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Abstract: Background: The introduction of translucent zirconia has improved mimetics: neverthe-
less, a reduction in the mechanical performance was registered. The study aim was to investigate
the mechanical characteristics of a high-translucent zirconia used for monolithic restorations before
and after the aging process compared to a low-translucent zirconia. Methods: A total of 23 spec-
imens were used in the present study. Group A (n = 10) was made of a high-translucent Y-TZP;
group B (n = 7) was made of a low-translucent Y-TZP and finally group C (n = 6) was an aged
high-translucent Y-TZP. Flexural strength, fracture toughness, brittleness, microcrack’s propagation
and grain size were analyzed. Results: The Vickers hardness was: 1483 ± 187 MPa (group C);
1102 ± 392 MPa (group A); 1284 ± 32 MPa (group B). The flexural strength was: 440 (±96.2) MPa
(group C); 427 (±59.5) MPa (group A); 805 (±198.4) MPa (group B). The fracture toughness was:
5.1 (±0.7) MPa.m1/2 (group C); 4.9 (±0.9) MPa.m1/2 (group A); 8.9 (±1.1) MPa.m1/2 (group B). The
brittleness was: 295 (±42.8) (group C), 230.9 (±46.4) (group A) and 144.9 (±20.3) (group B). The
grain size was: 2.75 (±1.2) µm2 (group A); 0.16 (±0.05) µm2 (group B); 3.04 (±1.1) µm2 (group C).
Conclusions: The significant reduction in the mechanical properties of high-translucent zirconia,
compared to the traditional one, suggests their use in the anterior/lateral area (up to premolars).

Keywords: zirconia; dental material characteristics; monolithic restorations; prosthodontics; synthe-
sized system

