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Abstract: This study used a direct dispersion and filtration technique to produce hybrid
buckypaper (BP) composites of copper oxide nanoparticles (NPs) and entangled multi-
walled carbon nanotubes (CNTs). The photocurrent generation of the BP sheets under two
different (direct and gradient) illumination conditions was investigated by varying copper
oxide loadings (10–50 wt%). The structure and morphology of the composites examined
through X-ray diffraction and scanning electron microscopy (SEM) confirmed the presence
of monoclinic cupric oxide nanoparticles in the CNT network. The difference in electrical
resistivity between bulk-filled and surface-filled CuO-BP composites was assessed using
the four-probe Hall measurement. The studies disclosed that the surface-loaded CuO
on the CNT network demonstrated a superior ON and OFF response under the gradient
illumination conditions with peak values of 17.69 µA and 350.04 µV for photocurrent and
photovoltage, respectively. The significant photocurrent observed at zero applied voltage
revealed the existence of a photovoltaic effect in the BP composites. An intense photore-
sponse was detected in the surface-filled sample CuO-BP composite in both illumination
conditions. Additionally, at an illumination level of 150 W/m2, wavelength-dependent
photovoltaic effects on pure BP were observed using red, green, and blue filters.

Keywords: MWCNTs; buckypaper; copper oxide; photo-gradient; photocurrent

1. Introduction
With the increasing demand for clean and renewable energy, numerous studies have

explored various solar harvesting and conversion devices. Recent advancements in so-
lar technology have focused on improving the efficiency and scalability of photovoltaic
cells. In particular, various types of metal or metal oxide nanoparticles (NPs) combined
with one-dimensional nanostructures for the development of unique hybrid nanomaterial
systems have been investigated [1]. Owing to their exceptional mechanical strength, out-
standing electrical conductivity, and exceptional flexibility, carbon-based materials—such
as graphene sheets and carbon nanotube (CNT) networks—have typically been employed
to create flexible electronics [2,3]. Hybridizing carbon nanotubes with metal oxide nanos-
tructures produces a new class of multifunctional materials with substantially enhanced
performances, such as photocatalysts, sensors, fuel cells, and batteries [4]. Even at high
NP loadings, CNTs retain their shape and structure due to their high mechanical stability,
such as substantial hardness and toughness. Recently, various hybrid composites based
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on CNTs with inorganic and organic materials have been reported in the literature [5–8].
CNTs combined with metal oxide NPs can be used as catalysts, sensors, data storage and
processing devices, and reinforced nano-fiber materials [9,10]. Integrating metal oxides into
CNTs could create conductive channels for electrons, facilitating uninterrupted electron
flow, lowering electrical resistance, and thereby improving carrier mobility and electrical
conductivity [11–13]. It was found that the homogeneous dispersion of metal oxide NPs in
CNT substantially increased the active surface area of a CNT–metal oxide composite. At
room temperature, these nanotubes are capable of the rapid transport of charge carriers
across relatively long distances [14,15].

In this context, cupric oxide (CuO) nanoparticles were chosen due to their significance
in photovoltaic nanodevices and solar energy applications, along with their affordability
and widespread availability. CuO, among transition-metal oxides, is particularly notewor-
thy due to its high theoretical capacity, excellent safety profile, affordability, and non-toxicity.
Numerous semiconductors, including CuO, exhibit a high absorption coefficient of sunlight
while maintaining moderate extraction costs [16]. CuO, a p-type semiconductor with a
narrow band gap (1.2–1.9 eV), has been frequently used among other transition metal
oxides, and it has promising applications in various fields, including photodetectors, ener-
getic materials, field emissions, supercapacitors, and photocatalysis [17,18]. CuO has an
open three-dimensional shell with a direct band gap of the charge-transfer type, which
can absorb light up to the near-infrared region and has high solar absorbance, low thermal
emittance, and non-toxicity [19,20]. CuO NPs have excellent stability and a high carrier
concentration, showing their potential for use in light-harvesting applications. However,
such materials tend to have low diffusion lengths for photo-generated charge carriers;
hence, the thicknesses of local absorber layers must be substantially reduced using opti-
mized defect passivation techniques to minimize recombination losses and maximize the
long-term stability of these systems [21]. Recent studies have reported the use of CNT/CuO
composites for different optoelectronic applications [22–24]. There is limited information
in the literature on filling CNT networks with metal oxides and metal NPs, and there is no
report on the effect of filling metal oxides on the photoelectric properties of multiwalled
carbon nanotube (MWCNT) buckypaper (BP). We recently focused our work on enhancing
the photoelectric properties of pure CNT BP via the process of modifying the flexible
sample with a plasma gradient and gradient light illumination conditions [25].

