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Abstract: In this study, we used Principal Component Analysis (PCA) to evaluate the
physical and operational properties of palladium (Pd)-based membrane composites, fo-
cusing on variables like temperature, differential pressure (∆P), thickness, hydrogen (H2)
permeability, and H2 flux. The analysis revealed that the first two principal components
explained 53.16% of the total variance, indicating moderate explanatory power. Interde-
pendencies were observed among temperature, thickness, H2 flux, and H2 permeability,
while ∆P functioned independently. This study found similarities among membranes, such
as eco-friendly chitosan-based membranes, which performed comparably to conventional
options like Pd–PSS and Pd–Cu/αAl2O3. Overall, PCA proved to be an invaluable tool
for uncovering hidden patterns, optimizing experimental processes, and deepening the
understanding of Pd-based membranes. The findings underscore PCA’s potential to en-
hance material performance and promote sustainable alternatives, with practical benefits
for advancing hydrogen separation technologies. This study illustrates how data-driven
approaches can refine material analysis and drive innovation in membrane design.

Keywords: operational conditions; principal component analysis; hydrogen production;
palladium-based membrane composites; energy sector

1. Introduction
The growing interest in renewable energy as a replacement for fossil fuels is driven by

the urgent need to reduce the impact of climate change, environmental pollution and ensure
sustainable practices [1]. This shift aligns with several Sustainable Development Goals
(SDGs), notably SDG 7 (Affordable and Clean Energy), SDG 13 (Climate Action), and SDG
9 (Industry, Innovation, and Infrastructure) [2]. Renewable energy sources, such as solar,
wind, and hydroelectric power, offer clean, inexhaustible alternatives to fossil fuels, which
are major contributors to greenhouse gas emissions and environmental degradation [1].
The transition to renewables supports SDG 7 by promoting energy access and security
through sustainable energy solutions, contributes to SDG 13 by reducing carbon footprints
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and fostering resilience to climate impacts, and stimulates technological innovation and
infrastructure development in line with SDG 9, creating jobs and driving economic growth
while prioritizing environmental stewardship [2].

Following this changing mindset, catalyzed by current requirements, the growing
interest in hydrogen (H2) energy is driven by its potential to revolutionize the energy sector
with its versatility, efficiency, and environmental benefits [3]. As a clean energy carrier,
H2 can be produced from various renewable sources and emits only water vapor when
used, making it a key player in the transition to a sustainable clean energy future [3]. Its
applications span across multiple fields, including transportation, industry, and power
generation, providing a flexible solution for reducing carbon emissions and enhancing
energy security [4]. The development of H2 fuel cells and advancements in H2 storage
and distribution technologies are accelerating the adoption of H2 energy, supported by
significant investments and favorable policies worldwide [4]. As countries and companies
intensify their commitments to sustainable energy, H2 is poised to play a critical role in
reshaping the global energy landscape [3].

Palladium (Pd)-based membrane composites are vital in industrial applications, par-
ticularly for H2 purification and separation, due to their exceptional permeability and
selectivity [5]. These membranes are constructed by incorporating Pd into various supports
like ceramics, metals, and polymers, and these membranes benefit from the mechanical
strength and enhanced performance provided by the supports [6]. Techniques such as
electroless plating, chemical vapor deposition, and physical vapor deposition are used to
deposit Pd onto porous supports, influencing the membrane’s durability and efficiency [7].
Palladium’s high H2 permeability and selectivity arise from its ability to allow only hy-
drogen atoms to diffuse through its lattice, with thinner Pd layers generally providing
better performance, albeit with increased susceptibility to defects such as pinholes or
micro-cracks [3,5]. The mechanical and thermal stability of these composites is critical for
industrial applications. This stability is often enhanced by combining Pd with robust ma-
terials, which proves especially critical in high-temperature environments where ceramic
supports are advantageous [8]. Operationally, H2 flux serves as a key performance fea-
ture, influenced by factors like membrane thickness, temperature, and pressure difference,
with higher temperatures typically increasing flux but also requiring materials that can
withstand thermal stress [9]. Durability and longevity are enhanced through strategies like
developing Pd alloys and incorporating protective coatings, with Pd-Ag alloys offering
improved mechanical properties and resistance to embrittlement [10]. Fouling and contam-
ination present significant operational challenges and can be mitigated through surface
modifications and the pre-treatment of feed gas [11]. These composites are used extensively
in H2 purification, fuel cells, chemical industries, and ammonia production, reflecting their
importance in achieving high-purity H2 and efficient separation processes [5,8,12].

