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Abstract: Deep eutectic solvents (DESs) have attracted much attention as sustainable electrolytes
for redox flow batteries. Despite the tremendous advantages of DES-based electrolytes, their high
viscosity property has a negative effect on their mass transfer, limiting current density and power
density. The ultrasonic effect has been demonstrated as an efficient strategy to improve mass transfer
characteristics. Incorporating ultrasonic waves into a deep eutectic solvent (DES) electrolyte enhances
the mobility of redox-active ions, thereby accelerating the reaction dynamics of the Fe(III)/Fe(II)
redox pair. This enhancement makes it suitable for use in non-aqueous electrolyte-based redox flow
batteries. However, it is necessary to consider the loss of ultrasonic on the internal structure of the
battery, as well as the loss of battery component materials and ultrasonic energy consumption in
practical applications. Moreover, the continuous extension of the duration of ultrasonic action not only
hardly leads to a more significant improvement of the battery performance, but is also detrimental to
the energy and economic savings. Herein, intermittent ultrasound is used to overcome the quality
transfer problem and reduce the operating cost. Good electrochemical performance enhancement
is maintained with a roughly 50% reduction in energy consumption values. The mechanism as
well as the visualization of the pulsed ultrasonic field on each half cell has been envisaged through
fundamental characterization. Finally, the feasibility of interrupted ultrasonic activation applied
to Fe/V RFB using DES electrolytes has been demonstrated, demonstrating similar behavior with
continuous ultrasonic operation. Therefore, the interrupted ultrasonic field has been found to be a
more effective operation mode in terms of energy cost, avoiding alternative undesirable effects like
overheating or corrosion of materials.

Keywords: redox flow batteries; deep eutectic solvent; electrochemical performance; sonocatalysis;
interrupted operation mode

1. Introduction

The increasing demand for clean and renewable energy at the global level has stimu-
lated the deployment of a wide number of technologies for low-cost and efficient energy
storage systems [1]. Among them, redox flow batteries (RFBs) are the most promising and
appealing solution within the research and industrial communities due to their unique
features [2,3]. The main advantage of RFBs is the decoupled energy and power values,
gaining attention in comparison with lithium-ion technology. Additionally, store/release
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energy processes are effectively conducted in RFBs by a simple and fast electron transfer
process as a redox reaction without involving any physical changes. These unique features
make RFBs the most suitable solution to solve the intermittency problem of renewable
energy [4,5]. In this fashion, many technologies have been demonstrated and commer-
cialized using vanadium, iron or organic molecules as electroactive species dissolved in
aqueous solvents [6]. In recent years, many discoveries have been made about aqueous
flow batteries, such as Ni-Zn batteries [7]. However, aqueous RFBs are impeded by the
narrow operational electrochemical window (i.e., 1.23 V under standard conditions) to
avoid the water splitting and the concomitant low-energy-density values [8]. By contrast,
non-aqueous RFBs (NARFBs) have emerged as an alternative approach to achieve greater
energy density by widening the operational electrochemical window (up to 2.2 V). Further-
more, the higher operational voltage range provides additional advantages in the design
of the stack since lower cells are needed to achieve the voltage output value, making the
reactor more compact and reducing the cost of the battery. Among the electrolytes used for
NARFBs, organic solvents or ionic liquid are mainly used. However, the organic solvents
suffer from high toxicity as the ionic liquids provide limited stability [9,10].

In this big picture, deep eutectic solvents (DESs) are the preferable alternative for
their excellent features, such as easy preparation from inexpensive compounds, ecofriendly,
non-flammable and biodegradable. This new type of green solvent may provide a real
and promising alternative for the deployment of RFBs facing problems related to sustain-
ability and the high price of the traditional aqueous RFBs. Such an outstanding solvent
exhibits high viscosity with unsatisfactory ionic conductivity, which is critical for battery
applications [11,12]. To overcome this problem, the current state of the art shows several
strategies, such as new formulations of electrolytes containing additives. In 2018, Cao et al.
investigated the effect of additives on the performance of vanadium redox flow battery
electrolytes [13]. Zeng et al. found that the addition of SO2 as an additive can effectively
decrease the viscosity of the ionic liquid [14]. Particularly, a higher content of SO2 in the
electrolyte provokes a sharp reduction in viscosity values.

