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Abstract: Limb disability is a frequent healthcare problem, especially for patients in primary care.
Orthotic treatment has become the most common practice for either rehabilitation or permanent
assistance, due to the emergence of 3D scanning and 3D printing technologies. A CAD model rebuilt
from captured data is a key step in the rapid prototyping process of customized orthoses. An accurate
and robust surface reconstruction technique remains a research challenge, aiming for a well-fitting
design and the patient’s comfort. Thus, this paper presents of a new 3D curve-based reconstruction
algorithm to obtain a precise 3D surface of an orthotic device from a scanned body part. Numerical
experiments of two orthosis design case studies are shown to evaluate the reliability and accuracy of
the proposed approach compared to other reconstruction methods.
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1. Introduction

According to the World Health Organization (WHO) [1], about 15% of the world’s
population lives with some form of disability, of whom 2–4% experience significant diffi-
culties with normal daily functions. There is an urgent need to scale up disability services
in primary healthcare. Thus, limb disability is a global public health problem. There are
various types of treatments for limb disabilities such as surgical, therapeutic, or orthotic.

Orthotic devices have been widely used not only to provide mobilization, support,
correction, or protection, but also to treat musculoskeletal injuries or dysfunctions [2].
The traditional process of manufacturing customized orthoses is established manually
depending on an orthotic technician’s skills [3]. Plaster cast-based orthoses can cause
patients discomfort due to the device’s heavy weight, bad air circulation, the requirement to
keep it dry, and cutaneous, muscle, joint, and vascular complications [4–6]. With the advent
of 3D scanning and printing technologies in the medical field, new methods have been
introduced. Reverse engineering and 3D printing techniques reduce product waste and
improve the quality of orthotic device scans compared to traditional methods [7]. Ideally,
these devices will be personalized, biocompatible, comfortable, and safe.

Currently, 3D scanners dedicated to human healthcare are available with satisfactory
accuracy. The most common technologies used to scan human body parts are lasers and
structured light scanning. The laser technique uses a projected laser point or line from a
hand-held device. A sensor measures the distance to the surface, typically a charge-coupled
device or a position-sensitive device. Structured light methods use a projector–camera
system with predefined light patterns projected onto the human body part. Equally, 3D
printers used in orthosis manufacturing have shown promising results [5,8]. Investigations
have contributed to an acceptable mastery of the AM process, such as the selection of
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material and manufacturing parameters in [7]. Nevertheless, 3D reconstruction remains
the weak link in the current 3D scan-based manufacturing process of orthoses, and the
current approaches present several weaknesses, such as the inaccuracy and poor quality
of the designed models. Thermoforming-based methods were proposed to avoid 3D data
acquisition and 3D surface reconstruction [6,9]. The workflow includes the thermoforming
of a printed device on the patient’s limb, yielding safety and implementation issues. Thus,
this paper aims to overcome the drawbacks of traditional methods by improving the quality
and efficiency of a custom orthotic design. In this regard, a robust surface reconstruction
algorithm, using patient data acquired by 3D scanning, is developed.

The rest of this paper is organized as follows: Section 2, “Literature review”, presents a
review of related works. In Section 3, the proposed methodology for surface reconstruction
is detailed. Section 4 illustrates numerical experiments for the evaluation of reconstructed
surface quality. Two case studies of customized orthosis designs are shown in Section 5. A
conclusion is presented at the end.

2. Literature Review

In the past few decades, several 3D limb reconstruction methods have been inves-
tigated using different acquisition techniques, with varying degrees of complexity and
accuracy, for the design of medical devices. In the field of orthotic devices, CAD modeling
is a well-known approach and is receiving increased interest to replace traditional craft
practices. The authors in [7] proposed a system to construct a 3D model from simultaneous
capture of the lower limb using multiple cameras fixed at various angles. Mahmood et al.
established a technique for surface reconstruction of the limb from video image data [10].
This method involves capturing images from different viewpoints using a pinhole camera
and merging the shapes from different silhouettes into a 3D structure. However, the re-
construction is based only on video frames, leading to a complex process and difficulty in
achieving high accuracy. Venkateswaran et al. developed a Microsoft Kinect sensor-based
3D reconstruction method in the case of braces and casts [11]. Data acquisition is performed
using three sensors to capture RGB and depth images of the limb. The obtained three-point
clouds are combined onto a global reference axis to form a complete 3D point cloud. A
Delaunay triangulation-based triangular mesh is constructed from the above point cloud.
Both low-pass smoothing and Laplacian filters smooth the rough meshed surface to obtain
the reconstructed surface of the limb. However, the results show a significant reconstruction
error. Chaparro-Rico et al. proposed a procedure for customized orthosis design using a 3D
scan [12]. The 3D-scanned point cloud is reconstructed using MATLAB software (R2013). A
boundary surface is generated using SolidWorks software (2018) based on the boundaries
of cross-sections deduced from the reconstructed surface. The methodology’s accuracy was
ignored and not shown.