1. Introduction

For many years, porcelain-fused-to-metal (PFM) restorations have been the only choice
of aesthetic restoration, notwithstanding some aesthetic limitations [1,2]. To overcome
these limitations, new aesthetic materials—without a metal core (metal free) and with
improved biological characteristics—have been made available [3,4]. Metal-free prosthetic
materials include a wide range of glass ceramics, such as lithium disilicate (LS2), zirco-
nia reinforced lithium silicate (ZLS) and polycrystalline materials, such as zirconia and
alumina [5]. Chemically, zirconia is a metal oxide with polymorphism and allotropy prop-
erties. In dentistry, it is defined as an “all-ceramic” material. Moreover, it has different
crystallographic structures such as monoclinic (m), tetragonal (t) and cubic (c) that could
differentiate the mechanical and optical characteristics [6,7]. Zirconium dioxide above
2370 ◦C assumes the cubic structure, the tetragonal is between 2370 and 1170 ◦C and the
monoclinic one is below 1170 ◦C. Therefore, while it is cooled to room temperature, it
assumes the monoclinic structure, a stable crystalline configuration; although, unfortu-
nately, it is poorly resistant to repeated mechanical stress [7]. Over the years, different
types of stabilizers (or dopants) applied to zirconia have been studied and nowadays the
most used in dentistry are: Yttrium cation-doped Tetragonal Zirconia Polycrystals (Y-TZP),
Magnesium cation-doped Partially Stabilized Zirconia (Mg-PSZ) and Zirconia Toughened
Alumina (ZTA) [3,8]. Polycrystalline Tetragonal Zirconia stabilized with Yttria (Y-TZP)
shows optimal mechanical properties and a remarkable fracture resistance, from 5 to
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10 MPa.m1/2, as well as a flexural strength of 900–1400 MPa [9,10]. The fact of reserving the
metastable tetragonal structure even at room temperature means having the possibility to
hinder the microcrack propagation inside the material body in case of repeated mechanical
stresses [1,2,11]. Passerini [12] and Ruff et al. [13] tried to increase the stabilization by
adding small percentages of other “stabilizing oxides”. Generally, when zirconia undergoes
the transformation from tetragonal to monoclinic (austenitic– > martensitic), there is an
increase in grain volume of about 3–5% [6,7]. The phase shift and the associated grain-
volume increase has also been associated with the microcrack closure mechanism [6,14].
For this reason, zirconia is defined as self-healing and very resistant material. The described
mechanism occurs only for tetragonal zirconia, since this phase shift cannot take place for
cubic zirconia. From an aesthetic point of view, zirconia as a monolithic material has limi-
tations due to its opacity. Recently, improvements have been made with zirconia Prettau
(Zirkonzahn GmbH, Gais, Italy), a tetragonal polycrystalline partially stabilized zirconia
with yttrium and aluminium, which has both a high translucency and flexural strength of
1200 MPa. The greatest translucency, nevertheless, is a property of cubic zirconia, because
it has a cubic structure identical to that of zircon, which is the synthetic substitute for dia-
mond. In general, translucency is one of the main factors in aesthetic dentistry and is critical
for the choice of restoration materials. In the last few years, many studies have reported
the clinical performance of zirconia ceramic restorations and the fracture rates of ceramic
veneer (chipping) in the posterior region [9–11,15–18]. To reduce the incidence of chipping,
all zirconia (monolithic) restorations have been recently introduced [6]. Y-TZP shows clear
aesthetic advantages and more resistance when compared to other metal alloys [17–19].
Furthermore, zirconia placed in contact with soft tissues showed the best response in terms
of their health and aesthetics [20]. The fine granulometry (grain size) and the absence of
porosity of Y-TZP make it suitable for biomedical applications [21–23]. Meanwhile, when
in contact with water, Y-TZP is subject to degradation, due to the transformation of the
metastable tetragonal zirconia into the monoclinic form [24]. This phenomenon was first
detected by Kobayashi et al. [25] and it is called “low-temperature degradation” (LTD) or
“aging”. Translucent zirconia is usually used without the porcelain layers, which results
in being directly exposed to the oral cavity, raising the problem of LTD and the possible
abrasiveness of this material against the antagonist teeth [15,26–28]. To date, despite the
efforts made by manufacturer’s to make zirconia significantly more translucent, the trans-
mittance values of these materials still do not reach those of glass ceramics [29]. Starting
from the evidence in the literature on the susceptibility of the zirconia-ceramic restorations
to chipping and taking into account the positive effect of the high-translucent zirconia in
aesthetic dentistry, the aim of the present study was to evaluate both the mechanical and
microstructural characteristics of this high-translucent zirconia.

2. Materials and Methods
2.1. Study Design and Sample Preparation

In this study, we compared two types of polycrystalline tetragonal zirconia stabilized
with Yttria (Y-TZP): high-translucent Prettau Anterior zirconia (Zirkonzahn GmbH, Gais,
Italy) and low-translucent Diazir zirconia (Diadem SAS, Louey, France), with composition
reported in Table 1.

Table 1. Composition in wt% of the materials.

Product Name ZrO2
[wt%]

Y2O3
[wt%]

Fe2O3
[wt%]

SiO2
[wt%]

HfO2
[wt%]

Al2O3
[wt%]

Na2O
[wt%]

Prettau (group A) 87–93 <12 0.01 0.02 0 0–1 0.04
Diazir * (group B) 87–95 4–6 0 0 1–5 0–1 0

* From Traini et al. [6].

A total of 30 samples with a rectangular shape (21 mm × 4 mm × 1 mm) were
prepared. Twenty for high-translucent zirconia and 10 for low-translucent zirconia. After
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being finished and polished, 3 specimens from the high-translucent group and 4 specimens
from the low-translucent group were lost or damaged. The remaining specimens were
divided into three groups as follows: group A, high-translucent Y-TZP (n = 10); group B,
low-translucent Y-TZP (n = 7); group C, aged high-translucent Y-TZP (n = 6).