Ongoing research aims to further improve the performance and durability of Pd-based
membranes, facilitating their broader adoption in H2-related technologies. Additionally,
the application of machine learning techniques in membrane science is revolutionizing
the understanding and optimization of materials [13–16]. Principal Component Analysis
(PCA), in particular, is valuable for elucidating the physical and chemical properties and
operational features of membranes [13–16]. By reducing the dimensionality of complex
datasets, PCA identifies the most significant variables affecting membrane performance,
enabling more efficient design and predictive maintenance [15,16]. This analytical ap-
proach helps experimentalists pinpoint key factors such as material composition, structural
characteristics, and operational conditions, leading to improved membrane functionality
and longer lifespans [13–16]. The integration of PCA with membrane technology not
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only enhances current capabilities but also accelerates the development of next-generation
membranes with superior performance and reliability [13].

PCA excels in dimensionality reduction, simplifying datasets with multiple interde-
pendent variables into a smaller set of principal components (PCs) while retaining most
of the variance. It effectively identifies hidden patterns and variable interdependencies,
offering insights often missed through traditional parametric analysis [13–16]. Additionally,
PCA provides clear graphical outputs, such as biplots, enabling the easy visualization of
relationships, clustering, and variable contributions. Unlike methods requiring predefined
assumptions, PCA is a flexible, data-driven approach suitable for exploratory analysis.
For instance, Partial Least Squares Regression (PLSR) focuses on predictive modeling and
covariance between input and output variables, making it more suitable with defined
dependent variables [13–16]. Factor Analysis (FA), by contrast, assumes underlying latent
variable structures, diverging from PCA’s purely variance-driven methodology. Hierarchi-
cal Cluster Analysis (HCA) focuses on grouping data based on similarity but lacks PCA’s
dimensionality reduction capability. Similarly, Multiple Linear Regression (MLR) excels in
identifying causal relationships but struggles with multicollinearity and hidden variable
dependencies, areas where PCA outperforms. In summary, PCA is an unparalleled tool
for unbiased exploratory analysis, highlighting key variable contributions and offering
insights critical for optimizing Pd-based membrane composites [13–16].

This study aims to evaluate the potential of PCA as a tool for understanding the
physical and operational characteristics of Pd-based membrane composites. By examining
data from the prior study conducted by Basile et al. [3] (Table 1), this study seeks to
uncover hidden relationships among variables such as temperature, differential pressure,
thickness, hydrogen permeability, and flux. PCA, an unsupervised machine learning
technique, simplifies complex data by reducing its dimensionality, allowing patterns to
emerge, correlations to be identified, and the significance of PCs to be assessed within
the dataset. These findings are aligned with established knowledge and showcase PCA’s
ability to highlight meaningful connections providing researchers with clearer insights into
the factors influencing membrane performance. This analysis, which focuses on five key
variables across 29 membranes, demonstrates PCA’s potential to optimize experimental
designs, refine manufacturing techniques, and enhance the application of specific Pd-based
composites. Unlike traditional studies that focus on isolated variables, our PCA-driven
approach reveals deeper interdependencies among membrane characteristics, offering a
robust framework for optimizing membrane design and enhancing industrial application
feasibility. By revealing hidden trends and uncovering valuable insights, PCA proves to be
a powerful statistical tool for advancing our understanding and improving the efficiency of
hydrogen production technologies.

This study advances hydrogen separation technology by using PCA to optimize
Pd-based membrane composites. The approach identifies key interdependencies among
operational parameters and explores sustainable material alternatives, such as chitosan-
based membranes. These insights are crucial for refining experimental designs, im-
proving membrane efficiency, and accelerating the adoption of eco-friendly hydrogen
separation technologies.