The primary aim of this work was to produce a hybrid CuO-BP composite by filling
cupric oxide NPs into a macroscopic MWCNT entangled network structure. In contrast
to the standard detection techniques of visible light illumination, we established a unique
photoresponse behavior under two different (direct and gradient) illumination conditions.
Both the photocurrent and photovoltage of CuO-filled BP composite sheets were measured
in a zero-bias state. Our results demonstrate the effectiveness of integrating MWCNTs with
CuO nanoparticles, highlighting the combined properties of nanoparticles and CNTs that
are advantageous for fabricating flexible hybrid materials for energy harvesting applica-
tions. Furthermore, we studied the wavelength-dependent photovoltaic effect of pure BP
using red, green, and blue (RGB) filters under two illumination conditions.

2. Experimental Section
2.1. Fabrication of MWCNT BP

Figure 1a,c represent the preparation conditions of CuO-loaded buckypaper (CuO-BP),
an image of the buckypaper, and illumination conditions of CuO-BP samples, respectively.
MWCNTs, with diameters ranging from 10 to 50 nm and lengths from 1 to 25 nm, were
purchased from Scientech Corp., Taipei, Taiwan. Our previous report [26] described the
process of fabricating a random network of MWCNTs (RBP) using direct suspension and
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filtration. In a standard experiment, MWCNTs were dispersed in deionized water, and
Triton-X-100 (Burlington, MA, USA), a non-ionic surfactant that has no charge attraction
to the tubes, was used to stabilize the suspension [27]. To facilitate the formation of
dispersions, a high-energy (20 KHz, 63 W) sonication horn was used, and the solution
was filtered in a vacuum through a nylon membrane. Following the filtering and drying
process, the paper was gently peeled off and placed in an isopropyl alcohol bath to obtain a
flexible, free-standing BP that was free of surfactants and had a thickness of about 70 µm,
as seen in Figure 1b.
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Figure 1. (a) Schematic of synthesizing CuO-filled MWCNT-BP composite structures (bulk-filled
CuO BP and surface-filled CuO BP); (b) the product of flexible free-standing BP and the sample
illuminating setup on the probe block of the solar simulator; and (c) graphical illustration of a CuO-BP
sample under direct and gradient illumination conditions.

2.2. Preparation of CuO NPs and CuO-Filled BP Composites

Copper granules (3 × 3 mm) were purchased from ADMAT Midas Inc., Taipei, Taiwan,
and were used to prepare cupric oxide NPs. The thermal sputtering technique was used
for the preparation of CuO NPs. The samples were collected at 300 m torr in a mixed
atmosphere of argon (45 sccm) and oxygen (13.5 sccm) in a 3:1 ratio within the deposition
chamber, with a relative pressure of 5 × 10−5 torr. Using the same method used for BP
preparation, two types of hybrid CuO-filled BP sheets were produced. Figure 1a illustrates
the scheme of synthesizing CuO-BP composite structures for both the bulk-filled and
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surface-filled CuO BP samples. The aqueous CuO suspension was made using deionized
water and added during filtration. Triton-X-100-modified nanotubes served as an effective
platform for anchoring metal NPs. Thus, the CuO NPs were found to reside both in and
outside of the nanotubes. CuO-BP composites were prepared using the process that was
discussed in our previous report [28]. First, the CuO suspension was dispersed together
entirely with an aqueous MWCNT suspension and filtered through the membrane, as
illustrated on the left side of Figure 1a, and referred to as bulk-filled CuO-BP. Second, the
CuO NPs were loaded on the top layer of the BP by adding the suspension of CuO NPs
to the final volume of the MWCNT suspension after most of the CNT suspension was
filtered out during the filtration process with the schematic shown on the right-hand side
of Figure 1a, referred to as surface-filled CuO-BP. The top layer of the BP contained large
quantities of CuO NPs compared with the bottom layer. The procedure was repeated for
different CuO contents (10–50 wt%).