2.2. Aging Process

To evaluate the LTD phenomenon on high-translucent zirconia, artificial accelerating
aging was performed using cycles in an autoclave for 5 h at 134◦ and 0.2 MPa (Euronda
R9 Recorder sterilizer, Euronda, Vicenza Italy) according to ISO standards 13356 and to
the statement reported in the literature: 1 h at 134 ◦C corresponds to 3–4 years of in-vivo
function [24,25,30].

2.3. Grain Size Measurements

Grain size was calculated using a scanning electron microscope (SEM) (EVO 50 XVP
with LaB6; Carl Zeiss S, Oberkochen, Germany) according to a previously described
procedure [31]. Briefly, the samples were sputter coated with gold (K 550; Emitech Ltd.,
Ashford, Kent, UK) before evaluation. The SEM set-up included a tetra solid-state back-
scattered electron detector operating at 30 kV accelerating voltage, 10 mm working distance
and 270 pA probe current. The images were captured at a magnification of (50,000×) as
TIFF files using a digital image process. Stored images were measured using a dedicated
software, Image-Pro Plus version 6.0 (Media Cybernetics Inc., Bethesda, MD, USA), in order
to calculate the grain size. A total of 42 random measurements for each group were made.

2.4. Vickers Hardness

One hundred and twenty-two Vickers indentations were made on each group. The
indentations were made using a diamond Vickers pyramid (Angle 136◦ and area-depth
ratio A = 24.5 hc2) fixed with the load cell at a universal testing machine (Lloyd 30K, Lloyd
Instruments, Segensworth, UK) under a constant load of 50 N for 10 sec in a controlled
displacement mode at 0.5 mm/min. To determine the stress intensity present at the crack
due to the indentation, the crack tip profile was determined using SEM. The length of
radial cracks emanated from each of the four-indented corner sources were measured using
Image-Pro Plus ver. 6.0 (Media Cybernetics, Bethesda, MD, USA). To ensure accuracy,
the software was calibrated for each experimental image using a software feature named
“Calibration Wizard”, which reported the number of pixels between two selected points
(scale bar). The linear remapping of the pixel number was used to calibrate the distance in
microns. The necessary measurements for the calculation of the Vickers hardness values
were carried out according to the Equation (1):

VHN =
2Psin

(
θ
2

)
L2 = 1.854P/L2 (1)

where “L” is the diagonal average length of the indentation, “P” the load in kilogram-force
(kgf) and “θ” the angle of the indenter (136◦). The execution of the Vickers indentations
during the microhardness test was carried out aligned, so it was possible to generate
microcracks with a coherent course. By this way, it is possible to observe whether or
not the mode of macroscopic fracture of the samples is influenced by the direction of
the microcracks.

2.5. Flexural Strength

Flexural strength was determined using the three-point bending flexural test carried
out using a universal testing machine (Lloyd LR30K universal testing machine, AMETEK
Test & Calibration Instruments, Bognor Regis, UK) equipped with a 500 kN load cell
and a crosshead speed of 1 mm/min, according to the ISO 6872 specification. For the
execution of three-point bending tests, an ad hoc support (Figure 1) was designed and
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realized, following the specifications suggested by ISO6872: 5 mm diameters rollers, an
inter-support distance greater than at least 10 times the thickness of the sample and a
spherical head-loading piston with a diameter of 5 mm. Before the execution of each test,
the dimensions of individual samples were measured with a precision digital calliper with
an accuracy of 0.01 mm. The average bending-strength values were calculated according to
the ISO 6872, using Equation (2):

σ =
3Pl

2wb2 (2)

where “P” is the load at which the fracture of the sample occurred, “l” is the distance
between the two cylindrical supports on which the sample is placed, measured from
centre-to-centre, “w” the sample diameter and “b” is the sample thickness.
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2.6. Fracture Toughness