Furthermore, Xu et al. studied the temperature effect on the performance of DES-based
Fe/V RFBs, leading to the conclusion that higher temperatures have a positive effect on the
overpotentials of both positive and negative reactions [15,16]. More importantly, as the tem-
perature increases from 25 ◦C to 55 ◦C, the viscosity values of both electrolytes dramatically
decrease, leading to a significant reduction in the pumping consumption from 138 mW
to 22 mW, respectively. Alternatively, sophisticated strategies have been demonstrated
using magnetic or ultrasound fields [17]. For instance, Cheng et al. demonstrated that the
viscosity of the DES electrolyte can be decreased under the effect of the magnetic field [18].
Particularly, the peak current density associated with the anodic and cathodic processes
can be increased by 41.56% and 30.74%, respectively, as the intensity of the magnetic field
increases. Another important strategy to improve the viscosity values and mass transfer
processes is the application of an ultrasonic field [19].

In fact, the current state of the art contains many examples for the demonstration of
the benefits of the electrochemical reaction in terms of mass transport under the ultrasonic
action (so-called sonoelectrochemistry). Ultrasonic waves exert a significant influence
on the forces that hold molecules together within an electrolyte. The phenomenon of
cavitation, which is induced by ultrasound, can weaken the inter-particle forces, leading to
the disintegration of particle clusters. Furthermore, ultrasonic energy can disrupt hydrogen
bonding within aqueous solutions. As these binding forces are broken, the aggregated
particles are released from each other, resulting in a uniform distribution of ultrafine
particles throughout the dispersing medium.

However, the application of ultrasonic to the RFBs above had been barely explored. In
this regard, previous investigations in our group showed the synergy effect between the
application of magnetic and ultrasonic fields to the DES-based Fe/V RFBs [20]. Indeed,
an increase of 37.1% in the performance of RFBs was achieved using the combination of
both physical fields, while an increase of 8.6% and 20.8% in the performance was obtained
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when the magnetic or the ultrasonic field was applied alone, respectively. Because of the
high influence of the ultrasonic field on the enhanced performance, we explored its effect
as a unique activator of the mass transfer process on RFBs [21]. Herein, the positive effect
of the field applied followed a downward trend for the viscosity values and the opposite
for the ionic conductivity. The variation in these features affects the ohmic resistance as
well as the electron transfer processes, facilitating the redox reaction. To exemplify this
effect, the anodic and cathodic peak current densities increase by 19.02% and 18.57%,
respectively, when the power applied for the ultrasonic field is used at 0.11 W·cm−2 for the
Fe-based electrolyte at 25 ◦C in the DES. The same trend can be observed with the electrolyte
resistance and the electron transfer resistance values. Both values experience a sudden
descent for the application of ultrasonic action. Particularly, the electrolyte resistance
decreases from 96.75 ohm to 58.28 ohm when the power of the ultrasonic field increases
from 0 to 0.28 W·cm−2. More importantly, the electron transfer resistance drops from
51.21 ohm to 29.19 ohm in the absence and presence of an ultrasonic field (0.28 W·cm−2)
at 25 ◦C, respectively. This work takes advantage of these positive results, exploring
the feasibility of the sonoactivation implementation in DES-based RFBs to face the high
viscosity and mass transfer issues. Certainly, this strategy has been applied in other fields,
achieving excellent results [22–26].

Another important factor is that the ultrasonic is an energy consuming process. To
overcome this issue, an interrupted mode strategy is used to take advantage of the benefits
from sonoelectrochemistry, allowing the process to become more energy-efficient. Particu-
larly, the correlation of the electrochemistry activity of the Fe and V redox couples and the
duration of the ultrasonic pulse is investigated, providing enhanced performance in the
Fe/V RFBs using the DES.

The electrode reaction equations and potentials of the Fe/V RFB are shown below.

