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Abstract: To enhance the classification efficiency of hydrocyclones, this study introduces a novel
hydrocyclone design featuring a composite curved-inlet-body structure. Through numerical sim-
ulations, the internal flow field characteristics of this structure are thoroughly investigated. The
results reveal several key findings: when the diameter of the overflow tube is reduced below a critical
threshold, the axial velocity exhibits predominantly downward movement within the outer cyclone,
accompanied by substantial recirculation, leading to a loss of effective separation. Moreover, both
static pressure and tangential velocity are largely independent of the insertion depth of the overflow
tube. In contrast, the diameter of the bottom flow opening plays a crucial role in determining flow
dynamics within the hydrocyclone. An excessively large or small bottom opening leads to flow
instabilities, causing fluctuations that disrupt the uniformity of the flow field. Additionally, a small
height-to-diameter ratio exacerbates flow instability, increasing turbulence intensity and resulting
in irregular fluctuations in the LZVV. These findings provide important theoretical insights for the
design of more efficient hydrocyclone separation structures.

Keywords: classification performance; curved feed body; hydrocyclone

1. Introduction

The demand for highly refined classification processes has led to significant challenges
for traditional hydrocyclone equipment, with low classification accuracy being a key lim-
itation [1,2]. Hydrocyclones are widely used in grinding and classification operations
due to their high efficiency in physical separation. However, particle–particle interactions
within the cyclone lead to substantial mixing, which hinders the effective separation of
particles. Currently, multiple classification stages and repeated ball milling are employed
to enhance product quality. However, the phenomenon of “underflow pinch”—where fine
particles are inadvertently entrained in the underflow—results in over-grinding, leading
to poor concentrate recovery and considerable raw material waste [3–8]. For this reason,
researchers have conducted extensive research. For example, S.P [9] predicted the separa-
tion performance of a cyclone. The present study focuses on performing multi-objective
optimization of the cyclone separator geometry to lower the pressure losses and enhance
the collection efficiency. For this, six geometrical entities, including the main body diameter
of the cyclone, the vortex finder diameter and its insertion length, the cone tip diameter, and
the height of the cylindrical and conical segments, are assessed for optimization, and the
Muschelknautz method of modeling is used as an objective function for genetic algorithms.
To date, this is one of the most popular mathematical models that accurately predicts
cyclone performance. To achieve greater computational accuracy, a digital model of the
cyclone made of specific volumetric elements is developed, thus expanding the grid and

Processes 2024, 12, 2654. https://doi.org/10.3390/pr12122654 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr12122654
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr12122654
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr12122654?type=check_update&version=1


Processes 2024, 12, 2654 2 of 23

stepping to form a boundary zone. As a result, the numerical simulation results differ by
no more than 12.8% compared to the results of other experimental studies [10]. In order to
suppress particle deposition on the vortex finder, a series of gas cyclones with secondary
swirling clean gas are developed, inspired by the gas purge effect. The results show that the
ultrafine particles (Stokes number Stk < 0.0358) are mainly loosely deposited on the walls
under the secondary gas. Compared to a conventional cyclone with a single tangential
inlet, the total deposited particle mass of the improved cyclone has a maximum reduction
of more than 60%, and the collecting efficiency is increased up to 97.5% under basically
the same pressure drop. The corresponding no-deposition area is increased by about 13%
and remains constant in spite of extending the running time. Moreover, an interesting
phenomenon of the vortex finder named the “self-cleaning effect” is captured for the gas
cyclones, and the mechanism of the secondary clean gas on the particle deposition is pre-
liminarily analyzed. These results can deepen our understanding of particle deposition
on the vortex finder and guide the design of anti-coking gas cyclones [11]. Consequently,
minimizing underflow pinch and improving classification accuracy have become critical
research challenges both domestically and internationally. The feed body plays a crucial
role as the primary entry channel for multiphase flow into cyclones. A well-designed feed
body structure facilitates the orderly arrangement and settling of particles, contributing to
enhanced cyclone performance. This study proposes a novel composite curved-feed-body
structure, composed of three distinct geometric profiles: a straight line, an involute line,
and a vortex line. Notably, the junction between the vortex and involute lines is connected
by a circular arc, while the feed body also incorporates a semi-cylindrical camber and a
deflector plate. These design elements collectively accelerate the formation of the stable
particle layer. The composite curved-feed-body offers several key advantages:

(1) In the straight section of the feed body, the multiphase flow is evenly distributed.
Upon passing through the semi-cylindrical camber, a pressure differential between
the upper and lower fluid regions promotes the relocation of finer particles towards
the feed body wall, thereby increasing the proportion of fine particles that enter the
cyclonic flow.

(2) As particles transition into the involute section, the interplay of grading forces induces
a transformation from irregular bulk flow to orderly settling, ultimately forming a
stable particle layer. This process achieves effective pre-grading of the particles before
they enter into the cyclone.