2. Materials and Methods
2.1. Data Normalization and PCA

The data for each investigated variable carry a different weight. To calibrate the
influence of these variables on the dataset, a standardization technique is necessary. This
method is defined as ’Yst’. It is identified as follows:
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Yst =
Value − Mean

Standard Deviation
(1)

2.2. PCA

After normalization, PCA findings were obtained using XLSTAT 2024.3.0 software
(Addinsoft, Paris, France), following the approach in previous studies [13–15,17,18]. In this
study, missing data were estimated using a built-in feature that replaces missing values
with the “Mode”, corresponding to the respective variable.

The jth PC matrix (Fi) is expressed using a unit-weighting vector (Uj) and the original
data matrix M with m × n dimensions (m: number of variables, n: number of datasets) as
follows [13–15,17,18]:

Fi = UT
j M = ∑i=0 Uji Mi (2)

where U is the loading coefficient, and M is the data vector of size n. The variance matrix
M(Var(M)) was obtained by projecting M to U, which was maximized, as the following:

Var(M) =
1
n
(UM)(UM)T =

1
n

UMMTU (3)

MaxVar(M) = Max
((

1
n

)
UMMTU

)
(4)

Since 1
n MMT is the same as the covariance matrix of M(cov(M)), Var(M) can be ex-

pressed as the following:
Var (M) = UTcov (M) U (5)

The Lagrangian function can be defined by performing the Lagrange multiplier
method, as follows:

L = UT (6)

L = UTcov(M)U − δ
(

UTU − 1
)

(7)

For (7), “UTU-1” is considered to be equal to zero, since the weighting vector is a unit
vector. Hence, the maximum value of var(M) can be calculated by equating the derivative
of the Lagrangian function (L), in respect to U, as follows:

dL
dU

= 0 (8)

cov(M)U − δU = (cov(M)− δI)U = 0 (9)

where
δ: eigenvalue of cov(M);
U: eigenvector of cov(M).
To enhance the explanatory power of PCA, two data segmentation schemes were

employed: (1) an outlier exclusion scheme aimed at reducing data skewness by removing
disproportionately influential samples, and (2) a subset partitioning scheme based on
positive and negative correlations of data points along PC1 and PC2. These approaches
improved the clarity of clustering patterns and increased the total variance explained
across subsets.
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Table 1. Physical and operational properties of Pd-based membrane composite [3].

Membrane Type # T [K] ∆P (kPa) Thickness [µm] FluxH2 (mol/m2s) PeH2 (mol/m2s Pa) References

Pd–ZrO2–PSS a 1 773 100 10 0.083 0.0083 [19]
Pd–αAl2O3 2 573 290 1 2.05 0.0038 [20]
Pd–Al2O3 3 723 4.8 0.000003 [21]

Pd/Ag–Al2O3 4 142 10 0.142 0.000001 [22]
Pd/Ag–PSS 5 723 1000 29 [23]

Pd–PSS 6 683 20 [24]
Pd–Al2O3 7 573 30 3 0.15 0.000006 [25]
Pd–GCM b 8 473 10 15 0.223 0.00000223 [26]
Pd–Al2O3 9 801 2.5 0.00000162 [27]

Pd/Ag–PSS 10 723 162 50 [28]
Melt-spun

Zr–Al–Co–Ni–Cu 11 673 390 44 0.0044 1.13 × 10−8 [29]

Pd alloy/PNS c 12 773 358 0.083 [30]
Pd–Cu alloy 13 725 0.75 1.6 [31]

Pd/Ni 14 673 20 2.5 0.31 0.0000115 [32]
Pd/Ag alloy 15 620 400 5.5 0.000001 [33]
Pd/MPSS d 16 773 100 6 0.302 0.00000302 [34]

Pd 17 473 51 95 0.0267 5.235 × 10−7 [19]
Pd84–Cu16/

ZrO2–PSS 18 753 250 5 0.6 0.0005265 [35]

Pd/PSS 19 773 100 11.7 0.000791 [36]
Pd90–Ag10–α Al2O3 20 544.5 165 20 0.14 0.00000125 [37]

Pd–CS e 21 698 400 2 0.000001688 [38]
Pd/Pd–Ag–PSS 22 723 100 2.5 0.3 0.000003 [34]