Fe3+ + e− ↔ Fe2+ E0
Fe,298K = 0.769V

V3+ + e− ↔ V2+ E0
V,298K = −0.260V

Fe2+ + V3+ ↔ V2+ + Fe3+ E0
298K = 1.029V

2. Experimental
2.1. Preparation of Electrolyte

The deep eutectic solvent (DES) was prepared from choline chloride and ethylene
glycol by adjusting the 1:2 molar ratio. The mixture was heated at 40 ◦C with continuous
stirring until a homogenous colorless liquid was formed. Once room temperature was
reached, the electrolytes were prepared by a complete solution of the redox-active materials
(0.1 M anhydrous VCl3 or 0.1 M FeCl3) in the DES solvent and used for fundamental
electrochemical characterization or RFB testing. (The VCl3 and FeCl3 were bought from
Beijing Vokai® Co., Ltd., Beijing, China).

2.2. Fundamental Electrochemical Measurement

Cyclic voltammetry techniques were used as a fundamental testing technique for the
visualization and understanding of the interrupted ultrasonic effect. For that purpose, a
thermostated three-electrode cell immersed in an ultrasonic bath was used. A 0.196 cm2

geometric area of a glassy carbon electrode and a platinum electrode was used as the work-
ing electrode and the counter electrode, respectively, while a saturated calomel electrode
was used as the reference electrode. The glassy carbon was polished before each exper-
imental measurement using 0.2 mm aluminum powder and then rinsed with deionized
water. Herein, the pulse duration of the ultrasonic effect is optimized by applying two
sequential ultrasonic on (pulse time) and off (resting time) cycles and measuring the current
intensity response as a function of the potential applied. Each cycle is composed of the
following steps:

(1) Pulse time, Tp: defined by the duration time for the application of the ultrasonic waves.
(2) Resting time, Tr: defined as the interval of time in the absence of the ultrasonic effect.
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After each Tp or Tr, the cyclic voltammetry was collected at several temperatures
between the potential range from −0.5 to 1.4 V for the vanadium-based DES electrolyte
and from −0.35 to 0.85 V for the Fe-based DES electrolyte at 50 mV/s of scan rate. In all
experiments, the temperature was controlled and monitored with a digital thermometer.

2.3. Redox Flow Battery Set Up

The real application of the ultrasonic in a flow battery was studied using a filter-press
reactor connected with two reservoirs to store the anolyte and catholyte electrolytes (0.1 M
concentration of redox active species was used in a volume of 50 mL of the DES- based
electrolyte). Both electrolytes were continuously flowing through the filter-press reactor at
20 mL/min as a flow rate in order to produce the electrochemical reaction. Figure 1 shows a
schematic representation of the filter-press cell containing the graphite plates with hydraulic
fields as the current collector and graphite felt electrodes (GFA series, SGL®, Nuremberg,
Germany) separated by a Nafion 212 membrane (DuPont®, Wilmington, DE, USA). The
geometrical area of the electrode membrane sandwich was 1 cm2. The membrane was
previously washed in warm water and later pretreated in 5 wt.% H2O2 aqueous solution,
warm water and 0.5 M H2SO4. Subsequently, the membrane was soaked in the electrolyte
overnight. The RFBs were immersed in a temperature-controlled ultrasonic bath, and the
two electrolytes were temperature-controlled.
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Figure 1. Schematic view of redox flow battery.

Preprocess the graphite felt. Before the experiment, several square graphite felts with
sizes of 1 cm × 1 cm are cut and soaked in the DES for a period of time.

The actual experimental setup is shown in Figure 2.
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3. Results and Discussion
3.1. Individual Study of the Effect of Interrupted Ultrasonic Activation on the Electrolytes

