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Abstract: Highly-effective non-halogenated flame retardants have received widespread attention
because they are environmentally friendly, with low toxicity and low smoke density. In this work,
interlayer-functionalized graphene (fRGO) containing silicon and phosphorus elements was synthe-
sized via hydrolytic condensation with 3-(methacryloyloxy)propyltrimethoxysilane and addition
reaction with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide. Interlayer spacing and oxygen-
containing groups of reduced graphene oxide (RGO) were regulated by controlling the hydrazine
hydrate dosage. Then, phosphorus–silicon-containing organic molecules were inserted into RGO
interlayers; this was verified by FTIR, XPS, TEM, etc. The fRGO was added to a polyacrylonitrile
(PAN) matrix using a solution blending method to prepare polyacrylonitrile (PAN) composites. The
fRGO addition caused the significant decrease in cyclization heat and the considerable increase in char
residues, indicating improved thermal stability. Importantly, PAN composites exhibited outstanding
flame-retardant properties, with the peak heat release rate reduced by 45%, which is ascribed to the
dense graphitic carbon layers induced by phosphorus–silicon-containing organics and the 2D barrier
effect of RGO layers to prevent the heat and mass transfer.

Keywords: interlayer-functionalized graphene; thermal stability; flame retardance; polyacrylonitrile

1. Introduction

Polyacrylonitrile (PAN) has features of strong resistance to weather and chemicals,
compression elasticity and good warmth, and thus has widespread applications in the
fields of textiles, construction and aerospace [1–3]. However, its flammability and ten-
dency to release toxic compounds pose significant challenges [4,5]. To enhance its flame
retardancy, flame retardants are incorporated into PAN through various processing tech-
niques, including copolymerization, solution blending, melt compounding and surface
modification [6–8]. Copolymerized flame-retardant PAN has excellent flame retardancy
performance and long-lasting effectiveness Typically, copolymerized fragments contain
halogens, phosphorus, or nitrogen, as well as chloroethylene, organic phosphate and
dopamine-methylacrylamide [7,9,10]. Of these, only halogen-containing copolymerized
PAN has been industrially scaled, despite the release of substantial toxic and corrosive
gasses during combustion [11,12]. Therefore, numerous studies focus on the fabrication of
the environmentally friendly alternatives, often utilizing the blending method due to its
simplicity, low cost and ease of industrial scaling [9,13,14]. The key issues with this method
lie in the design of highly -effective flame retardants and the compatibility between flame
retardant and PAN [2,14].

Interlayer functionalization of two-dimensional (2D) nanosheets provides broad ap-
plied potentials owing to their enhanced electrical conductivity, increased mechanical
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strength and new and improved functions [15,16]. Graphene oxide (GO) nanosheets are
one of the 2D materials capable of delaying the heat transfer between polymer matrix
interfaces and resisting the escape of pyrolysis products [17–22]. However, GO alone does
not achieve the required flame-retardant efficiency. Therefore, modifying GO with flame-
retardant components via reactions with oxygen-containing functional groups and C=C
bonds on GO’s surface improves its flame-retardant efficiency [17,23]. As reported, the heat
release rate (HRR) and mass loss rate (MLR) for the polymer can be significantly decreased
by the addition of modified GO and the morphology of modified GO plays a crucial role in
flame-retarding effects [19,23–28]. Layered structured modified GO exhibits an outstanding
flame-retardant efficiency, with the structure providing excellent flame retardancy [11,29]
and the modified flame-retardant components such as P- [27,30–32], Si- [33,34], B- [31,35],
or N-containing molecules [18,27] or other nanoparticles [35–41] contribute to a synergistic
flame-retarding effect. Thus, it is feasible to facilitate the flame-retardant properties of GO
by interlayer functionalization with flame-retardant components based on preserving the
layered structure [42].

Phosphorus—silicon synergistic flame-retardant components can enhance flame re-
tardancy by utilizing the benefits of both organophosphorus and organosilicon com-
pounds [43,44]. Phosphorus serves as a catalyst for carbon formation at high temperatures,
while the layered silica produced via oxidation decomposition of siloxanes prevents the
oxidation of the carbon layer. Dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO)
is an important organophosphorus flame retardant intermediate due to its unique molec-
ular structure and high flame-retardant efficiency. DOPO can generate derivatives by
reacting its P-H bonds with C=C, C=N and other compounds, showing low toxicity and
minimal smoke and toxic gas release during combustion, making it promising for use in
flame-retardant polymers [45].