Pd–Ag/αFe2O3/ PSS 23 773 300 18 0.000491 [39]
Pd–Cu/αAl2O3 24 723 345 11 0.8 0.00000231 [40]

Pd/TiO2 25 773 45 0.35 0.283 0.00000628 [41]
Pd–Ni/SS 26 723 68 0.8 0.7265 0.00001051 [42]

Pd–Ru–In/SS 27 645 100 1.5 0.049 0.00000049 [43]
Pd–Al2O3 28 673 100 5 0.155 0.00000155 [44]
Pd/PSS 29 793 150 10 0.175 0.000001166 [45]

a PSS: polystyrene sulfonate; b GCM: graphene composite membrane; c PNS: porous nickel support; d MPSS:
macro-porous stainless steel; and e CS: chitosan.

3. Results and Discussion
This study employs PCA to examine differences and similarities among a group of

Pd-based membrane composites by analyzing five key physical and operational factors:
temperature, differential pressure (∆P), thickness, H2 permeability, and H2 flux. It is an-
ticipated that the first two PCs will account for a significant portion of the total variance,
shedding light on the relationships among these variables. To enhance the explanatory
power of the PCs and validate observed trends, two data segmentation strategies are
proposed. The first involves removing outliers identified via the PCA biplot. The second
strategy entails dividing the dataset into four subsets based on the positive and nega-
tive correlations of the first two PCs. These data-driven approaches, guided solely by
PCA outcomes rather than preconceived engineering assumptions, are expected to refine
comparisons among membranes and uncover deeper insights into the variables affecting
their performance.

3.1. PCA for the Entire Dataset

Figure 1 shows that the PCA presentation of the dataset for Pd-based composite
membranes has been taken into consideration (data originate from the investigations
of Basile et al. [3]). The first two PCs accounted for 53.16% of the total variance, with
PC1 and PC2 contributing 31.49% and 21.68%, respectively; Figure 1a). This level of
variance is moderate compared to previous investigations applying PCA to membrane
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datasets [13–15,17,18]. The investigated variables showed moderate contributions along
PC1 (between 20 and 40%; Figure 1b), except for PeH2 and ∆P, which showed low and
minor contributions, respectively (Figure 1b). For PC2, most of its contribution accounted
for ∆P (67.81; Figure 1b), with a minor and negligible contributions for the other variables.
PCA generates new orthogonal variables (PCs) by eliminating intercorrelations between
the input variables. The observed indicate interdependencies among the variables, except
for ∆P. In other words, ∆P is found to be independent from the other variables, for the
Pd-based membranes under study. Hence, optimizing Pd-based membranes requires a
synergetic consideration of temperature, thickness, and FluxH2, with lesser emphasis of
PeH2. On the other hand, ∆P should be considered as an independent variable.
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Figure 1. PCA biplot for all datasets (data originate from the investigations of Basile et al. [3]). Gray
bullets highlight the individuals of the population (different investigated Pd-based composite mem-
branes). Red bullets represent the variables (adopted physical properties and operational conditions).