2.3. Characterization Techniques

Diffraction patterns were recorded using an X-ray diffractometer (XRD) (PHILIPS
X’PERT, Tokyo, Japan) with high-intensity Cu Kα radiation (λ = 1.5406 nm). The sur-
face morphology of hybrid CuO-BP composites was examined using JEOL JSM-7000FA
field-emission scanning electron microscopy (FESEM). Energy dispersive X-ray (EDX)
spectroscopic analysis of the CuO-BP composite was performed to identify the elements
present in the sample. Photocurrent and photovoltage measurements were conducted on a
70-micron-thick CuO-BP composite (measuring 0.4 cm × 1.6 cm), illuminated under visible
light (VL) with a power density of 1000 W/m2 using a solar simulator from Hong-Ming
Tech., Co. Ltd., New Taipei City, Taiwan. The ON/OFF photoresponse was recorded using
Keithley 2410 (Keithley Instruments, Cleveland, OH, USA) as a source meter in both direct
and gradient (half-light) illumination conditions. The BP sample illuminating the setup
on the probe block and the scheme representing the illumination conditions (direct and
gradient) are shown in Figure 1b,c, respectively. We further analyzed the current–voltage
(I–V) characteristic of pure BP using red, green, and blue (RGB) filters at 650, 570, and
450 nm, respectively, with an illuminating power of 150 W/m2 with a small bias voltage.

3. Results and Discussion
3.1. XRD Analyses

Figure 2 shows the XRD patterns of the as-prepared BP, CuO, and surface-filled CuO-
BP composite sheets. Diffraction peaks were evident at 2θ = 35.43◦ and 38.53◦ with hkl
reflections (−111) and (111), respectively, which are a match for pure cupric oxide (CuO)
NPs, indicating that the particles were crystallized well in a monoclinic structure (JCPDS
No. 05-0661) [29]. The average crystallite size of the CuO inside the MWCNT network
was calculated to be 6.5 nm using Scherrer’s formula. We found that the XRD pattern of
the as-prepared pure CuO showed an additional low-intensity peak at 36.4◦ attributed to
the Cu2O phase. In the case of CuO-BP, in addition to the bare CuO, clear peaks with 2θ
values of 25.83◦, 40.48◦, and 44.53◦ were consistent with the diffraction from the (002), (100),
and (101) planes, respectively, corresponding to MWCNT and suggesting that the CuO
NPs were carefully introduced on the top surface of the BP networks. Here, we observed
that the surface filling of CuO NPs did not weaken the MWCNT peaks but enhanced the
conductivity and subsequently increased the photo-induced carrier transfer rate in the
CuO-BP composite. For pure BP, a small diffraction peak that appeared at 38◦ might be
from the metal catalyst used during CNT synthesis.
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3.2. FE-SEM Analysis

Field emission scanning electron microscopy (FE-SEM) was conducted to analyze the
surface morphology of all the synthesized products. The FE-SEM micrographs of all the
CuO-BP composites with different loadings of CuO NPs (10, 20, 30, and 50 wt%) are shown
in Figure 3a–d, respectively. The images show the appearance of CuO particles on top of
the BP networks, which indicates the effective loading of CuO NPs on the surface-filled
CuO-BP composites. Increasing the CuO content (50 wt% in Figure 3d) caused a large
quantity of NPs to agglomerate with CNTs in the BP composite and appear on the surface,
as shown in Figure 3d. The CuO-filled BP composite contained dispersed NPs, and its
reduced porosity was evident compared with the unfilled BP (pure BP) network [28], as
shown by the inset in Figure 3d. High-magnified images are shown as part of the inset
in Figure 3a–c to depict the presence of NPs. The EDX spectrum for the 50 wt% CuO-BP
composite is depicted in Figure 3e. Only the peaks corresponding to C, Cu, and O were
observed in the spectrum, revealing the presence of high CuO content in the MWCNT
conducting network. Cross-sectional images are shown in Figure 3f,g to exemplify the
homogeneity of nanoparticles in the CNT network.