In this paper, we describe an interlayer-functionalized graphene (fRGO) that was
created by inserting 3-(methylacryloxy) propyl trimethoxysilane (KH570) and DOPO into
reduced GO interlayers. The structure and components of fRGO are characterized by FTIR,
SEM, XRD, AFM, XPS, TG and Raman. The flame-retardant PAN composite was prepared
by introducing fRGO into PAN by a solution-blending method. The flame-retardant
properties of GO can be effectively improved by interlayer functionalization with multiple
flame-retardant elements (P and Si) based on preserving the layered structure, which
has an effective synergistic effect on PAN. The influence of functionalized RGO (fRGO)
on the thermal stability and flame retardance of PAN was investigated and potential
flame-retardant mechanisms were inferred by analyzing char residues of PAN composites
post-combustion.

2. Experimental Section
2.1. Materials and Chemicals

Analytically pure graphite powder, hydrazine hydrate, dimethylbenzene, 1,4-dioxane,
N,N-dimethylformamide (DMF), sodium nitrate and potassium permanganate, Dilute
hydrochloric acid with a purity of 10%, concentrated sulfuric acid with a purity of 98%
and hydrogen peroxide with a purity of 30% were obtained from Sinopharm Group Chem-
ical Reagent Co., Ltd. (Shanghai, China). 3-(methylacryloxy) propyl trimethoxysilane
(KH570, 97%) and 9,10-Dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO, 97%)
were purchased from Shanghai McLean Reagent Co., Ltd. (Shanghai, China). Chemically
pure polyacrylonitrile (PAN, average Mw 250,000) was purchased from Meryer (Shanghai)
Biochemical Technology Co., Ltd. (Shanghai, China).

2.2. Synthesis of Interlayer-Functionalized Graphene (fRGO)

Figure 1 demonstrates the fabrication of interlayer-functionalized graphene with phos-
phorus and silicon elements, including the partial reduction of graphene oxide to prepare
multilayer graphene nanosheets by regulating the hydrazine hydrate dosage, interlayer
functionalization with KH570 molecule by hydrolytic condensation and subsequent ad-
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dition reaction with DOPO molecule. The hydroxyl groups at one end of the KH570
hydrolysis product molecule undergo dehydration condensation with hydroxyl groups
of RGO nanosheet, and then the C=C on the KH570 at the other end react with the P-H of
DOPO via an addition reaction, thus achieving the interlayer modification of RGO. Specific
operations are as follows:
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Figure 1. Schematic diagram of the fabrication of interlayer-functionalized graphene.

Graphene oxide was prepared by the commercial graphite powder via the modified
Hummers method. Hydrazine hydrate (10 µL) was added to 200 mL GO dispersion
(2 mg/mL) under sonication for 5 min. The reduction reaction was executed at 100 ◦C
and mechanical stirring took place for 12 h. The resultant reduced graphene oxide (RGO)
dispersion was then washed and centrifuged three times to prepare RGO-1. Analogously,
RGO-2 was obtained using 200 µL hydrazine hydrate).

Next, 0.3 g RGO-1 was homo-dispersed in 250 mL xylene by sonication for 60 min.
Then, KH570 (6 g) was added dropwise and sonicated for another 60 min. Then, the mixture
was held at 110 ◦C for 12 h under a nitrogen atmosphere. The silicone-modified RGO was
obtained by centrifugal separation and washed with xylene three times and then dispersed
in 1,4-dioxane (200 mL) by the solvent exchange method. DOPO (0.5 mol) was added into
the above dispersion, and the reaction was then carried out at 80 ◦C for 12 h. Afterward,
the resultant mixture was washed using 1,4-dioxane and dried overnight to obtain fRGO-1.
Similarly, fRGO-2 was prepared by replacing RGO-1 with RGO-2.