When considering all membranes (the individuals of the statistical analysis), a signifi-
cant agglomeration around the node can be observed (gray cluster; Figure 1a). The highest
loadings are noted for membranes 2, 5, and 17. These trends suggest several scenarios:
(a) Most of the investigated membranes exhibit a similar behavior toward the investi-
gated physical and operational conditions explored, discarding the difference between
membranes at the molecular composition’s level. (b) The investigated variables have a
minor influence on the membranes in-hand. (c) The individuals with the highest loadings
(membranes 2, 5, and 17) have skewed the dispersion of clustered samples around the node.
To confirm or refute any of the three addressed possibilities, data partitioning could be
adopted, following the yielded trends in Figure 1. Hence, a PCA was performed for this
dataset, with the exclusion of the different outliers (membranes 2, 5, and 17) (Figure 2).
Another strategy could involve dividing the dataset into four subsets without relying on
engineering or scientific intuition for decision making. The division is purely statistical,
following the observed trends in the overall dataset (Figure 1). Four PCAs could be per-
formed based on the positive and/or negative trends of samples, following the first two
PCs (Figures 3–6).
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Figure 2. PCA biplot for all datasets (data originate from the investigations of Basile et al. [3]), with
the exclusion of outliers in Figure 1 (Membranes 2, 5, and 17). Gray bullets highlight the individuals
of the population (different investigated Pd-based composite membranes). Red bullets represent the
variables (adopted physical properties and operational conditions).
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Figure 3. PCA biplot for the dataset positively correlated along the two PCs of Figure 1 (data originate
from the investigations of Basile et al. [3]). Gray bullets highlight the individuals of the population
(different investigated Pd-based composite membranes). Red bullets represent the variables (adopted
physical properties and operational conditions).
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Figure 4. PCA biplot for the dataset positively correlated along PC1, and negatively correlated along
PC2 of Figure 1 (data originate from the investigations of Basile et al. [3]). Gray bullets highlight the
individuals of the population (different investigated Pd-based composite membranes). Red bullets
represent the variables (adopted physical properties and operational conditions).
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Figure 5. PCA biplot for the dataset negatively correlated along PC1 and positively correlated along
PC2 of Figure 1 (data originate from the investigations of Basile et al. [3]). Gray bullets highlight the
individuals of the population (different investigated Pd-based composite membranes). Red bullets
represent the variables (adopted physical properties and operational conditions).
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Figure 6. PCA biplot for the dataset negatively correlated along the two PCs of Figure 1 (data originate
from the investigations of Basile et al. [3]). Gray bullets highlight the individuals of the population
(different investigated Pd-based composite membranes). Red bullets represent the variables (adopted
physical properties and operational conditions).

3.2. PCA with the Exclusion of Outliers

Figure 2 shows the PCA presentation with the exclusion of outliers (membranes 2, 5,
and 17). The first two PCs accounted for a presentation nearly similar to the entire dataset
approach (52.75% of total variance, 27.49% for PC1, and 25.26% for PC2; Figure 2b). This
high similarity would indicate that scenario (a) is more likely plausible than scenario (c)
(See Section 3.1.). It is worth mentioning that discarding the outliers allowed for the better
separation of different samples and led to the formation of four different clusters (Figure 2).
For the variables, a noticeable separation can be identified among the variables, except
for temperature. In other words, the variable that exhibited moderate/high contribution
around PC1 did not manifest any distinct contribution along PC2 and vice versa. The highest
contributions were scored for thickness and FluxH2 (41.51% and 34.30%, respectively;
Figure 2b), along with PC1. A moderate contribution were scored for Temperature (20.48%;
Figure 2b). For ∆P and PeH2, they showed minor contributions along PC1. For PC2, most of
the contribution was distributed between T and ∆P, scoring 31.33% and 49.66%, respectively
(Figure 2b). The rest of the variables exhibited low to minor contributions for PC2. These
trends highlight the high dependency between the adopted temperature and thickness,
permeability, and hydrogen flux, which should be considered when employing Pd-based
composite membranes. This relationship was obscured in the full dataset approach.

The analysis identified four distinct clusters for the individuals, corresponding to the
four parts of the PCA biplot (Figure 2a). This indicates the relevance of splitting the data into
the four corresponding subsets (Figures 4–6). The red cluster was plotted on the positive
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sides of both PCs, indicating a positive correlation between the variables represented by
∆P and PC2. This cluster contained membranes 6, 12, 15, and 23. In fact, several studies
investigated Pd–PSS and identified its benefits in offering good performance under high
pressure due to the strength of polysulfone support and benefits from a thin Pd layer
for high permeability [5,8,10]. For the Pd alloy/PNS, it provides excellent high-pressure
resistance and high permeability, with the porous nanosilica support offering additional
stability and surface area [30]. The Pd/Ag alloy exhibits the capacity to synergistically
work in high-pressure durability and very high H2 flux, due to the beneficial properties of
the Pd-silver alloy [5,46]. Following its polysulfone support, Pd–Ag/αFe2O3/PSS balances
high-pressure performance and thin membrane benefits through a composite structure,
enhancing both mechanical stability and H2 permeability [3].