(3) In the vortex line section, the minimal change in the curvature radius near the cyclone
column, coupled with the tangential alignment of the vortex line to the column,
reduces particle–wall impacts. This results in smoother particle motion and improved
grading performance. By controlling both the flow field and particle dynamics, the
composite curved-feed-body structure addresses the issue of “underflow pinch fine”
and improves the cyclone’s classification accuracy. Thus, the proposed design offers a
feasible solution for enhancing the cyclone’s efficiency and performance in particle
separation processes.

2. Model Description

The numerical calculation conditions for the continuous phase medium assume incom-
pressible and steady-state fluid movement [12]. The control equation for the incompressible
fluid is Equation (1): 

∂ui
∂xi

= 0
∂ui
∂t + uj

∂ui
∂xj

= − 1
ρ

∂P
∂xi

+ v ∂2ui
∂xi∂xj

− ∂
∂xi

Rij
(1)

where ui represents the mean velocity, xi represents the location of the fluid, P represents
the mean pressure, ρ represents the liquid density, v represents the kinematic viscosity, and
Rij represents the Reynolds stress tensor.
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The RSM for turbulent flow can account for the turbulence anisotropy in various
directions [13]. This model has good predictive capabilities for the high-turbulence fields
generated by high-speed rotation motion. The transport equation is given by Equation (2):

∂

∂t
Rij + uk

∂

∂xk
Rij =

∂

∂xi
(

vt

σk
∂

∂xk
Rij)− [Rik

∂ui
∂xk

+ Rjk
∂ui
∂xk

]− C1
ε

K
[Rij −

2
3

δijk]− C2[Pij −
2
3

δij p]−
2
3

δijε (2)

where the turbulence production terms Pij are defined in Equation (3):

Pij = [Rik
∂uj

∂xk
+ Rjk

∂ui
∂xk

], P =
1
2

Pij (3)

where P is the fluctuating kinetic energy production; µt is the turbulent viscosity; σk = 1,
C1 = 1.8, and C2 = 0.6 are empirical constants; and ε is turbulence dissipation.

The VOF multiphase flow model can provide good predictions for the internal flow
field of gas-liquid phases and accurately capture the gas-liquid interface. This model
facilitates the analysis of the mechanism for the formation of the air core.

The control equation for the volume fraction is given by Equation (4):

∂αq

∂t
+

→
u · ∇αq = 0 (4)

where αq is the volume fraction of the ith-phase fluid. When the entire volume is filled with
the same phase, αq equals 1. When the volume contains two phases, the sum of the volume
fractions of the two phases equals 1.

The mixture model for multiphase flow can provide good predictions for the particle
separation performance within the hydrohydrocyclone.

The continuity equation of the mixture model is Equation (5):

∂

∂t
(ρm) +∇ ·

(
ρm

→
v m

)
= 0 (5)

The momentum equation can be represented as Equation (6):

∂

∂t

(
ρm

→
v m

)
+∇ ·

(
ρm

→
v m

→
v m

)
= −∇ ·→p +∇ ·

[
µm

(
∇→

v m +∇→
v

T
m

)]
+ ρm

→
g +

→
F +∇ ·

(
n

∑
k=1

αkρk
→
v

r
k
→
v

r
k

)
(6)

where ρm is the mixture density of multiple particles,
→
v m =

n
∑

k=1
αkρk

→
v k

ρm
, αk is the volume

fraction of the ith phase, n is the number of phases,
→
F is the force per unit volume, µm

is the mixture phase viscosity, µm =
n
∑

k=1
αkµk,

→
p is the static pressure, ρk is the density of

the kth phase,
→
v

r
k is the slip velocity between the kth phase and the mixture phase, and

vr
k =

→
v k −

→
v m.

3. Numerical Method
3.1. Geometrical Structures and Meshing

Solidworks software (Solidworks 2020) was used for 3D modeling of the composite
curvilinear inlet body cyclone, as shown in Figure 1a, in which the height of the camber
is half of the height of the inlet body, and a double-layer deflector is set up, with specific
structural parameters, as shown in Table 1.

Before subjecting the physical model to numerical analysis, it first had to be meshed [14,15].
Hexahedral meshing, known for its efficiency in achieving both a low cell count and high
accuracy, is commonly employed. In this study, hexahedral meshing was used, as illustrated
in Figure 1b. To determine the optimal mesh density, a grid independence study was con-
ducted, as shown in Figure 2. The results indicate that when the number of mesh cells reaches
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2.8 × 105, further increases in mesh count do not significantly affect the pressure drop. To
balance computational efficiency and accuracy, a mesh with 3.2 × 105 cells was selected for the
numerical simulations.
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Table 1. List of geometric parameters.

Designation Size/mm

Height of column section 120
Height of cone section 180

Overflow pipe diameter 25
Overflow pipe insertion depth 75
Bottom flow opening diameter 7.5

Thickness of deflector plate 1
Bump height 10
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Figure 2. Verification of mesh independence.