2.3. Preparation of fRGOPAN Composite

PAN (3 g) was dissolved in DMF (30 mL) under stirring in an 80 ◦C water bath. Then,
fRGO (0.34 g) was added, and the mixture was sonicated for 3 h at room temperature.
Subsequently, the resulting mixture was poured into a plastic mold and dried in the oven in
60 ◦C. For comparison, PAN and RGO/PAN composite were prepared by the same method.

2.4. Characterization

The morphologies and structures of the sample were characterized by transmission
electron microscopy (TEM, JEM-2100 (HR), JEOL, Akishima-shi, Showima City, Tokyo,
Japan) and a scanning electron microscope (SEM, su1510, Hitachi, Tokyo, Japan). The
surface morphology and thickness of the sample were characterized by Atomic Force
Microscopy (AFM, Dimension ICON, Bruker, Karlsruhe, Germany). The crystal structure
was analyzed by X-ray diffraction (XRD, D2 PHASER, Bruker AXS, Karlsruhe, Germany)
measurements with a scanning speed of 5◦/min and range of 5◦ to 65◦ under a nitrogen
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atmosphere. The full width at half maximum (FWHM) of the XRD peaks was analyzed
by Gaussian fitting via origin, and the interlayer spacing (d-spacing) of the samples was
calculated by Bragg’s equation (D = λ

2sin θ ), where λ = 1.54 Å (Cu tube) and θ is the angle
between the incident X-ray and the corresponding crystal plane. The chemical structure
was tested by Fourier Transform Infrared Spectroscopy (FTIR, Nicolet is10, Thermo Fisher
Scientific Co., Ltd., Waltham, MA, USA). Raman Spectroscopy (SPEX-1403, SPEX, Metuchen,
NJ, USA) was tested with a scanning range of 500–2000 cm−1 and excitation provided
in backscattering geometry by a 514.5 nm argon laser line. The Raman results were
analyzed with the Gauss model using the origin and the integral intensity of the peak was
calculated. X-ray Photoelectron Spectroscopy (XPS, ESCALB MK-II, VG Scientific, East
Grinstead, West Sussex, UK.) was used to analyses the Elements. The thermal stability
of samples was obtained by differential scanning calorimetry (DSC, TA-Q200, TA, New
Castle, DE, USA.) with a temperature range of 20 ◦C to 350 ◦C at a rate of 10 ◦C/min under
a nitrogen atmosphere. The thermal decomposition behavior of the samples was tested by
a thermogravimetric analyzer (TG, Q5000, TA, New Castle, DE, USA) with a heating rate of
20 ◦C/min under an air atmosphere. The samples’ flame-retardant properties were tested
by a microscale combustion calorimeter (MCC, Govmark, Farmingdale, NY, USA), and the
heat release rate (HRR), peak of heat release rate (PHRR), heat release capacity (HRC), total
heat release (THR) and temperature at maximum heat release rate (Tmax) were calculated.

3. Results and Discussion
3.1. Characterization of fRGO

Figure 2 shows the XRD patterns of GO, RGO-1, RGO-2, fRGO-1 and fRGO-2 and
the corresponding FWHM and d-spacing are displayed in Table 1. GO exhibits a sharp
diffraction peak at 2θ = 11.4◦ with a FWHM of 2.6◦, ascribed to the (002) plane of GO.
However, the (002) peaks for both RGO-1 and RGO-2 shift to 13.5◦ and 25.0◦, with FWHM
values of 4.4◦ and 7.1◦, respectively. This is because partial reduction of GO occurs with a
10 µL dosage of hydrazine hydrate, and much more reduction occurs with a 200 µL dosage.
The interlayer spacing decreases from 0.78 nm to 0.66 nm and 0.36 nm, demonstrating
that the interlayer spacing of multilayer RGO nanosheets can be adjusted by the dosage
of hydrazine hydrate. Compared to RGO-1, the new peak at 8.9◦ of fRGO-1 indicates the
significantly increased interlayer spacing of the (002) plane from 0.65 nm to 1.00 nm, which
is attributed to the grafted insertion of phosphorus–silicon-containing organic molecules
between RGO-1 layers. Moreover, the peak shift from 13.5◦ to 21.6◦, which is attributed to
oxygen-containing functional groups in RGO-1, is partially reduced, resulting in a decrease
in the interlayer spacing. In contrast to RGO-2, the (002) peak of fRGO-2 mildly shifts from
25.0◦ to 23.8◦ due to a little grafted insertion of phosphorus–silicon-containing organics
between RGO-2 layers with the smaller interlay spacing. RGO-2 shows less pronounced
peak shifts after functionalization compared to RGO-1, which is attributed to a more
significant reduction of RGO-2. There are scarce oxygen-containing groups between its
layers that can react with the phosphorus–silicon-containing organic molecules and the
interlayer spacing is rather narrow, which is not conducive to the interlayer modification.