For the yellow cluster, it was plotted on the negative and positive sides of PC1 and
PC2, respectively, and exhibited a positive correlation with temperature and permeability
towards H2. For the Pd–ZrO2–PSS composite, the integration of ZrO2 enhances mechanical
stability, ensuring that the membrane maintains its integrity under high temperatures [9].
Sanz et al. [47] revealed higher H2 fluxes with the increase in temperature, indicating
improved performance with this type of membrane. These findings are in total accordance
with the PCA trends, as temperature and H2 flux both exhibited a negative effect along
PC1 and a positive effect along PC2 (Figure 2a). In terms of durability, PSS substrate
provides structural support, making the membrane robust against physical stresses and
long-term use in harsh environments [12]. In addition, ZrO2 imparts chemical resistance
when exposed to high temperatures, protecting the membrane from degradation by contam-
inants [11,48]. For the Pd–Al2O3 composite, the thermal stability of Al2O3 offers excellent
resistance, allowing the membrane to operate effectively at high temperatures [49]. In
addition, related membrane composites exhibit good thermal stability (up to ~550 ◦C [50]),
allowing their applications under high operating temperature conditions [6]. In terms of
enhanced durability, Al2O3 contributes to the membrane’s resistance to chemical attack,
extending its operational lifespan [51,52]. In addition, this composite’s structure combines
the strengths of both materials (Pd and Al2O3), resulting in a membrane that performs
well under demanding conditions [53,54]. For the Pd84–Cu16/ZrO2–PSS composite, the
Pd–Cu alloy improves H2 permeability and selectivity, yielding an efficient trade-off be-
tween performance and cost [55,56]. In terms of thermal resilience, the implementation of
ZrO2 in such composites enhances resistance to degradation, while PSS provides a robust
support [52]. On the other hand, the addition of copper reduces palladium’s susceptibility
to H2 embrittlement, increasing the membrane’s durability [57]. In terms of mechanical
properties, this composite is designed to withstand high pressure and temperature, making
it ideal for industrial applications [58]. For the Pd–CS composite, chitosan (CS) offers a
sustainable and potentially lower-cost alternative to synthetic materials [59]. It enhances
the membrane’s flexibility and structural integrity, supporting the Pd layer [60]. Pd main-
tains high H2 permeability and selectivity, ensuring efficient separation [61]. In addition,
the natural origin of chitosan adds an element of biocompatibility, making the membrane
more environmentally friendly [62]. The findings of PCA show that this Pd-based mem-
brane could be an eco-friendly substitute for the other six membranes of the same cluster
(Figure 2a). The Pd–Cu/αAl2O3 composite combines the enhanced permeability and selec-
tivity from the Pd–Cu [55,56] with the thermal and mechanical strength of Al2O3 [53,54].
This coupling ensures that the membrane can operate efficiently under high-temperature
and high-pressure conditions, making it ideal for demanding industrial processes [55,56].
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3.3. PCA of Subsets

For the sake of increasing PCA’s efficiency toward revealing hidden patterns in the
Pd-based membrane composite, this analysis was performed on four subsets, following
the positive/negative trends of the PCA of the whole dataset (Figure 1). This approach
increased the total variance to at least 73% (Figure 6). When exclusively considering the
membrane samples with positive scores on both principal components in Figure 1, the
PCA biplot showed 88.74% of the total variance (59.96% and 28.78% for PC1 and PC2,
respectively; Figure 3a).

The high variance would indicate the higher rate of presentation for the PCA when
subsets are acquired [13–15,17,18]. This would increase the reliability of PCA findings. For
the variables, all physical and operational features, apart from PeH2, have shown moderate
contribution along PC1 (around 20–30%; Figure 3b). For the latter, it encompassed most of
the contribution along PC2 (scoring 66.26%; Figure 3b). The rest of the variables exhibited
minor to negligible influence for this PC. This would indicate that permeability towards H2