Fracture Toughness is the property that quantifies the ability of a material to resist
the propagation of a pre-existing microcrack under stress conditions. It was calculated
using cracks produced by the hardness indents. It was reported as K1C; the “1′ ′ stands for
mode one (uniaxial) and the “C” stands for critical. It was defined as the critical value
of the stress intensity factor at a crack tip necessary to produce catastrophic failure using
uniaxial loading [6]. To measure the fracture toughness, a previously published method
was used [6] by applying Equation (3):

K1C = β0

(
P
l

) 1
2

(3)

where “P” was the applied load, “l” was the crack length from the tip of the indentation to
the crack end, and “β0” was an empirical parameter, usually set equal to 7 for a Vickers
indenter. The measurement units of K1C are MPa.m1/2.

2.7. Brittleness

The brittleness (or index of fragility) Bi of a material is defined as the measure of the
relative susceptibility of the material to fracture [32]. A fragile material tends to poorly
absorb energy and deform. Thus, the brittleness in the present study was calculated
according to Equation (4):

Bi =
Hv
K1C

(4)

where “Hv” is the Vickers hardness and “K1C” the fracture toughness of the sample
under examination.

2.8. Statistical Analysis

The results are shown as mean and standard deviation. For each variable, variance,
normality and equality were assessed. The differences in mean values among the groups
were analysed. A one-way ANOVA followed by a post hoc Tukey test was applied for
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multiple comparisons. The threshold value to detect statistically significant differences was
set at p < 0.05.

Statistical analysis was performed using the computerized statistical software, SPSS
(Vers. 24.0-IBM Corp., Armonk, NY, USA).

3. Results
3.1. Grain Size Measurements

The grain size (mean ±SD) measured under SEM (Figure 2) was: for group A, 2.75
(±1.2) µm2; for group B, 0.16 (±0.05) µm2; for group C, 3.04 (±1.1) µm2. The statistical
evaluation showed a significant difference between groups A and C versus B (p < 0.05),
while no statistically significant difference was present between groups A and C (before
and after aging) (Figure 3).

Prosthesis 2022, 4, FOR PEER REVIEW 5 
 

 

absorb energy and deform. Thus, the brittleness in the present study was calculated ac-
cording to Equation (4): 𝐵 = 𝐻𝑣𝐾ଵ (4)

where “Hv” is the Vickers hardness and “K1C” the fracture toughness of the sample under 
examination. 

2.8. Statistical Analysis  
The results are shown as mean and standard deviation. For each variable, variance, 

normality and equality were assessed. The differences in mean values among the groups 
were analysed. A one-way ANOVA followed by a post hoc Tukey test was applied for 
multiple comparisons. The threshold value to detect statistically significant differences 
was set at p < 0.05. 

Statistical analysis was performed using the computerized statistical software, SPSS 
(Vers. 24.0-IBM Corp., Armonk, NY, USA). 

3. Results 
3.1. Grain Size Measurements 

The grain size (mean ±SD) measured under SEM (Figure 2) was: for group A, 2.75 
(±1.2) µm2 ; for group B, 0.16 (±0.05) µm2; for group C, 3.04 (±1.1) µm2. The statistical eval-
uation showed a significant difference between groups A and C versus B (p < 0.05), while 
no statistically significant difference was present between groups A and C (before and 
after aging) (Figure 3). 

 
Figure 2. SEM images showing the micrograins of Y-TZP Groups (50000× magnification). (a) High-
translucent zirconia; (b) low-translucent zirconia; (c) high-translucent zirconia after aging. 

 
Figure 3. Graphical representation of grain size distribution for groups A, B and C. 

3.2. Vickers Hardness (Hv) 

Figure 2. SEM images showing the micrograins of Y-TZP Groups (50,000×magnification). (a) High-
translucent zirconia; (b) low-translucent zirconia; (c) high-translucent zirconia after aging.
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3.2. Vickers Hardness (Hv)

The Hv (mean ± SD) values for different groups were: 1102 ± 392 MPa for group A,
1284± 32 MPa for group B, and 1483± 187 for group C (Figure 4). The Hv was significantly
increased in the group of “aged” zirconia (group C) samples compared to both group A and
B (p = 0.002). Meanwhile, there was no statistically significant difference between group B
and A (p > 0.05) (Figure 5).