3.2. Boundary Conditions

The inlet of the hydrocyclone was designated as a velocity inlet with solid and liquid
velocities set to 5 m/s. The overflow and underflow ports were configured as pressure
outlets with absolute pressures of 1 atm. In the VOF model, the reflux coefficient of the
outlet was set to 1 to ensure that air entered the hydrocyclone via at least one outlet. In
the mixture model, the diameter of the air was set to 1 × 10−5 mm, and the density of the
silica used as solid feed was set to 2.65 g/cm3, with the feed particle size listed in Table 2.
A no-slip boundary condition was imposed on the wall. The SIMPLE algorithm was used
for pressure–velocity coupling, the PRESTO algorithm for pressure discretization, and the
QUICK algorithm for momentum discretization [16–18].
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Table 2. Size distribution of particles in feed.

Size Interval/um Mean Size/um Volume Fraction/%

0–1 0.5 0.41
1–3 2 0.56
3–5 4 0.62
5–7 6 0.81

7–10 7.5 0.62
10–20 15 0.53
20–30 25 0.72
30–50 40 0.31
50–70 60 0.42

3.3. Model Validation

Before applying the mathematical models to the numerical analysis, it was crucial
to verify their accuracy and reliability. First, the RSM/VOF model was employed to
predict the variation in the flow field inside the hydrocyclone and was compared with
the experimental data obtained by Hsieh [19] using laser Doppler velocimetry (LDV), as
illustrated in Figure 3. The simulated and experimental data fit well, with minor differences
at the maximum tangential velocity; these differences appeared mainly due to operational
errors incurred during experimentation. Overall, the RSM/VOF model could effectively
predict changes in the flow field inside the hydrocyclone.
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4. Results and Discussion
4.1. Influence of Overflow Pipe Diameter on Internal Flow Field of Composite
Curved-Inlet Hydrocyclone

The overflow pipe is one of the important structural parameters of the cyclone [20–25],
and not only affects the flow distribution of the cyclone but also determines the trajectory
of the particles and energy loss. The overflow tube mainly has two important roles: the
first is to discharge fine-grained products, and the second is to cut off the short-circuit flow.
In order to investigate the influence of the overflow pipe diameter on the flow field of the
composite curved cyclone, overflow pipe diameters of 10 mm, 15 mm, 20 mm, 25 mm, and
30 mm were used for the qualitative analysis.

4.1.1. The Effect of Overflow Pipe Diameter on the Pressure Field

The effect of overflow pipe diameter on static pressure is shown in Figure 4. As the
diameter of the overflow pipe increases, the static pressure gradually decreases. This can
be attributed to the reduced resistance to fluid discharge as the overflow pipe diameter
increases, which lowers the overall flow resistance. Additionally, the “narrow-mouth effect”
at the bottom flow is diminished, leading to a reduction in the flow disturbance near the
bottom flow mouth of the annulus. This reduction in flow disturbance results in less energy
loss, ultimately decreasing the pressure drop, as depicted in Figure 4.



Processes 2024, 12, 2654 6 of 23

Processes 2024, 12, x FOR PEER REVIEW 6 of 23 
 

 

The overflow pipe is one of the important structural parameters of the cyclone [20–
25], and not only affects the flow distribution of the cyclone but also determines the tra-
jectory of the particles and energy loss. The overflow tube mainly has two important roles: 
the first is to discharge fine-grained products, and the second is to cut off the short-circuit 
flow. In order to investigate the influence of the overflow pipe diameter on the flow field 
of the composite curved cyclone, overflow pipe diameters of 10 mm, 15 mm, 20 mm, 25 
mm, and 30 mm were used for the qualitative analysis. 

4.1.1. The Effect of Overflow Pipe Diameter on the Pressure Field 
The effect of overflow pipe diameter on static pressure is shown in Figure 4. As the 

diameter of the overflow pipe increases, the static pressure gradually decreases. This can 
be attributed to the reduced resistance to fluid discharge as the overflow pipe diameter 
increases, which lowers the overall flow resistance. Additionally, the “narrow-mouth ef-
fect” at the bottom flow is diminished, leading to a reduction in the flow disturbance near 
the bottom flow mouth of the annulus. This reduction in flow disturbance results in less 
energy loss, ultimately decreasing the pressure drop, as depicted in Figure 4. 

It can also be observed from Figure 5 that the diversion ratio decreases as the diame-
ter of the overflow pipe increases. This is primarily because the increase in the diameter 
of the overflow pipe enables a greater amount of fluid to be discharged from the overflow. 

Figure 6 shows the effects of different overflow pipe diameters on the pressure effi-
ciency (the ratio of effective pressure to total pressure). It can be seen that, with an increase 
in the overflow pipe diameter, the pressure efficiency first increases and then decreases. 
When the diameter of the overflow pipe is 25 mm, the pressure efficiency is the largest, 
and the pressure energy is converted into the highest efficiency of kinetic energy. 

  
(a) (b) 

  
(c) (d) 

Figure 4. Variation in static pressure with the vortex finder diameters. (a) Z = 80 mm; (b) Z = 120 
mm; (c) Z = 180 mm; (d) Z = 220 mm. 

