparts across various performance metrics. Particularly,
BE-HHO achieves the highest accuracy at 95.24%, slightly surpassing BE’s 95.17%. Sim-
ilarly, SVM-HHO achieves an accuracy of 94.86%, marginally exceeding SVM’s 94.48%.
KNN-HHO exhibits superior performance with 94.73% accuracy compared to KNN’s
93.14%. DT-HHO and DT both achieve 94.73% accuracy, with DT-HHO showing slightly
better precision and recall. NB-HHO and NB demonstrate comparable performance, with
NB-HHO achieving 94.73% accuracy against NB’s 94.6%. Despite lower accuracies, AD-
HHO and AD achieve higher recall rates at 92.57% and 92.06%, respectively. Overall, the
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optimized algorithms consistently deliver marginal enhancements over their classical coun-
terparts. With respect to synthetic data generation, the framework employs CGANs and
feature selection is carried out using the HHO, which makes the framework a powerful and
adaptable architecture for continuous monitoring and diagnosis. As a result, operational
efficiency is enhanced, downtime is reduced, and enhanced system uptime is observed. In
addition, the ability of this approach to fit various industrial applications indicates greater
prospects for enhancing predictive maintenance and improvement strategies in several
applications over time.

Future research could explore the integration of other machine learning methods
for anomaly detection techniques such as Autoencoders, Deep Belief Networks, deep
reinforcement learning, or Recurrent Neural Networks and incorporate them into real-
time data streams for continuous monitoring and adaptive fault detection in dynamic
industrial DT systems. Expanding the framework beyond pumps opens up exciting
avenues for research in a range of industries that rely on dynamic equipment such as
turbines, compressors, and other industrial processes. Furthermore, efforts could be
directed toward improving CGANs’ performances by fine-tuning the hyperparameters,
such as learning rates, batch sizes, and the architecture of the generator and discriminator.
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