As shown in Figure 3, RGO-1, RGO-2, fRGO-1 and fRGO-2 all have two strong peaks
at 1348 and 1590 cm−1, corresponding to the D and G bands of graphene, respectively.
The G band is principally related to the in-plane bond stretching of sp2 C atoms, while
the D band is ascribed to defects or lattice distortion. The intensity ratio of D and G band
(ID/IG) reflects the graphitic degree. Compared with the ID/IG (1.29) value of RGO-1, the
ID/IG (1.07) value of RGO-2 is smaller, which proves that RGO-2 is better reduced. And
fRGO-1 and fRGO-2 have a slightly lower ID/IG values of 1.23 and 1.02 than RGO-1 and
RGO-2, respectively.- The result is a combination of the partial restoration of graphitic
structure at high temperature during interlayer modification [46,47] and the presence of
grafted functional groups at the edges or on the surface of RGO, with the former enhancing
structure and the latter potentially causing more defects. The restoration of the graphitic
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structure is the more significant factor, leading to an increased graphitic degree in fRGO-1
and fRGO-2 after functionalization.
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Figure 2. XRD patterns of GO, RGO-1, RGO-2, fRGO-1 and fRGO-2.

Table 1. FWHM and d-spacing of GO, RGO-1, RGO-2, fRGO-1 and fRGO-2.

Sample 2θ (◦) FWHM (◦) d-Spacing (nm)

GO 11.4 2.6 0.78
RGO-1 13.5 4.4 0.66

42.7 1.8 0.21
RGO-2 25.0 7.1 0.36

43.1 2.4 0.21
fRGO-1 8.9 3 1.00

21.6 6 0.41
43.1 2.3 0.21

fRGO-2 23.8 9.8 0.37
43.3 1.9 0.21
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Figure 4 shows the FTIR spectra of RGO-1, RGO-2, fRGO-1 and fRGO-2. RGO-1
exhibits the characteristic absorption peaks of oxygen-containing functional groups at
3380, 1713, 1210 and 1021 cm−1, corresponding to the stretching vibrations of -OH, C=O,
C-O-C and C-OH, respectively. Compared with RGO-1, the hydroxyl peak at 3380 cm−1

disappears in the spectrum of fRGO-1, and the broad peak at 1022 cm−1 derived from the
stretching vibration of Si-O-C significantly increases, which is attributed to the hydrolytic
condensation between RGO-1 and KH570. Moreover, the characteristic infrared peak
of DOPO exists at 751 cm−1, indicating the grafting of DOPO onto graphene. There
are only faint peaks observed at 1250 cm−1, 1590 cm−1 and 2000–2250 cm−1 in RGO-2
(Figure S1), because RGO-2 is reduced by the excess hydrazine hydrate, leading to the
restoration of its graphitic structure with minimal presence of other functional groups and
enhanced absorption properties in the infrared range. The FTIR spectra of fRGO-2 display
a more pronounced infrared peak compared to RGO-2, suggesting that a number of organic
molecules have been chemically attached to RGO-2. However, the infrared peaks are not
clearly defined because of the surface functionalization of RGO-2, which does not impact
the graphene nanosheets, resulting in the overlapping of strong absorption [48].
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XPS was used to study the elementary composition and chemical status of fRGO-1
and fRGO-2 samples. As shown in Figure 5, five characteristic peaks centered at 532.2 eV,
286.0 eV, 153.4 eV, 133.9 eV and 102.0 eV exist in the XPS spectra of fRGO-1 and fRGO-2,
corresponding to O, C, Si2s, P2p and Si2p, respectively. Table 2 clearly lists the atomic ratios
of C, O, Si and P elements. The C/O atomic ratio of fRGO-2 reaches up to 4.77 and greatly
exceeds the C/O ratio of fRGO-1 (2.60) due to a higher graphitic degree of fRGO-2. The
silicon content of fRGO-1 (3.77%) is slightly higher than that of fRGO-2 (3.39%), which is
ascribed to more oxygen-containing groups of RGO-1 inducing the hydrolytic condensation
of siloxane. However, the phosphorus content of fRGO-1 is 1.21%, which is slightly lower
than that of fRGO-2 (1.37%). The abnormal result is possibly attributed to a greater insertion
reaction of DOPO molecules into RGO-1 interlayers, but more DOPO molecules are grafted
onto the RGO-2 surface.