-20 -15 -10 -5 0 5 10 15 20
-2.0x104

0.0

2.0x104

4.0x104

6.0x104

8.0x104

1.0x105

1.2x105

1.4x105

1.6x105

Pr
es

su
re

 (P
a)

Radial position(mm)

 10mm
 15mm
 20mm
 25mm
 30mm

negative pressure

-20 -10 0 10 20
-2.0x104

0.0

2.0x104

4.0x104

6.0x104

8.0x104

1.0x105

1.2x105

1.4x105

1.6x105

 10mm
 15mm
 20mm
 25mm
 30mm

Pr
es

su
re

 (P
a)

Radial position(mm)

negative pressure

-30 -20 -10 0 10 20 30
-2.0x104

0.0

2.0x104

4.0x104

6.0x104

8.0x104

1.0x105

1.2x105

1.4x105

1.6x105

1.8x105

2.0x105

 10mm
 15mm
 20mm
 25mm
 30mm

Pr
es

su
re

 (P
a)

Radial position(mm)

negative pressure

-40 -30 -20 -10 0 10 20 30 40

-2.0x104

0.0

2.0x104

4.0x104

6.0x104

8.0x104

1.0x105

1.2x105

1.4x105

1.6x105

1.8x105

2.0x105

2.2x105

 10mm
 15mm
 20mm
 25mm
 30mm

Pr
es

su
re

 (P
a)

Radial position(mm)

negative pressure

Figure 4. Variation in static pressure with the vortex finder diameters. (a) Z = 80 mm; (b) Z = 120 mm;
(c) Z = 180 mm; (d) Z = 220 mm.

It can also be observed from Figure 5 that the diversion ratio decreases as the diameter
of the overflow pipe increases. This is primarily because the increase in the diameter of the
overflow pipe enables a greater amount of fluid to be discharged from the overflow.
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Figure 6 shows the effects of different overflow pipe diameters on the pressure effi-
ciency (the ratio of effective pressure to total pressure). It can be seen that, with an increase
in the overflow pipe diameter, the pressure efficiency first increases and then decreases.
When the diameter of the overflow pipe is 25 mm, the pressure efficiency is the largest, and
the pressure energy is converted into the highest efficiency of kinetic energy.

4.1.2. Impact of Overflow Pipe Diameter on Tangential Velocity

The change in tangential velocity with the diameter of the overflow tube is shown in
Figure 7. The tangential velocity follows an ‘M’-type distribution, which is in line with
the typical combination of vortex morphology. From the wall to the center, the velocity
slowly increases and then sharply reduces. Near the center, the tangential velocity is almost
zero, indicating that the gas inside the air column cannot undergo centrifugal movement.
This is also the reason why the air column does not participate in particle classification. As
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the diameter of the overflow tube increases, the tangential velocity gradually decreases.
The decrease becomes more obvious closer to the bottom of the flow. For example, with
Z = 180 mm, the maximum tangential velocity decreases from 13.12 m/s to 10.18 m/s.
A larger tangential velocity can help with particle classification, but it can also easily
produce a tangential vortex, which disturbs the flow field. On the other hand, a small
tangential velocity cannot generate enough centrifugal propulsion, making it difficult to
meet the grading requirements. Therefore, selecting an appropriate tangential velocity is
crucial for flow field stability and particle classification. This can be achieved by adjusting
the size of the overflow pipe diameter to regulate the flow field.
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Figure 7. Variation in tangential velocity with different vortex finder diameters. (a) Z = 80 mm;
(b) Z = 120 mm; (c) Z = 180 mm; (d) Z = 220 mm.

4.1.3. Effect of Overflow Pipe Diameter on Axial Velocity and LZVV (Zero-Speed
Envelope Surface)

The effect of overflow pipe diameter on axial velocity is shown in Figure 8. When the
diameter of the overflow pipe is less than 20 mm, the direction of axial velocity in both the
main separation region (Z < 205 mm) and the pre-separation region (Z > 205 mm) changes
from downward to upward. In the pre-separation region, the axial velocity increases as the
diameter of the overflow pipe increases. In the main separation area, when the diameter of
the overflow pipe is 10 mm, the main separation area has only downward movement of the
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external rotating flow. This is due to the overflow port being too small to cause the fluid to
flow back. This not only causes a surge in annular flow in the cyclone, but also destroys the
stability of the flow field, accompanied by a large amount of energy loss. At this time, the
cyclone has lost the significance of classification and sorting.
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Figure 8. Variation in axial velocity with different vortex finder diameters. (a) Z = 80 mm; (b) Z =
120 mm; (c) Z = 180 mm; (d) Z = 220 mm.