The above processes for user-tailored orthosis design mainly consist of 3D scans, 3D
surface reconstruction, and 3D printing [7,10–12]. However, the surface reconstruction
methods showed poor accuracy or were investigated without any formal guarantee of the
correctness of the reconstruction. Generally, surface reconstruction consists of retrieving
a 3D model of a real object from input data acquired by 3D scanner devices. The input
3D points can be either unstructured or structured. In the case of an unstructured 3D
point cloud, the data represent the points’ coordinates, while in the structured point set,
geometrical or topological information is given. Many methods have been proposed in the
literature to reconstruct a coherent surface given unstructured 3D point clouds. Hoppe et al.
developed an approximated 3D surface from an unorganized 3D point cloud [13]. This
approach does not need additional information such as the surface topology or boundaries.
In fact, all the required parameters are inferred from the input data. Hoppe et al. mentioned
the need to improve the method’s accuracy. Dinh et al. introduced a surface reconstruction
technique based on tensor field-driven anisotropic basis functions [14]. The method can
capture sharp features of the surface, such as sharp edges and corners. The principal
component analysis of data points in a small neighborhood allows for determining the
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anisotropy direction at a point. This approach does not require a priori knowledge about
the surface, such as topological information or the surface points’ normal. The reconstruc-
tion accuracy was evaluated using the average Euclidean distance error (0.0120). Carr
et al. addressed the issues of interpolating unfinished meshes (hole-filling) and rebuilding
surfaces from point clouds acquired from 3D scans [15]. The method uses the radial basis
function (RBF) as a distance function to approximate the surface. Firstly, a universal RBF is
defined. Then, RBF centers are minimized using a greedy algorithm. The efficiency of the
RBF’s fitting function contributes to a fast and accurate reconstruction approach in cases
of large datasets. Hornung and Kobbelt proposed an unsigned distance function-based
surface reconstruction approach [16]. The method includes surface confidence approxima-
tion, graph-based surface extraction, and hole-filling and mesh generation algorithms. The
surface reconstruction is established without normal information and provides resilience
to the noise produced by 3D scan misalignment. Alliez et al. presented a new Voronoi
algorithm-based surface reconstruction approach [17]. The tensor field and the direction of
the surface normal are computed using a Voronoi diagram of the oriented and unoriented
point sets. Equally, the method introduced by Huang et al. uses the weighted locally
optimal projection to denoise the input 3D point cloud [18]. After this pre-processing
step, a principal component analysis-based method is employed for normal estimation.
Finally, the surface is reconstructed using the priority-guided normal propagation scheme.
Rouhani et al. developed an implicit B-Spline surface-based reconstruction algorithm [19].
This method does not require any parameterization. A system of linear equations is solved
to reconstruct the final surface. Louhichi et al. presented two approaches: the first is
an optimization-based computational method for surface fitting [20] and the second is a
weighted displacement estimation-based surface reconstruction approach in the case of
data extracted from deformed mesh [21]. The algorithm developed in [21] was further im-
proved by Makhlouf et al. [22]. The enhanced algorithm approximates the control points of
a B-Spline surface given an unorganized set of 3D points extracted from the input deformed
mesh. The error between the input points and the approximated surface is calculated and
compared with another existing method to validate the efficiency of the proposed approach.
The above research works show that surface reconstruction issues have been investigated
for decades and that the quality of the resulting surfaces is in the process of progressive
improvement [13–19,21]. Current reconstruction methods need further progress regarding
the result’s robustness and accuracy to meet medical device design requirements (Table 1).
Thus, this paper addresses the issue of inefficient surface reconstruction from 3D scans in
the case of customized orthosis design.

Table 1. Comparison of 3D limb reconstruction methods: differences and limitations.

Method Differences Limitations

Hoppe et al. [13] Approximated 3D surface reconstruction from
unorganized 3D point cloud Need for improvement in method accuracy

Commean et al. [7] Multiple camera setup for simultaneous
capture of the lower limb

Complex process and difficult to achieve high
accuracy

Dinh et al. [14] Surface reconstruction technique based on
tensor field-driven anisotropic basis functions

Captures sharp features, no need for prior
knowledge about surface topology, moderate

accuracy (average Euclidean distance error
of 0.0120)

Carr et al. [15] Surface reconstruction using radial basis
functions (RBF) and hole-filling

Efficient and accurate reconstruction, especially
for large datasets

Hornung and Kobbelt [16] Unsigned distance function-based surface
reconstruction with resilience to noise

Reconstruction without normal information,
resilience to misalignment noise

Alliez et al. [17]
Voronoi algorithm-based surface

reconstruction using surface
normal computation

Surface normal and tensor field computation
using Voronoi diagram
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Table 1. Cont.