3.3. Flexural Strength (Fs)

The results were: 427 (±59.5) MPa for group A; 805 (±198.4) MPa for group B and
440 (±96.2) MPa for group C. The Fs of traditional zirconia appeared significantly higher
than the high-translucent zirconia (p = 0.004); however, no significant differences were
shown in terms of Fs between the “aged”, which suffers aging, and group A (p > 0.05).



Prosthesis 2023, 5 53

Prosthesis 2022, 4, FOR PEER REVIEW 6 
 

 

The Hv (mean ± SD) values for different groups were: 1102 ± 392 MPa for group A, 
1284 ± 32 MPa for group B, and 1483 ± 187 for group C (Figure 4). The Hv was significantly 
increased in the group of “aged” zirconia (group C) samples compared to both group A 
and B  (p = 0.002). Meanwhile, there was no statistically significant difference between 
group B and A (p > 0.05) (Figure 5). 

 
Figure 4. SEM images of the Vickers indentations during the microhardness test. The dimension of 
the indentation determined the hardness, while the course and the length of the generated mi-
crocracks at the angles of the indentations were used to evaluate the fracture toughness. (a) High-
translucent zirconia; (b) low-translucent zirconia; (c) high-translucent zirconia after aging. 

 
Figure 5. Graphical representation of Hv distribution for groups A, B and C. 

3.3. Flexural Strength (Fs) 
The results were: 427 (±59.5) MPa for group A; 805 (±198.4) MPa for group B and 440 

(±96.2) MPa for group C. The Fs of traditional zirconia appeared significantly higher than 
the high-translucent zirconia (p = 0.004); however, no significant differences were shown 
in terms of Fs between the “aged”, which suffers aging, and group A (p > 0.05). 

3.4. Fracture Toughness (Ft) 
The results were: 4.9 (±0.9) MPa.m1/2 for group A; 8.9 (±1.1) MPa.m1/2 for group B and 

5.1 (±0.7) MPa.m1/2 for group C. The Ft was significantly higher in group B compared to 
both group C and A (p < 0.001). Meanwhile, there were no statistically significant differ-
ences between group C and A. SEM images of microcracks and fractures are shown in in 
Figures 3 and 6. 

3.5. Brittleness (Br) 
The Br values were: 230.9 (±46.4) for group A; 144.9 (±20.3) for group B and 295 (±42.8) 

for group C. The Br value was maximum in group C, whose entity was significantly higher 
(p < 0.001) compared to the other two groups (A and B). Group A had values immediately 
below, although significantly superior to group B. Using SEM analysis, it was possible to 
highlight the effects of the microcrack’s propagation, consisting in the formation of 

Figure 4. SEM images of the Vickers indentations during the microhardness test. The dimension of the
indentation determined the hardness, while the course and the length of the generated microcracks
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zirconia; (b) low-translucent zirconia; (c) high-translucent zirconia after aging.
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3.4. Fracture Toughness (Ft)

The results were: 4.9 (±0.9) MPa.m1/2 for group A; 8.9 (±1.1) MPa.m1/2 for group B
and 5.1 (±0.7) MPa.m1/2 for group C. The Ft was significantly higher in group B compared
to both group C and A (p < 0.001). Meanwhile, there were no statistically significant
differences between group C and A. SEM images of microcracks and fractures are shown
in in Figures 3 and 6.

3.5. Brittleness (Br)

The Br values were: 230.9 (±46.4) for group A; 144.9 (±20.3) for group B and 295
(±42.8) for group C. The Br value was maximum in group C, whose entity was significantly
higher (p < 0.001) compared to the other two groups (A and B). Group A had values
immediately below, although significantly superior to group B. Using SEM analysis, it was
possible to highlight the effects of the microcrack’s propagation, consisting in the formation
of “bridging” along the margins of microcracks tending to close the fracture line itself as
shown in Figure 6.