LZVV changes under different overflow pipe diameters, as shown in Figure 9. With
an increase in overflow pipe diameter, LZVV gradually migrates outward, which makes
the inner cyclone space larger and the outer cyclone space smaller. More fluid is discharged
from the overflow, which is consistent with the change in the diversion ratio. There are two
extreme value points at the positions of Z = 30 mm and Z = 55 mm, and the direction of the
change is reversed. This is due to the extrusion of the surrounding fluid by the air column.
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4.1.4. Effect of Overflow Pipe Diameter on Turbulent Kinetic Energy

Turbulent kinetic energy is one of the characterization factors used to measure the size
of turbulent energy [26–28]. The turbulent kinetic energy changes with the diameter of
the overflow pipe, as shown in Figure 10. Along the axial direction, the turbulent kinetic
energy increases and then decreases, reaching a peak point. It is not difficult to observe
that the peak point occurs near the bottom of the overflow pipe. With an increase in the
diameter of the overflow pipe, the turbulent kinetic energy gradually decreases.
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4.2. Impact of Overflow Tube Insertion Depth on Internal Flow Field of Composite Curvilinear Inlet
Body Hydrocyclone

The insertion depth of the overflow tube has an important influence on the fine
particle recovery rate, flow field stability, and short-circuit flow rate [29,30]. In order to
investigate the influence of the overflow tube insertion depth on the flow characteristics
in the composite curved-inlet-body cyclone, insertion depths of 30 mm, 50 mm, 70 mm,
90 mm, and 110 mm were taken as the objects of study.

4.2.1. The Effect of Overflow Tube Insertion Depth on the Pressure Field

The variation in static pressure with insertion depth of the overflow pipe is shown in
Figure 11, and the static pressure fluctuates slightly in the range of Z = 180 mm to 220 mm.
The variation in pressure drop and shunt ratio with insertion depth is shown in Figure 12,
and the pressure drop is almost stable between 8.45 × 104 and 8.5 × 104 Pa, which indicates
that the insertion depth does not have much effect on the cyclone energy consumption.
The diversion ratio decreases with an increase in the insertion depth of the overflow pipe,
and the closer the overflow pipe is to the cone section, the easier it is for the fluid to be
discharged from the overflow port, but one should avoid the bottom end of the overflow
pipe entering the cone, as this could cause a wide range of flow field disturbances. The
effect of the insertion depth on the pressure efficiency is shown in Figure 13, the pressure
efficiency increases first and then decreases, and the pressure efficiency is highest when the
insertion depth is 70 mm.

4.2.2. Effect of Overflow Pipe Insertion Depth on Tangential Velocity

The change in tangential velocity with the insertion depth of the overflow pipe is
shown in Figure 14. With an increase in the insertion depth of the overflow pipe, the
tangential velocity slightly fluctuates, but the change is not significant. The tangential
velocity only changes slightly at Z = 220 mm, which is caused by the disturbance of the
flow field resulting from the circulation in the pre-separation region.



Processes 2024, 12, 2654 10 of 23

Processes 2024, 12, x FOR PEER REVIEW 10 of 23 
 

 

The variation in pressure drop and shunt ratio with insertion depth is shown in Figure 12, 
and the pressure drop is almost stable between 8.45 × 104 and 8.5 × 104 Pa, which indicates 
that the insertion depth does not have much effect on the cyclone energy consumption. 
The diversion ratio decreases with an increase in the insertion depth of the overflow pipe, 
and the closer the overflow pipe is to the cone section, the easier it is for the fluid to be 
discharged from the overflow port, but one should avoid the bottom end of the overflow 
pipe entering the cone, as this could cause a wide range of flow field disturbances. The 
effect of the insertion depth on the pressure efficiency is shown in Figure 13, the pressure 
efficiency increases first and then decreases, and the pressure efficiency is highest when 
the insertion depth is 70 mm. 

  
(a) (b) 

  
(c) (d) 

Figure 11. Variation in static pressure with different insertion depths of vortex finder. (a) Z = 80 mm; 
(b) Z = 120 mm; (c) Z = 180 mm; (d) Z = 220 mm. 

20 40 60 80 100 120
7.0x104

7.5x104

8.0x104

8.5x104

9.0x104

 

 Press drop
 Split ratio

Vortex finder length(mm)

Pr
es

s d
ro

p(
Pa

)

11.5

12.0

12.5

13.0

13.5

14.0

Sp
lit

 ra
tio

(%
)

 
Figure 12. Variation in pressure drop and split ratio. 

-20 -15 -10 -5 0 5 10 15 20
-1x104

0

1x104

2x104

3x104

4x104

5x104

6x104

7x104

8x104

9x104

 30mm
 50m
 70mm
 90mm
 110mm

Pr
es

su
re

(p
a)

Radial position(mm)

negative pressure

-25 -20 -15 -10 -5 0 5 10 15 20 25
-1x104

0

1x104

2x104

3x104

4x104

5x104

6x104

7x104

8x104

9x104

Radial position(mm)

 30mm
 50m
 70mm
 90mm
 110mm

 

 
Pr

es
su

re
(p

a)

negative pressure

-30 -20 -10 0 10 20 30
-1x104

0

1x104

2x104

3x104

4x104

5x104

6x104

7x104

8x104

9x104

 30mm
 50mm
 70mm
 90mm
 110mm

Pr
es

su
re

(p
a)

Radial position(mm)

negative pressure

-40 -30 -20 -10 0 10 20 30 40
-1x104

0

1x104

2x104

3x104

4x104

5x104

6x104

7x104

8x104

9x104

 
 

Pr
es

su
re

(p
a)

Radial position(mm)

 30mm
 50mm
 70mm
 90m
 110mm

negative pressure

Figure 11. Variation in static pressure with different insertion depths of vortex finder. (a) Z = 80 mm;
(b) Z = 120 mm; (c) Z = 180 mm; (d) Z = 220 mm.
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Figure 12. Variation in pressure drop and split ratio.
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Figure 14. Variation in tangential velocity with insertion depth of vortex finder. (a) Z = 80 mm;
(b) Z = 120 mm; (c) Z = 180 mm; (d) Z = 220 mm.