3.3. Electrical Resistivity Measurements

Figure 4 plots the electrical resistivity of the surface-filled and bulk-filled hybrid CuO-
BP composites for varying CuO concentrations in BP. The samples exhibit low resistivity
values, indicating the semiconducting nature of the samples, which is ideal for generating
efficient photocurrent. The graph clearly shows that the surface-filled CuO-BP samples have
low resistivity values compared with the bulk-filled CuO-BP samples. The surface-filled
CuO-BP sample with 20 wt% CuO exhibited a low resistivity value of 3.91 × 10−4 (Ω-m)
compared with the pure BP, which exhibited a value of 4.17 × 10−4 (Ω-m). The room
temperature electrical resistivity increased from 3.99 × 10−4 (Ω-m) to 5.01 × 10−4 (Ω-m)
with an increase in the loading of CuO NPs from 10 to 50 wt% in pure BP. These values
showed that resistivity decreased when up to 20% CuO NPs were added to the MWCNT
networks. The plot showed that resistivity increased when the CuO content was further
increased (>30 wt%), leading to the formation of irregular grains (or aggregates) in the
CNT networks that contribute to the increased trapping and scattering of free charge
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carriers [30,31]. The room-temperature electrical resistivity values for bulk-filled CuO-BP
samples varied from 4.65 × 10−4 (Ω-m) to 6.48 × 10−4 (Ω-m) with an increase in the CuO
fraction from 10 to 50 wt%. We found that the bulk inclusion of CuO NPs in the CNT
network might form an inhomogeneous mixture with conducting nanotubes, possibly due
to aggregation. This aggregation increases the inter-particle resistance of the composite [32]
and enhances the tendency for electron–hole recombination, subsequently reducing the
transportation of charge carriers to the external circuit. This could also result in a reduction
in photocurrent density due to the absence of CuO NPs deep within the network, limiting
their ability to efficiently absorb sufficient light.

3.4. Photoelectrical Performances of Hybrid CuO-BP Composites

To confirm the photoelectric performance, the synthesized hybrid CuO-BP composites
were fabricated as photoelectrodes (Figure 1b) and projected under different illumination
conditions with zero bias voltage (Figure 1c). The photoresponse tests were conducted in a
dark chamber using a halogen light source, with the distance between the lamp and the CNT
film set to approximately 16 cm. Light illumination was switched ON and OFF by a chopper.
Figures 5 and 6 illustrate the time-dependent photoresponse behaviors of the hybrid CuO-
BP samples, depicting the photocurrent and photovoltage outputs, respectively. The CuO
NP-filled MWCNT network (BP) composites yielded a higher photo-conversion compared
with the pure MWCNT-BP. We predict that the increase in the photo-induced emission
current was associated with the semiconducting properties of the CuO NPs embedded
within the MWCNT network. Therefore, the observed increase in the photocurrent could
be attributed to the increase in the carrier density caused by the excitation of the incident
photons. The bare CuO, with its narrow band gap, exhibited a high tendency to excite the
valence electrons through illumination, as well as a tendency to recombine the generated
electrons and holes. In contrast, the CuO/MWCNT composite exhibited an appropriate
band energy structure [24] and a large electron storage capacity. As a result, CNTs can
accept photo-excited electrons from nanostructured semiconductive oxide, which hinders
the electron–hole recombination rate and enhances photoelectrical conversion efficiency.
Specifically, the high conductivity along the tube axis of CNTs enabled these materials to
spatially direct the flow of photo-generated electrons and facilitate both charge injection
and extraction. This implies that MWCNTs serve as an excellent conducting material
and accelerate the electron transfer process. The conductive structure of CNT scaffolds
is believed to promote the separation of photo-generated electron–hole pairs through the
formation of heterojunctions at the CNT semiconductor interface. A recent study [24]
reported that when the contacts composed of different materials with different dimensions
are excited by light or heat, both the heterojunctions and heterodimensional effects must
be taken into consideration simultaneously. Thus, the strong binding interaction between
oxide NPs and CNTs in a surface-filled CuO-BP photoelectrode can efficiently accelerate
electron transfer and enhance photoelectric performance.