All data collected through mechanical tests are summarized in Table 2.

Table 2. Summary of the data.

Average Group A (±SD) Group B (±SD) Group C (±SD) Measure Unit

Flexural Strength 427 (±59.5) 805 (±198.4) 440 (±96.2) MPa
Fracture Toughness 4.9 (±0.9) 8.9 (±1.1) 5.1 (±0.7) MPa.m1/2

Brittleness index 230.9 (±46.4) 144.9 (±20.3) 295 (±42.8) Hv/MPa.m1/2

Vickers hardness 1102 (±392) 1284 (±32) 1483 (±187) Hv
Grain Size 2.7 (±1.2) 0.16 (±0.05) 3.0 (±1.1) µm2
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in group A. The surface area of the material involved by the four crack lines was 301 mm2; (a1) at
higher magnification (1230×), the fracture propagation appears to involve the entire thickness of the
specimen; (b) fracture and microcrack development at 552×magnification in group B. The surface
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4. Discussion

The results demonstrated that the average grain size of the highly translucent zirconia
particles was 165 ± 15 nm. It is reported that the reduction in the average grain size of
zirconia ceramics has a positive effect on the stability [33–37] and, therefore, also on the
LTD. Moreover, several studies have reported the ideal grain size of stabilized zirconia
with 3% mol of yttria values that oscillates between 150 and 500 nm [33,38–41]. Sutharsini
et al. showed that the average grain sizes of Y-TZP ceramics sintered at various holding
times were between 0.24 and 0.26 µm [42]. On the other hand, the LTD process increases
the Vickers hardness (Hv) of high-translucent zirconia and does not seem to alter either the
flexural strength or the fracture toughness of high-translucent zirconia. In fact, in our study,
Hv was significantly increased in the group of “aged” zirconia (group C) with a value
of 1483 MPa, compared to both group A and B (p = 0.002) with 1102 MPa and 1284 MPa,
respectively. These findings were in accordance with the data in the literature [43]. These
results demonstrate how the aging process is capable of drastically increasing the Vickers
hardness. Moreover, the brittleness of group C was significantly higher than the other
two groups. The LTD process appeared to also increase the brittleness of high-translucent
zirconia. In fact, the brittleness index values were 295 for group C, 230.9 for group A and
144.9 for group B. On the other hand, when we compared the crack path of translucent
zirconia before and after aging, as reported in Figure 7a1,c1, the crack’s travel appeared to
be different. The crack front in Figure 7a1 seemed to be locally deviated by the bigger grains
that underwent intragranular fracture (black arrows). This behaviour creates a limit in
crack speed. The propagating crack in Figure 7c1 appeared to run at grain boundaries level;
this crack path drives a crack faster. Thus, a higher quality aesthetics may probably increase
the fragility of the zirconia. The low-translucent zirconia reported in Figure 7b1 showed, at
the crack-tip level, a crack deflection and crack shielding (bridging). This is a consequence
of a great amount of energy stored. Furthermore, the presence of the “bridging” along
the microcrack’s margins show the tendency of the low-translucent zirconia (group B) to
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strongly oppose the propagation of the fracture line. These observations were similar to
the results obtained by Liu et al. [44].
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Figure 7. SEM images showing the microcrack propagation; (a) group A at low magnification
(1190×). The rectangle delimits the area reported in (a1); (a1) at higher magnification (50,000×), the
relationship between grains and microcracks appears. The black arrows indicate a trans-granular
fracture near the crack tip. It is also possible to recognize cubic grains (C) and tetragonal grains (t) on
the basis of their dimensions. (b) Group B at low magnification (1190×). The rectangle delimits the
area reported in (b1); (b1) at higher magnification (50,000×), the “bridging” phenomena (b) along
the margins of microcracks (white arrows) highlight the effects that tend to close the fracture line,
since the conventional zirconia undergoes a phase shift (tetragonal vs. monoclinic structure) with a
crack tip closure phenomenon; (c) group C at low magnification (1190×). The rectangle delimits the