The application of an ultrasonic physical field significantly improves the electrochem-
ical properties of the Fe(III)/Fe(II) and V(III)/V(II) redox couple (as shown in Figure 3).
Considering the cost and the problem of electrolyte overheating, we studied the effect of
the intermittent ultrasonic application strategy on the performance of a Fe/V flow redox
battery. To closely observe the influence of the ultrasonic-mediated activation and visual-
ize the acoustic interrupted cavitation effect over the solid (electrode)/liquid (electrolyte)
interface, we conducted a fundamental study on the individual compartments. To this
aim, we examined the cyclic voltammetry (CV) after employing two ultrasonic pulses
(Tp1 or Tp2: ultrasonic ON) and a resting period (Tr: ultrasonic OFF) between both pulses.
Electrochemical parameters have been collected from the CVs as key criteria for evaluating
the electrochemical effect of the ultrasonic-mediated process [21]. Particularly, the peak
current density (Ip) and peak potential values (Ep) for both processes, oxidation (a, anodic)
and reduction (c, cathodic), as well as the related anodic/cathodic peak currents (Ipa/Ipc)
and peak-to-peak separation (∆Ep) have been used as key indicators of the performance.

The redox potentials and peak separation values for both the Fe and V systems are
shown below (Table 1).

Table 1. The redox potentials and peak separation values for both the Fe and V systems.

Potential vs. SCE in DES (V). Reduction Potential Oxidation Potential Peak Separation Values

Fe2+ and Fe3+ ions 0.170 0.383 0.213
1.937

V2+ and V3+ ions −0.610 −0.355 0.255
3.353
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from −0.5 to 1.4 V for the vanadium-based DES electrolyte at 50 mV/s of scan rate.

Figure 4 illustrates the evolution of the peak current density in the oxidation (Ipa) and
reduction (Ipc) processes for the redox reaction of each compartment (Fe and V as redox
species) in the ultrasonic pulses (Tp1 and Tp2) and resting period (Tr). In addition, the
electrolyte temperature dependence was evaluated to mitigate the thermal effect of the
so-called “hot spots” (i.e., severe temperatures caused by the concentrated energy within
the bubble collapse process).

The first observation extracted from the comparison of both half-cells in Figure 4 is a
similar general trend in the Ipa and Ipc along the interrupted ultrasonic application process.
Both redox processes exhibit significantly better performance when the time duration Tp1
increases (presence of ultrasonic waves) as shown by the increase in the peak current
density (Ipa and Ipc) up to a steady state. Note that this effect has been demonstrated in
previous works in our laboratories, showing that the ultrasonic activation can effectively
improve the Fe(III)/Fe(II) and V(III)/V(II) redox couple.

After stabilization and removing the ultrasonic field (Tr: ultrasonic OFF), the electro-
chemical performance drops as Tr increases until the initial performance is totally recovered
(i.e., Tp1 for time = 0). Surprisingly, the following pulse applied (Tp2) requires a significantly
shorter time to achieve the steady state in comparison with the first pulse (Tp1), leading
to a similar current density enhancement. Particularly, the behavior at 25 ◦C (orange
curve in Figure 4) shows that the steady state peak current density values achieved for
Tp1 in the Fe and V half-cells attain values up to 2.25 (Ipa)/−2.35 mA·cm−2 (Ipc) and 0.98
(Ipa)/−1.16 (Ipc) mA·cm−2, respectively. Those values are also quite similar for the Tp2:
2.31 (Ipa)/−2.39 (Ipc) mA·cm−2 for the Fe half-cell and 0.94 (Ipa)/−1.13 (Ipc) for the V half-
cell. Notably, Tp1 differs widely in comparison with Tp2 for both half-cells. For instance, Tp1
for the Fe half-cell requires 9 min for stabilization, being considerably higher than the 5 min
for the second pulse (Tp2). Similarly, the V half-cell demands 12 min for Tp1 and 9 min for
Tp2. Remarkably, the time for recovering the original performance between both pulses (Tr)
is 9 min for Fe and 12 min for the V half-cell, suggesting that the ultrasonic effect persists
up to that time. These observations agree well with our initial strategy, as the application of
interrupted ultrasonic-mediated activation has been experimentally shown to be efficient
with concomitant energy savings compared to continuous ultrasonic processes.
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To rationalize the ultrasonic effect operating in interrupted mode, we assume the
following scenario:
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• In the first pulse, the cavitation process promotes the electrochemical performance in
each half-cell reaction until the steady state is reached. Herein, the cavitation stream
offers several benefits on strengthening the diffusion process and, in consequence,
the reaction kinetics. Additionally, the bubble collapse attacks the electrode surface,
decreasing the diffusion layer thickness. All these effects promote the electrochemical
reactions up to a maximum, where the steady state is achieved. In that point, we
understand that the concentration polarization effect has become important, demon-
strating that the continuous ultrasonic operation mode is not efficient. Remarkably,
the steady state was achieved faster as the temperature increased as a typical diffusion-
controlled process.