Figure 5a,b correspond to the photocurrent profiles of surface-filled CuO-BP under
two illumination (direct and gradient) conditions with multiple ON/OFF cycles. Under the
gradient illumination, the photocurrent of the composite shown in Figure 5b increased to
17.69 µA for 20 wt% CuO-BP compared with the sample under direct illumination with a
value of 6 µA for 30 wt% CuO-BP, as shown in Figure 5a. The rise and decay times observed
for the 20 wt% CuO-BP composites were approximately 63 s and 68 s, respectively, and
were repeatable several times without any appreciable change. The experimental results
indicated that under gradient illumination, the low content of CuO incorporated into the
BP network provided a considerable number of mobile charge carriers, which significantly
increased the light absorption behavior to generate an efficient photocurrent. The MWCNT
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network loaded with 20 wt% CuO NPs demonstrated improved electrical conductivity and
accelerated electron transfer, as indicated by the induced photoresponse and confirmed
through electrical resistivity measurements. It has been reported that the charge transfer
resistance under illumination is lower than that in the dark for photoelectrode materi-
als. This could be due to the increased electronic conductivity of photoelectrodes under
illumination [33].
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Figure 6a,b display the photovoltage profiles of surface-filled CuO-BP under direct and
gradient conditions, respectively. Figure 6b shows a higher photovoltage value of 350.04 µV
for 20 wt% CuO-BP in gradient illumination, compared with the value of 120 µV for the
30 wt% CuO-BP sample under direct illumination. The nearly triple output values indicated
the improved charge collection efficiency of the MWCNT network in the surface-filled
hybrid composites. In our previous report [28], we proposed that gradient illumination
produces a junction layer in the BP composite sheet to control the number of charge
carriers and their flow in between the junction to enhance the production efficiency of the
photocurrent. For the sample under direct illumination shown in Figure 1c, numerous
carriers generated by the CuO produced a scattering effect among them and constrained
the flow of the charge carriers inside the network, causing high electronic resistance inside
the CuO-BP composites [34] and resulting in unstable photoresponse behavior, as shown in
Figures 5a and 6a. The results showed that the interfacial combination of this semiconductor
oxide and MWCNTs is essential for efficient charge transfer and the high activity of the
hybrid composites. It has been previously observed that the electric field in a random
network of MWCNTs can arise from various local Schottky junctions, such as those forming
at the interfaces between semiconducting and metallic nanotubes or within the same
tube [35]. Regarding the hybrid CuO-BP composite, we infer that the existence of CuO NPs
forms a local interface in the nanotube network to produce Schottky junctions and, thus,
improve the charge transfer. Conversely, for bulk filling, we suggest that the excess NPs
inside the networks deteriorate the performance of the photoresponse by destroying the
network structure of the CNT matrix and reducing the conductivity of the electrode.

Figure 7a,b, respectively, show the variation in photocurrent generation for bulk-filled
and surface-filled CuO-BP composites under two illumination conditions. The figures
show that the surface-loaded CuO-MWCNT network significantly enhanced photovoltaic
performance. This improvement was attributed to the increased surface area and the greater
number of photo-induced carrier sites on the photoelectrode surface in comparison to the
bulk-filled CuO-BP composites. We determine that the CuO NPs inside the networks of
the bulk-filled samples are unable to absorb all the photon energy illuminating the sample,
which causes a decrease in the number of photo-induced carriers compared to the surface-
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filled samples. There might also be the possibility of faster recombination in CuO NPs in
bulk-filled samples before the carriers are transported through the nanotubes to generate
a photocurrent. A bar chart comparison of the photocurrent output for CuO NP-filled
BP under gradient illumination is shown in Figure 7c. A comparison of the photocurrent
output for various copper oxide–CNT and copper oxide–graphene composites from the
literature is provided in Table 1 [24,36–39].