Figure 6 shows the high-resolution spectra of C1s, Si 2p and P 2p for the fRGO-1 and
fRGO-2 samples. As shown in Figure 6A-1, the characteristic peaks at 288.8 eV, 286.6 eV
and 284.7 eV in the C1s spectra of fRGO-1 and fRGO-2 are ascribed to C-O, C=O and C-C
bonds, respectively. Moreover, the relative peak intensities of C-O/C=O and C-C of fRGO-2
are obviously weaker than those of fRGO-1, indicating a higher graphitic degree of RGO-2.
The peak at 102.3 eV in Si 2p spectra and the peaks at 133.7 eV and 132.9 eV in the P 2p
spectrum correspond to O-Si-C, O-P=O and P-C, respectively.
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Table 2. Elemental atomic ratios of fRGO-1 and fRGO-2.

Sample C (at %) O (at %) Si (at %) P (at %)

fRGO-1 68.60 26.42 3.77 1.21
fRGO-2 78.74 16.51 3.39 1.37
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Figure 7 shows the morphologies of RGO-1, RGO-2, fRGO-1 and fRGO-2. RGO-1 has a
smooth surface with minimal wrinkles and a four-layer structure, while RGO-2 shows more
prominent wrinkles and layers, attributed to the reduction of oxygen-containing groups by
excess hydrazine hydrate, leading to smaller interlayer spacing and agglomeration. After
the hydrolysis of organosiloxane and subsequent condensation with DOPO, the fRGO-1
surface becomes rougher, opaquer and thicker, and has more obvious wrinkles, because
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P-Si-containing organic molecules are grafted into RGO-1 interlayers and onto surfaces,
and RGO-1 is further reduced during thermal reaction. Compared to fRGO-1, fRGO-2
becomes rougher and opaquer because smaller interlayer spacing causes more surface
grafting rather than interlayer functionalization.
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Figure 7. TEM images of (A-1,A-2) RGO-1, (B-1,B-2) RGO-2, (C) fRGO-1 and (D) fRGO-2.

Figure 8A,B depict the SEM images of fRGO-1 and fRGO-2 powders. fRGO-1 shows
the regularly stacked nanosheets while fRGO-2 exhibits the disorderly stacked nanosheets.
This is possibly because more hydrolytic condensation products between the fRGO-1
interlayers maintain the stacked nanosheets, and more hydrolytic condensation products
grafted onto fRGO-2 surface destroy the regular stacked structure. AFM was employed
to further characterize the thickness of fRGO-1 nanosheets in Figure 8C-1,C-2. fRGO-1
exhibits a typical sheet structure of a few hundred nanometers in width. In addition, its
thickness is approximately 5 nm and exceeds that of RGO-1 (as shown in Figure 7A-1),
indicating the insertion of P-Si-containing organic molecules into RGO-1 interlayers.