4.2.3. Effect of Overflow Tube Insertion Depth on Axial Velocity and LZVV

The effect of the overflow tube insertion depth on the axial velocity is shown in
Figure 15. The axial velocity decreases with an increase in the insertion depth, which is due
to the fact that the upward traveling distance of the fluid becomes shorter. The fluid enters
the overflow tube quickly, weakening the influence of the annular flow on the internal
cyclone, which is then discharged through the stable guiding effect of the overflow tube.
The closer the bottom flow opening (Z = 80 mm) and the bottom end of the overflow tube
(Z = 220 mm), the larger the magnitude of the axial velocity change. In the middle region
of the cone section (Z = 120 mm), the axial velocity is almost unaffected, and there is a
difference in the maximum value only at the center, indicating that the insertion depth of
the overflow tube has a certain effect on the flow velocity of the gas in the air column.

The effect of the insertion depth on the LZVV at the cone section is shown in Figure 16,
which shows that the LZVV gradually migrates outward with an increase in the insertion
depth. More fluid is discharged from the overflow, and this change is consistent with the
diversion ratio. From the figure, it can also be observed that the LZVV at Z = 30 mm and
Z = 50 mm changes drastically in the radial position and the opposite direction. This is
mainly due to the irregular and frequent squeezing of the surrounding fluid by the gas
inside the air column and is one of the reasons for the instability of the flow field.
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Figure 15. Variation in axial velocity with insertion depth of vortex finder. (a) Z = 80 mm; (b) Z =
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Figure 16. Variation in LZVV with the different insertion depths of vortex finder.

4.2.4. Effect of Overflow Pipe Insertion Depth on Turbulent Kinetic Energy

The change in turbulent kinetic energy with the insertion depth of the overflow pipe
is shown in Figure 17. The turbulent kinetic energy increases with an increase in insertion
depth. This is because the distance between the fluid in the main separation region and the
bottom of the overflow pipe becomes smaller, allowing more fluid to enter the overflow
pipe. The increase in flow rate causes the overflow pipe to be unable to discharge the fluid
in time, leading to the generation of a large range of circulating currents at the periphery of
the overflow pipe and the inner wall surface of the cyclone. This results in the turbulent
kinetic energy becoming larger.
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4.3. Effect of Underflow Orifice Diameter on Internal Flow Field of Composite
Curved-Inlet-Body Hydrocyclone

The underflow orifice is one of the important factors affecting the classification per-
formance of a cyclone, especially for coarse particle recovery. It plays a decisive role. In
order to explore the influence of the underflow orifice diameter on the flow characteristics
of a composite curved-inlet-body cyclone, five underflow orifice diameters were selected
for exploration.

4.3.1. Effect of Underflow Orifice Diameter on Pressure Field

The change in static pressure with the diameter of the bottom flow port is shown in
Figure 18. As the diameter of the bottom flow port increases, the static pressure gradually
decreases. The further away the bottom flow port, the more obvious the decrease in static
pressure becomes. This is mainly due to the increased size of the bottom flow port, allowing
more fluid to be discharged, and the resulting reduction in fluid resistance leading to a
decrease in static pressure.

Figure 19 shows the effect of the diameter of the bottom flow orifice on the pressure
drop and diversion ratio. The pressure drop decreases with an increase in the bottom
flow orifice, and the energy consumption decreases gradually. Therefore, the energy
consumption can be controlled by adjusting the size of the bottom flow orifice. The
diversion ratio increases with an increase in the bottom flow orifice; more fluid is discharged
from the bottom flow orifice, which produces more secondary liquid. At the same time,
the oversized bottom flow orifice also entraps a large number of fine particles, which
reduces the classification accuracy of the cyclone. Therefore, it is not feasible to increase
the diameter of the bottom flow orifice as a means of reducing energy consumption and
increasing treatment capacity. Additionally, too large a diameter of the underflow orifice
makes the fluid throughput larger, which is extremely unfavorable for the stability of the
flow field. Therefore, it is necessary to choose the appropriate diameter of the underflow
orifice according to the actual working conditions. In order to seek the optimal value of
static pressure, the pressure efficiency was analyzed, as shown in Figure 20. This figure
demonstrates that for the 75 mm diameter composite curve-type inlet body cyclone, when
the diameter of the bottom flow opening is 14 mm, the pressure efficiency is the largest.
This means that the effective pressure is converted into kinetic energy with the highest
efficiency and the lowest energy consumption, effectively saving on operational costs and
improving operational efficiency.
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Figure 18. Variation in static pressure with apex diameter. (a) Z = 80 mm; (b) Z = 120 mm; (c) Z =
180 mm; (d) Z = 220 mm.
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Figure 19. Variation in pressure drop and split ratio with apex diameter.
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Figure 20. Variation in pressure efficiency with apex diameter.
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4.3.2. The Effect of the Diameter of the Bottom Flow Port on the Tangent Velocity

The effect of underflow orifice diameter on the tangential velocity of the cyclone is
shown in Figure 21, which shows that the tangential velocity along the axial position does
not change much. The tangential velocity along the radial position decreases with an
increase in the underflow orifice diameter, but the decrease is not large. This indicates that
the diameter of the underflow orifice does not have a significant effect on the particles
settling along the radial direction.
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Figure 21. Variation in tangential velocity with apex diameter. (a) Z = 80 mm; (b) Z = 120 mm; (c) Z =
180 mm; (d) Z = 220 mm.