Processes 2025, 13, x FOR PEER REVIEW 8 of 16 
 

 

density caused by the excitation of the incident photons. The bare CuO, with its narrow 
band gap, exhibited a high tendency to excite the valence electrons through illumination, 
as well as a tendency to recombine the generated electrons and holes. In contrast, the 
CuO/MWCNT composite exhibited an appropriate band energy structure [24] and a 
large electron storage capacity. As a result, CNTs can accept photo-excited electrons from 
nanostructured semiconductive oxide, which hinders the electron–hole recombination 
rate and enhances photoelectrical conversion efficiency. Specifically, the high 
conductivity along the tube axis of CNTs enabled these materials to spatially direct the 
flow of photo-generated electrons and facilitate both charge injection and extraction. This 
implies that MWCNTs serve as an excellent conducting material and accelerate the 
electron transfer process. The conductive structure of CNT scaffolds is believed to 
promote the separation of photo-generated electron–hole pairs through the formation of 
heterojunctions at the CNT semiconductor interface. A recent study [24] reported that 
when the contacts composed of different materials with different dimensions are excited 
by light or heat, both the heterojunctions and heterodimensional effects must be taken 
into consideration simultaneously. Thus, the strong binding interaction between oxide 
NPs and CNTs in a surface-filled CuO-BP photoelectrode can efficiently accelerate 
electron transfer and enhance photoelectric performance. 
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Table 1. Comparison table for the photocurrent output for the copper oxide–CNT and copper
oxide–graphene composites.

Sample Photocurrent Value Bias Voltage Ref.

Pure CuO 2.38 µA 30 V 36
DWCNT-CuO 32 nA 1 V 24
Cu-MWCNT 900 nA 12 mV 37

Cu2O-graphene 1.9 mA 0.05 V 38
CNT/Cu2O film on ITO 450 µA 0.1 V 39

CuO-BP 17.69 µA 0 V This work

Figure 8a–c show the I–V characteristics of the pure BP that were subjected to direct
and gradient illumination at 650, 570, and 450 nm using RGB filters, respectively, with the
bias voltage ranging from −2 to 2 V. In all cases, linear relationships were observed between
the current and the voltage. The strong bias dependence in the photoconduction in Figure 8
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could be due to the fact that bias voltage facilitates the separation of bound electron–hole
pairs. Under both illumination conditions, the sample showed sharp increases in current
as the voltage increased. This indicates that the optically generated carriers were swept
down because of their tilted potential, and the degree of the tilt was clearly a function of
the applied voltage. The trend of the increase in current appears highly similar to all filters.
When the illumination condition was altered from direct to gradient, as shown in Figure 8,
the measured photocurrent at a given bias voltage shifted upward consistently (inset) at
the frequency of the light chopper. A close-up of the two I–V curves is shown in the inset
of Figure 8 for different wavelengths.
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Figure 8. I–V characteristics under illumination at (a) 650, (b) 570, and (c) 450 nm, respectively, using
RGB filters with a bias voltage range of −2 to 2 V. The inset shows (top left) the BP sample under
illumination with RGB filters and (bottom right) close-up curves under two illumination conditions.

4. Conclusions
This study highlights the possible fabrication of hybrid CuO-BP composites containing

monoclinic cupric oxide NPs dispersed in the multiwalled carbon nanotube entangled network
(BP). This work demonstrates the effect of two types of visible light illumination—direct
and gradient—on photo-induced current generation from a CuO-BP composite sheet. The
MWCNT network filled with CuO NPs could easily transport the photo-generated electrons
from CuO particles and inhibit the recombination of the electron–hole pairs. From XRD, we
inferred that the uniform dispersion of CuO NPs in the MWCNT network is in the nanoscale
regime with an average particle size of 6.5 nm. FESEM images show evidence of the presence
of CuO particles in the CNT entangled network, and a large amount of CuO particles are
clearly visible when increasing the content to 50%. The surface-filled CuO-BP flexible sheet
exhibited a higher photoresponse with 17.69 µA and 350.04 µV for the photocurrent and
photovoltage, respectively, under gradient illumination conditions. The surface-filled CuO-BP
composite exhibited a higher photovoltage value of 350.04 µV for 20 wt% CuO NPs loaded
in BP. Current findings demonstrate that the outstanding performance of this unique hybrid
composite material is largely dependent on the interfacial interaction between the metal oxides
and CNTs. We conclude that our macroscopic two-dimensional (2D) CuO-loaded MWCNT
flexible network in the hybrid composite form offers high conductivity as a photoelectrode
and facilitates rapid charge carrier exchange between CuO and the current collector (CNTs).
These results demonstrate that optimized copper oxide nanoparticles in buckypaper deliver
excellent photoresponsivity under visible light illumination.
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