Figure 9 shows the TG and DTG curves of RGO-1, RGO-2, fRGO-1 and fRGO-2.
RGO-1 exhibits strong peaks of mass loss at 64.4, 211.9 and 592.7 ◦C, corresponding to the
volatilization of absorbed water, the evaporation of bound water and the RGO-1 oxidation,
respectively. RGO-2 shows the peaks of mass loss at 388.7 and 562.6 ◦C, indicating the
volatilization of a small number of oxygen-containing functional groups on the surface and
acting as an indicator of RGO-2 oxidation. The oxidation peak of RGO-2 is significantly
lower than that of RGO-1, indicating that RGO-2 underwent a more effective reduction
process and possesses a well-defined graphitic structure. fRGO-1 and fRGO-2 exhibit
significant weight loss peaks at 397.3 and 412.9 ◦C, which are attributed to the thermal
degradation of P-Si-containing organic molecules grafted onto RGO-1 and RGO-2. In
addition, fRGO-1 and fRGO-2 have the temperatures of the maximum mass loss rates
at 678.7 and 733.2 ◦C, respectively, corresponding to the thermal oxidation. Moreover,
the maximum mass loss rate of 0.22 wt%/◦C of fRGO-1 is clearly lower than that of
0.48 wt%/◦C of fRGO-2, respectively, because interlayer functionalization restrains the
pyrolytic behavior of P-N-containing organic molecules between fRGO-1 layers to achieve
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better thermal stability. Additionally, RGO-1 has almost no char residue, while the char
residues of fRGO-1 significantly increase and reach up to 21.16 wt%. The higher char
residues of fRGO-1 indicate its better thermal stability, ascribed to the insertion of P-N-
containing organic molecules between RGO-1 interlayers.
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Based on the above analysis, it can be seen that the reduction degree of GO can be
controlled by controlling the dosage of hydrazine hydrate, thereby impacting the oxygen-
containing functional groups, layer number, layer spacing and graphitization of RGO,
which in turn affects the subsequent functionalization. RGO-1 is preferred for modifying
the interlayer function, whereas RGO-2 is predominantly modified on the surface. And
TG analysis shows the superior thermal stability of the fRGO-1 interlayer functionalized
with phosphorus and silicon elements. Therefore, fRGO-1 was subsequently used in the
preparation of fRGO/PAN composite.
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3.2. Thermal Stability of fRGO-1/PAN Composites

As shown in Figure 10, PAN exhibits a distinct exothermic peak at 296 ◦C with a
high peak value of 7.4 W/g because the cyclization reaction of the PAN cyanogroup
occurs and a lot of heat is released as a result. However, the exothermic peaks of RGO-
1/PAN and fRGO-1/PAN composites located at 293 ◦C and 288 ◦C decrease to 5.5 W/g
and 4.3 W/g, respectively, indicating that the addition of RGO-1 and fRGO-1 into PAN
matrix contributes to the insulating effect and slows down the heat release. Moreover,
RGO-1/PAN composite exhibits an endothermic peak at 200 ◦C, which is attributed to
the thermal reduction of oxygen-containing groups on RGO-1. And the fRGO-1/PAN
composite shows an endothermic peak at 240 ◦C, corresponding to the heat absorption
of phosphorus–silicon-containing organic molecules between RGO-1 interlayers for the
following breakage of molecular chains.
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Figure 10. DSC curves of pure PAN, RGO-1/PAN and fRGO-1/PAN composites.

Figure 11 shows the TG and DTG curves of PAN, RGO-1/PAN and fRGO-1/PAN
composites under air atmospheres. PAN, RGO-1/PAN and fRGO-1/PAN composites
exhibit a prominent peak around 700 ◦C, which is attributed to the oxidation of carbon
residues above 600 ◦C. Another strong peak appears between 300 and 600 ◦C due to the cy-
clization of cyanogroups of PAN molecules. Table 3 shows that the thermal decomposition
temperatures at 5 wt% and 10 wt% weight loss are significantly reduced after the addition
of RGO-1 and fRGO-1 into the PAN, and adding fRGO-1/PAN composites results in a more
pronounced decrease. Moreover, char residues at 800 ◦C increase from 27.9 wt% to 29.9 wt%
and 34.3 wt% when RGO-1 and fRGO-1 are added into the PAN matrix, respectively. This is
because the phosphorus–silicon-containing organic molecules grafted onto RGO-1 degrade
prior to the PAN pyrolysis and facilitate the dehydrated carbonization to prevent the escape
of pyrolysis products.