4.3.3. Effect of Overflow Orifice Diameter on Axial Velocity and LZVV

Regarding the effect of the underflow port diameter on the composite curved-inlet-
body cyclone’s axial velocity, as shown in Figure 22, with the changes in the diameter of
the underflow port, the axial velocity in the center of the peak number changes, which
is due to the air column around the fluid extrusion air column caused by the underflow
port diameter being larger and close to the bottom of the mouth. The axial velocity of the
fluid is larger, resulting in the center of the air column in the area of the axial pressure
drop decreasing dramatically, forming the phenomenon of double peaks. Away from the
bottom of the mouth, the pressure drop inside the air column is basically stable, forming a
single peak. As the diameter of the bottom flow opening increases, the axial velocity in the
cone section gradually increases (Z < 205 mm), and the closer the bottom flow opening, the
more obvious the phenomenon. This is mainly because the bottom flow opening increases
to accelerate the discharge of fluid. The further away the bottom flow opening, the less
affected the axial velocity (Z = 220 mm), so the diameter of the bottom flow opening
does not have a great effect on the axial movement of fluid in the pre-separation area of
the cyclone.
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Figure 22. Variation in axial velocity with apex diameter. (a) Z = 80 mm; (b) Z = 120 mm; (c) Z =
180 mm; (d) Z = 220 mm.

In order to investigate the effect of the diameter of the bottom flow opening on the
separation space, the LZVV was analyzed, as shown in Figure 23. When the diameter of the
bottom flow opening is 10 mm to 14 mm, the position of the LZVV does not change much.
When the diameter of the bottom flow opening is more than 14 mm, the LZVV is seriously
twisted and migrates outward. The twisted position appears at Z = 120 mm to 240 mm,
which is exactly the center of the main separation region. This region is also the center of
the main separation region and the pre-separation region, and it is the intersection region
of various flows. This shows that although an increase in the diameter of the underflow
opening increases the separation space of the internal cyclone, the flow field is seriously
disturbed. It also causes a large amount of kinetic energy loss at the exit, and phenomena
such as secondary flow are caused by the oscillation of the air column extruding the
surrounding fluids. The stability of the flow field is greatly reduced, so the appropriate
size of the underflow opening should be selected according to the actual situation.
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4.3.4. Effect of Underflow Orifice Diameter on Turbulent Kinetic Energy

The effect of underflow orifice diameter on the turbulent kinetic energy of the com-
posite curvilinear inlet body cyclone is shown in Figure 24. The figure shows that the
turbulent kinetic energy decreases and then increases along the axial position. There is a
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peak point (near the bottom of the overflow pipe) at a certain position in the pre-separation
region (220 mm to 300 mm), which also fully explains the existence of a variety of flow
intersections in the column section region. As the bottom flow opening increases, the
turbulent kinetic energy gradually decreases. This is because the increase in the bottom
flow opening makes it easier for the fluid to be discharged from the bottom flow opening,
and the ratio of vortex occurrence decreases. Additionally, the increase in the bottom flow
rate reduces the fluid resistance, resulting in a decrease in turbulent kinetic energy.
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4.4. Effect of Inlet Aspect Ratio on Internal Flow Field of Composite Curved-Feed-Body
Hydrocyclone

A rectangular inlet cross-section has better classification performance than a circular
cross-section. In the case of the same equivalent diameter, the appropriate aspect ratio has
an important impact on the stability of the internal flow field of the cyclone. In order to
explore the influence of the inlet aspect ratio on the flow pattern within the cyclone, and
then determine the appropriate aspect ratio of the composite curved-inlet-body cyclone, six
different aspect ratios of 0.5, 0.8, 1, 2, 3, and 4 are selected for numerical investigation.

4.4.1. Effect of Inlet Aspect Ratio on Pressure Field

The effect of the inlet aspect ratio on static pressure is shown in Figure 25. As the
aspect ratio increases, the static pressure shows a trend of increasing and then decreasing
along the radial direction. When the aspect ratio is 3, the static pressure is the largest and
shows a trend of gradually increasing along the axial position, but the overall change is not
large. The effect of aspect ratio on pressure drop is shown in Figure 26. With an increase in
the aspect ratio, the pressure drop and shunt ratio decrease and then increase. When the
aspect ratio is 3, the pressure drop is the smallest and the energy consumption is the lowest.