• In the following rest period and in the absence of ultrasound, the cavitation effect
persists for a certain time, although it decreases progressively to the initial state. The
fact that the initial electrochemical activity of the electrode returns after a period
of time in the absence of the ultrasonic activation is proof that the diffusion layer
structure is regenerated after the cavitation collapse (Tp1). Basically, a replenishment
of reactants/products from the bulk to the surface electrode is taking place, leading
to the formation of a fresh solid–liquid interface. This process occurs for a period of
time, where the duration to establish the initial condition is quite dependent on the
temperature, indicting a remarkable diffusion-controlled step.

• In the second pulse (Tp2), the steady state is achieved in a considerably shorter
time compared to the first pulse (Tp1) with better electrochemical properties in each
compartment, probably due to the fact that the electrode surface has been activated
along the ultrasonic pulse through the bubble collapse (adsorption of the reactants
or products) [27]. To verify this fact, Figure 5 shows a comparison of the related
anodic/cathodic peak currents (Ipa/Ipc) and peak-to-peak separation (∆Ep) under the
influence of Tp1 and Tp2 acquired for CVs from [21]. Largely, the Tp2 provides a better
electrochemical performance since better values of Ipa/Ipc (i.e., closer to the unity) and
lower ∆Ep values in both half-cells can be achieved in the majority of the cases. Even
though the steady state is achieved with similar peak current densities values found
between Tp1 and Tp2, the electron transfer process presents better properties in Tp2.

Another observation is that the mass transfer limitations become more obvious in the
V half-cell rather than the Fe half-cell. For the lower steady state current density obtained
for the V half-cell in comparison with the Fe half-cell within Tp1 and Tp2, this fact indicates
that the ultrasonic-mediated process has a lesser effect in V rather than the Fe half-cell. The
difference in Tr for different ions stems from their different mean square displacement and
diffusion coefficients in the DES electrolyte [28]. In addition, the temperature dependencies
in both reactions are quite different, as shown in Figure 6. Respectively, higher (35 ◦C) or
lower (15 ◦C) temperatures provoke a shorter or longer variation to reach the steady state
along Tp1, Tp2 and Tr. It is well known that higher temperatures improve the diffusion
of the redox species to electrodes, while the contrary effect is taking place at the lower
temperatures. Comparing both compartments (Figures 4 and 5), the influence of the higher
temperatures is more pronounced in the Fe electrolyte than in the V electrolyte. Those
differences between each compartment are ascribed to the higher stokes radius of V in
comparison with Fe in the DES electrolyte, affecting the diffusion coefficient and mass
transport features. Particularly, the diffusion coefficient of Fe in the DES electrolyte has
been determined as ca. 10−8 cm2·s−1, which is one order of magnitude lower than that of
V (i.e., 10−7 cm2·s−1) [29,30]. These preliminary findings direct our motivation toward the
real implementation of ultrasonic interrupted fields in RFBs to address the importance of
efficient operation, boosting the performance of Fe-V RFBs with the concomitant reduction
of power consumption.
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different temperatures.