area reported in (c1); (c1) at higher magnification (50,000×), a different relationship between grains
and microcracks appears after the aging process. The black arrows indicate an intergranular fracture
development (at grain boundaries) that shows a faster microcrack propagation. It is also possible to
recognize cubic grains (C) and tetragonal grains (t) on the basis of their dimensions.
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While the flexural strength of group B appears significantly higher (p = 0.004) than the
high-translucent zirconia (group A). These results can also be compared with other similar
studies [45,46]. Flinn et al. stated that the LTD resulted in a significant decrease in flexural
strength of Prettau [45,46]. Several studies [47–49] have investigated the ultra-translucent
Prettau anterior zirconia. Some authors found no significant differences in strength after
8 h of steam autoclave treatment [48,49]. However, a significant reduction in strength was
recorded in one study after ageing treatment [47]. In the present study, fracture toughness
was significantly higher in group B than the other two groups (p < 0.001), although the
values appeared high compared to the usual chewing loads. In addition, our results
demonstrated that the macroscopic fracture can be influenced by the trend of microcrack.
In fact, these were also evidenced by the SEM images at high magnification after three-point
bending tests as shown in Figure 5. Several studies evaluating the clinical performance of
ceramic/zirconia restorations have shown relatively high porcelain chipping and fracture
rates in zirconia-ceramic restorations in posterior teeth [50]. Factors involved during the
fabrication of the restorations include differences in the coefficient of thermal expansion,
non-ideal heating or cooling rates between the substructure and the laminated porcelain,
and the unfavourable cut between the zirconia structure and the ceramic coating [16,51–54].
The most frequent problems are the chipping of the ceramic or fracture of the structure; in
most cases zirconia substructures rarely suffer damage and complications occur for the
ceramic material [50,55,56]. Indeed, the study by Vigolo et al. [57] showed how the group
of ceramic zirconia restorations was inclined to give more frequent clinical problems such
as a fracture of the ceramic coating. For this reason, monolithic restorations have been
recently introduced, specifically to reduce the incidence of chipping or fracturing of the
glass ceramic veneer/component. These can be used without the porcelain coating, thus
resulting in being directly exposed to the oral cavity. Even if the influence of sintering
protocols onto the mechanical characteristics of the monolithic zirconia restorations was
deeply investigated and reported [58–62], we do not consider it in the present study and
used a standard procedure. In 2010, Jung et al. [63] analysed the effect of full zirconia
restorations (Zirkonzahn Prettau) and feldspathic ceramics against dental enamel in a
chewing simulator for 240,000 cycles. The author reported that the polished zirconia
produced less abrasion than glazed zirconia or polished feldspathic ceramic. Recently,
De Angelis et al. [64] reported a wear resistance for the ultra-translucent zirconia closest
to that of type III gold alloy. On the other hand, Albashaireh et al. [65] showed how the
degree of wear of the antagonist tooth enamel was significantly less in zirconia restorations
compared to feldspar porcelain restorations. In conclusion, among various dental materials,
the highly polished zirconia showed the lowest wear capacity against the antagonist
enamel. Moreover, the glazed zirconia showed a superior wear capacity compared to
highly polished zirconia, despite this surface is smooth before the test. This happens
because the thin layer of glazing disappears from the areas of occlusal function after some
time. [66]. Further studies must be performed on this topic.

5. Conclusions

The high-translucent zirconia, compared to the traditional one, showed a significant
reduction in mechanical properties. The clinical applications should be related to the
anterior/lateral area, where a high aesthetic performance is requested to the premolar
region with relatively low occlusal stress.
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