Pressure efficiency changes with the aspect ratio, as shown in Figure 27. The pressure
efficiency increases with the aspect ratio and then decreases. This is because smaller and
larger aspect ratios can cause a dramatic ‘narrow mouth effect’, which is not conducive
to the stability of the flow field. When the aspect ratio is 3, the pressure efficiency is the
largest. At this point, the efficiency of converting fluid pressure energy into kinetic energy
is the highest.

4.4.2. Effect of Inlet Aspect Ratio on Tangential Velocity

The effect of the inlet aspect ratio on tangential velocity is shown in Figure 28. Tan-
gential velocity, with an increase in the aspect ratio, shows a trend of increasing and then
decreasing. When the aspect ratio is 3, the tangential velocity is the largest. Upon continu-
ing to increase the aspect ratio, the tangential velocity becomes smaller. A ratio that is too
large or too small will cause violent turbulence pulsation, which is not conducive to the
stability of the flow field and can also cause excessive energy loss. Therefore, the selection
of a suitable aspect ratio should be based on the actual situation.
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Figure 25. Variation in static pressure with aspect ratio. (a) Z = 80 mm; (b) Z = 120 mm; (c) Z =
180 mm; (d) Z = 220 mm.
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Figure 27. Variation in pressure efficiency with aspect ratio.
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Figure 28. Variation in tangential velocity with aspect ratio. (a) Z = 80 mm; (b) Z = 120 mm; (c) Z =
180 mm; (d) Z = 220 mm.

4.4.3. Effect of Inlet Aspect Ratio on Axial Velocity

The effect of aspect ratio on axial velocity is shown in Figure 29. In the outer rotating
flow, the axial velocity shows a tendency to increase and then decrease with an increase in
the aspect ratio, and in the inner rotating flow, the axial velocity increases with an increase
in the aspect ratio. When the aspect ratio is very small (0.5–0.8), the symmetry of the axial
velocity graph line is poor, and the value of the axial velocity fluctuates greatly in the range
of Z = 80 mm–120 mm. The larger fluctuating velocity not only generates an axial vortex,
but also causes turbulence in the flow field.

The effect of the inlet aspect ratio on the LZVV is shown in Figure 30. When the
aspect ratio is very small (0.5), the LZVV changes repeatedly with the radial position in
the central position region of the conical section. The LZVV nearly coincides with the
outer edge of the air column at the position of Z = 15 mm, and the inner cyclonic space is
severely compressed. The frequent squeezing of the fluid on the air column leads to an
increase in the reaction force of the air column on the fluid, which not only exacerbates
the fluctuation of the flow field, but also causes an increase in turbulent kinetic energy,
resulting in additional energy loss and turbulence pulsation. This is also an important
manifestation of the instability of the flow field. When the aspect ratio is greater than 0.5,
the LZVV does not change much, and there is only a slight change in the upper part of the
cone section. The change in the internal rotation space is small.

4.4.4. Effect of Aspect Ratio on Turbulent Kinetic Energy

The change in turbulent kinetic energy with aspect ratio is shown in Figure 31. With an
increase in aspect ratio, the turbulent kinetic energy decreases initially and then increases,
which is consistent with the rate of change in velocity. If the aspect ratio is too large or
too small, it will lead to a narrow inlet, exacerbating the fluctuation of the flow field and
enhancing internal turbulence, resulting in increased energy consumption.
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Figure 29. Variation in axial velocity with aspect ratio. (a) Z = 80 mm; (b) Z = 120 mm; (c) Z = 180 mm;
(d) Z = 220 mm.
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Figure 30. Variation in LZVV under different aspect ratios.
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5. Conclusions

(1) When the diameter of the overflow pipe is smaller than a certain critical value, the
axial velocity is only the downward movement of the external cyclone, accompanied
by a large number of circulations. The cyclone loses its classification significance. As
the diameter of the overflow tube increases, the axial velocity of the inner cyclone
gradually increases, and the LZVV gradually moves outward. The pressure drop,
tangential velocity, splitting ratio, and turbulence intensity are greatly reduced.

(2) The static pressure and tangential velocity are almost unaffected by the insertion
depth of the overflow pipe, but the axial velocity decreases with increasing insertion
depth while the LZVV migrates outward. The increase in insertion depth results in a
slight decrease in the pressure drop and divergence ratio and a gradual increase in
turbulence intensity.

(3) The underflow orifice diameter has a significant effect on the cyclone flow field.
With an increase in the underflow orifice diameter, the pressure drop and turbulence
intensity are reduced, and the divergence ratio gradually increases. A change in the
bottom orifice diameter has a small effect on the tangential velocity and the axial
velocity of the external cyclone, but the axial velocity of the internal cyclone increases
with an increase in the bottom orifice diameter.

(4) The inlet aspect ratio has a direct influence on the stability of the flow field. With
an increase in the aspect ratio, the static pressure and tangential velocity gradually
increase, while the pressure drop and diversion ratio gradually decrease. Increasing
the aspect ratio also causes the axial velocity of the internal cyclone to gradually
increase. Too small an aspect ratio is prone to causing flow field fluctuations, increased
turbulence intensity, and irregular changes in the LZVV.
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