Figure 12 shows the HRR curve of pure PAN exhibits two peaks of heat release rate at
345 and 440 ◦C, and its peak heat release heat (PHRR) reaches up to 129.9 W/g. However,
Table 4 shows the PHRR value of fRGO-1/PAN composites decreases significantly to
71.4 W·g−1, corresponding to a 45% reduction compared with pure PAN. Unfortunately,
the THR values of pure PAN and fRGO-1/PAN composites are very close. Heat release
capacity (HRC) is an important index used to evaluate the flammability of a material. In
contrast to pure PAN, the smaller HRC value of fRGO-1/PAN composites indicates its
lower potential combustion heat, which indicates a higher level of fire safety.
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Figure 11. TG (A) and DTG (B) curves of PAN, RGO-1/PAN and fRGO-1/PAN composites under
air atmospheres.

Table 3. TG and DTG data of PAN, RGO-1/PAN and fRGO-1/PAN composites.

Sample
The Temperatures at
the Weight Loss of

5 wt% (◦C)

The Temperatures at
the Weight Loss of

10 wt% (◦C)
Char Residues at 800 ◦C (%)

PAN 263 319 27.9
RGO-1/PAN 221 314 29.9
fRGO-1/PAN 205 267 34.3
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Figure 12. (A) HRR and (B) THR curves of pure PAN and fRGO-1/PAN composites.

Table 4. Relevant data of pure PAN and fRGO-1/PAN composites derived from MCC.

Sample HRC (J·g−1·K) PHRR (W·g−1) THR (KJ·g−1) Tmax (◦C)

PAN 142 129.9 18.4 345
fRGO-1/PAN 101 71.4 18.7 312

3.3. Flame-Retardant Mechanism of fRGO-1/PAN Composites

SEM was used to observe the morphology of the char residues after the combustion of
pure PAN and fRGO-1/PAN composites. As shown in Figure 13, the external char residues
of pure PAN have many large pores, resulting in poor barrier action against thermal activity
and smoke. In contrast, the external char residues of fRGO-1/PAN composites show a
relatively denser appearance, effectively preventing the transfer of combustible heat and
pyrolysis gasses.
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Figure 13. SEM images of char residues after combustion of pure PAN and fRGO-1/PAN composites.

Figure 14 shows that the IG/ID values of the char residues of RGO-1/PAN and fRGO-
1/PAN composites are 0.273 and 0.285, respectively; these values are obviously larger
than that of PAN (0.198). This indicates that the graphitic degrees of char residues of
PAN composites are enhanced when RGO-1 and fRGO-1 are added to the PAN matrix.
The higher graphitic degree is conducive to blocking heat and mass transfer. Therefore,
according to the above results, the possible flame-retardant mechanism of fRGO-1/PAN
is that the RGO acts as a barrier to restrain the volatilization of flammable gasses and
exchange of heat during combustion. Meanwhile the organic phosphorus and silicone
molecules grafted onto RGO interlayers promote catalytic carbonization during combustion,
effectively forming a dense char layer to block heat and mass transfer.
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4. Conclusions

This study successfully synthesizes functionalized reduced graphene oxide (fRGO)
with phosphorus and silicon-containing organic molecules to enhance the flame retardancy
of polyacrylonitrile (PAN) through molecular design. The reduction degree of GO can be
controlled by the dosage of hydrazine hydrate, thereby impacting the oxygen-containing
functional groups, layer number, layer spacing and graphitization of RGO, which in turn
affects the subsequent functionalization. RGO-1 is preferred for modifying the interlayer
function, whereas RGO-2 is predominantly modified on the surface. And TG analysis
shows the superior thermal stability of fRGO-1 interlayer functionalized with phosphorus
and silicon elements. The addition of fRGO-1 in PAN notably increases char residue from
27.9 wt% to 34.3 wt% at 800 ◦C, underscoring its effectiveness in substrate protection
during combustion. Further, the integration of fRGO-1 in PAN leads to a marked reduction
in the peak heat release rate and heat release capacity by 45% and 28.9%, respectively,
demonstrating the composite’s strong flame-retardant properties. Analysis reveals that
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fRGO-1 fosters the formation of a dense graphitic carbon layer, which acts as a barrier to
flammable gas and heat transfer, enhancing flame retardancy. Overall, this innovative flame
retardant offers substantial promise for improving flame-retardant efficiency by leveraging
a synergistic effect between 2D nanosheets and multiple flame-retardant components.
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