3.2. Practical Operation of Fe/V RFBs Under Continuous and Interrupted Ultrasonic Mode

By selecting the pulse duration, a performance assessment of the Fe/V RFB operating
with continuous and interrupted ultrasonic effect has been demonstrated to prove future
implementations. Figure 7 shows the voltage profile of the Fe/V RFBs operating in con-
tinuous (pink curve) and interrupted (green curve) ultrasonic activation at 2.5 mA·cm−2,
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corresponding to three cycles (30 min charge and 30 min discharge) and compared with the
normal operation (grey curve). From previous studies, 0.11 W·cm−2 has been chosen as the
ultrasonic power density and 9:9 min as the duty cycle (i.e., 9 min for the ultrasonic ON
(pulse time, Tp) and 9 min in OFF (resting time, Tr)). Comparing all curves in Figure 7, the
RFB with the ultrasonic-driven process operates at more stable potential values, presenting
a flat profile with less polarization (i.e., voltage variations along the 30 min of charge or
discharge). Additionally, the ultrasonic effect decreases the overpotentials in both processes
up to ca. 40 mV in the charge and 20 mV in the discharge process. This fact is due to the
improvement of the mass transfer provided by the ultrasonic effect with the concomitant
enhancement of the electrochemical activity. Comparing both curves operating under the
ultrasonic effect (i.e., continuous and interrupted mode), the overpotential values are quite
similar in all cycles (Figure 7b), albeit, in some points, the interrupted ultrasonic mode
exhibits values that are 10 mV higher. This fact is also reflected in the energy efficiency (EE)
values (Figure 7c). A significant improvement in the EE resulted from Fe-V RFBs operating
with ultrasonic effect. Particularly, the EE increased from 71.9% to 76.2% and 77.4% in the
first cycle, operating in normal conditions, interrupted ultrasonic and continuous ultrasonic
mode, respectively. More importantly, the EE loss from the first cycle to the second is
considerably higher when the RFB operates in the continuous ultrasonic (ca. 1.7%) mode
compared to the pulse ultrasonic mode (1.1%). However, ca. 1.5% of the EE was lost in the
following cycle under ultrasonic activation, independently of the operation mode.
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Figure 7. (a) Voltage profile of the three 30 min cycles at 2.5 mA·cm−2 of the Fe-V RFBs under several
operating modes: ultrasonic OFF (grey line); ultrasonic in continuous mode (pink line); ultrasonic
in pulse mode (green line); (b) Voltage profile of the third cycle showing the overpotentials; and
(c) energy efficiencies for each cycle in (a).
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Significantly, the ultrasonic action working in the continued or interrupted mode
showed the same performance, making the interrupted mode more beneficial in terms of
energy consumption. Particularly, the energy consumption can be reduced up to three
times per hour using the 9:9 cycle, making it an economical approach for future appli-
cations in RFBs. Additionally, the interrupted mode could be optimal since it prevents
the bulk electrolyte from overheating or other undesirable reactions being caused for
continuous operations.

4. Conclusions

This study is mainly aimed at the application strategy of ultrasound to carry out
related experiments because external ultrasound sees large energy consumption. Therefore,
the application strategy was studied to reduce energy consumption while maintaining
the original electrochemical performance. Herein, the interrupted operation mode is
applied as an efficient strategy to improve the performance of Fe/V redox flow batteries
(RFBs). Fundamental studies based on cyclic voltammetry have shown the benefits of the
cavitation effect working in interrupted mode, providing reinforcement of the mass transfer
process, minimizing the concentration polarization and improving the redox reactions.
In the big picture, the performance of individual half-cell reactions in Fe/V RFBs was
optimized according to the duration of the ultrasonic pulse, allowing us to understand and
visualize the ultrasonic effect in the interrupted mode. In the first pulse, the mass transfer
is intensified, promoting the electrochemical reactions up to a steady state. Following a
resting period, the ultrasonic effect persists, and the solid/liquid interface is restored. In
the second pulse, the new and fresh interface presents better features, allowing for better
performance. These findings prove the important role of the duration of the pulse to face
high ultrasonic energy consumption.

Clearly, the charge/discharge experiments carried out in both modes (continuous
and interrupted ultrasonic field with duty cycle 9:9) present similar behavior in terms
of over voltages and energy efficiency. Furthermore, good electro-chemical performance
enhancement is maintained with a more than 50% reduction in energy consumption for the
interrupted mode, thus favoring the flow battery system efficiency and life span.

This work provides a new insight into ultrasonic application on RFBs, visualizing
the ultrasonic effect and mechanism over the solid/liquid interface as a consequence
of the interrupted field, thus providing new innovations towards higher performance
non-aqueous Fe/V RFBs.
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