for the investigated membranes (1, 3, 4, 6, and 7) is more likely independent of the other four
variables at hand. Figure 4 shows the PCA investigation for membrane samples that showed
a positive correlation along PC1 and a negative one along PC2, when the entire dataset was
considered (Figure 1). The PCA biplot showed a total variance of 84.64% (51.68% and 32.96%
along PC1 and PC2, respectively; Figure 4a). For the variables, the highest contribution was
yielded for PeH2, accounting for 33.70% of PC1 (Figure 4b). Except for temperature, the
rest of the variables showed minor to moderate contribution (from 14% to 24%; Figure 4b).
For PC2, the highest contribution was scored for temperature, accounting for 43.84%
(Figure 4b). For FluxH2 and thickness, minor and moderate contributions occurred (17.06%
and 31.32%, respectively; Figure 4b). Figure 5 shows the PCA investigation for membrane
samples that showed a negative correlation along PC1 and a positive one along PC2
when the entire dataset was considered. The PCA biplot showed a total variance of
85.79% (54.60% and 31.19% along PC1 and PC2, respectively; Figure 5a). For the variables,
moderate contributions were yielded for PeH2, FluxH2, and temperature (from 25% to 30%;
Figure 5b). For PC2, the highest contribution was yielded for ∆P and thickness, accounting
for 51.66% and 33.53%, respectively (Figure 5b). This shows a good independency between
the variables mostly yielded along both PCs. An even higher discrepancy between variables
was noticed for the negatively yielded samples on the first two PCs, when the entire dataset
was taken into consideration. These trends are shown in the PCA biplot of Figure 6. In fact,
all variables have shown low to moderate contribution along PC1 (Figure 6b), while PC2
was mostly dominated by PeH2 (64.39%; Figure 6b). In brief, the discrepancies between
trends in PCA subsets are primarily influenced by the type of samples included in the
analysis. Each subset showed reliance on several sets of variables. In addition, the increase
in total variance confirms the necessity of data splitting to achieve a better comparison
between the different samples.

4. Conclusions
This study applied the so-called Principal Component Analysis (PCA) technique for

revealing discrepancies and similarities between a set of Pd-based membrane composites,
following five physical and operational features: temperature, differential pressure, thick-
ness, H2 permeability, and H2 flux. When the entire dataset was considered, the first two
principal components (PCs) accounted for 53.16% of the total variance. This contribution
was found to be moderate, in comparison with previous investigations of the application
of PCA for the membranes’ datasets. The different trends would indicate an interdepen-
dency existing between all variables at hand, except for ∆P. Hence, an optimization of
Pd-based membranes implies the requirement to consider a synergetic interplay between
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temperature, thickness, FluxH2, and PeH2, on one hand. On the other hand, ∆P should be
considered independently.

For the sake of attempting to increase total variance and to confirm or refute a valid
comparison between the investigated membranes, two strategies of data separation were
adopted. Both strategies were followed without any engineering intuition and only ac-
counted for the trends of the PCA biplot for the entire dataset. The first strategy involves
excluding the outliers of the PCA for the entire dataset: membranes 2, 5, and 17, in our
case. The second one states the partitioning of the dataset into four subsets based on the
negative/positive trends of the first two PCs.

For the PCA approach without outliers, it showed a similar variance as the first
approach. This would indicate that most of the investigated membranes exhibit a similar
behavior under the investigated physical and operational conditions explored. It is worth
mentioning that discarding the outliers allowed more distribution of different samples and
led to the formation of four different clusters, hence allowing certain distinctions between
membranes. PCA without outliers allowed the revelation of high dependency between
the adopted temperature and the differential pressure. This accordance was hidden from
the whole dataset approach. The yielded clustering of PCA showed a high similarity
between sets of Pd-based membranes, including a chitosan based one. The latter could
be an eco-friendly substitute for the other six membranes of the same cluster: Pd–PSS, Pd
alloy/PNS, Pd–ZrO2–PSS, Pd–Al2O3, Pd84–Cu16/ZrO2–PSS, and Pd–Cu/αAl2O3.

For the sake of increasing PCA’s efficiency toward revealing hidden patterns, data
separation into subsets was adopted. This strategy raised the total variance from 73% to
86%. The discrepancies between trends of PCA in subsets are mostly explained by the
type of samples included in the analysis. Each subset showed a reliance on several sets of
variables. Hence, the PCA approach can be used for in situ experimentation to optimize
the experimental procedure.
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