Method Differences Limitations

Huang et al. [18]
Weighted locally optimal projection and

principal component analysis for
surface reconstruction

Denoising of input 3D point cloud, normal
estimation, priority-guided normal

propagation, moderate accuracy

Mahmood et al. [10] Surface reconstruction from video image data
using a pinhole camera

Complex process based on video frames,
challenging to achieve high accuracy

Rouhani et al. [19] Implicit B-Spline surface-based
reconstruction algorithm

No parameterization required, solving a
system of linear equations

Louhichi et al. [21] Weighted displacement estimation-based
surface reconstruction for deformed mesh

Improved algorithm for control point
approximation in B-Spline surface

reconstruction, comparison of error with
existing methods

Makhlouf et al. [22]
Enhanced weighted displacement

estimation-based surface reconstruction
algorithm for deformed mesh

Improved control point approximation in
B-Spline surface reconstruction, comparison

with existing methods for efficiency validation

Venkateswaran et al. [11]
Microsoft Kinect sensor-based 3D

reconstruction method using RGB and
depth images

Significant reconstruction errors

Chaparro-Rico et al. [12]
3D scan of the limb using MATLAB software,

boundary surface generation using
SolidWorks software

Accuracy not specified

Overall Ongoing improvement in the quality of
resulting surfaces

Current methods need further progress in
result robustness and accuracy to meet medical

device design requirements

3. Proposed Methodology

A well-fitting design requires an efficient process of CAD-model rebuilding of data
acquired from the patient’s limb. The proposed approach to the design of a customized
orthosis involves the reconstruction of the 3D surface from a point cloud. In fact, the main
objective is to accurately reconstruct a B-Spline surface that should be reconstructed given
a 3D point set acquired by a 3D laser scanner. Figure 1 presents an overview of the surface
reconstruction process. This rebuilt surface is interpolated using approximated B-Spline
curves, which is characterized by a fitting accuracy able to satisfy most reverse engineering
requirements [23].
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Figure 1. Surface reconstruction process.

Figure 2 represents a flowchart of the overall approach. The general algorithm (Figure 3)
consists of three general steps: calculate the base plane, determine the approximated B-
Spline curves, and interpolate the B-Spline surface. In the following sub-sections, each step
is detailed.
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3.1. Calculation of the Base Plane

• Determination of the orientation of the estimated 3D surface

Firstly, the orientation of the 3D surface is estimated using the inertia matrix of the
input 3D points. Given a set of unorganized points Pi = {(xi, yi, zi)}, for i = 1, . . . , n, the
coordinates of the centroid G of the input 3D points Pi are given by Equation (1).

(xG, yG, zG) =
1
n

(
∑n

i=0 xi∑n
i=0 yi∑n

i=0 zi

)
(1)

Given the calculated center of gravity, the inertia matrix is defined by Equation (2),
such that Mij(i, j = 1 to 3) is defined by Equations (2)–(8).

MG =

M11 M12 M13
M21 M22 M23
M31 M32 M33

 (2)

Such that

M11 =
∑n−1

i=0 (xG − xi)
2

n
(3)

M22 =
∑n−1

i=0 (yG − yi)
2

n
(4)

M33 =
∑n−1

i=0 (zG − zi)
2

n
(5)

M12 = M21 =
∑n−1

i=0 (xG − xi)(yG − yi)

n
(6)

M13 = M31 =
∑n−1

i=0 (xG − xi)(zG − zi)

n
(7)

M23 = M32 =
∑n−1

i=0 (yG − yi)(zG − zi)

n
(8)

the inertia matrix MG is diagonalizable since it is a real symmetric positive-definite matrix.
Thus, eigenvectors of the MG define the three inertia axes (V1, V2, V3) of the system formed
by the set of points Pi. The eigenvector associated with the largest eigenvalue is assumed as
the inertia axis V3. The axis passing through the point G along the inertia axis V3 determines
the orientation of the 3D object.

• Determination of the base plane

This step consists of finding three distinct points Pmini (i = 1 to 3) which allow the
definition of the equation of the base plane in R3. To find the first point Pmin1, each input
point Pi is projected on the inertia axis V3 and its V3-coordinate (the coordinate of the
point with respect to the V3 inertia axis) is computed. The point Pmin1 corresponds to
the smallest V3-coordinate. Now, let P′min1 denote the orthogonal projection of the point
Pmin1 on the inertia axis V3, and Pproj stands for the orthogonal projection of Pi on the
plane defined by the three points G, Pmin1, and P′min1. Moreover, angles defined by the
two lines (Pmin1P′min1) and (Pmin1Pproj) should be computed. Therefore, the point Pproj
corresponding to the smallest angle defines the point Pmin2. Finally, Pmin2 is considered a
fixed point and, again, the smallest angle is identified to find the point Pmin3. The base
plane is uniquely defined by the three points Pmini (Figure 4).
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The coefficients of the plane equation are calculated using Equation (9), where
{(xi, yi, zi), i = 1 to 3} are the coordinates of the three points Pmini. Given the calculated
base plane, the normal vector N is determined using the cross product.

ax1 + by1 + cz1 = d
ax2 + by2 + cz2 = d
ax3 + by3 + cz3 = d

(9)

The determination of the base plane is critical for aligning the acquired data, removing
noise, guiding surface reconstruction, and providing visual context in the 3D model recon-
struction process from a 3D point cloud. By determining the base plane, the point cloud
can be aligned with a known coordinate system, making it easier to integrate the point
cloud data with other spatial information or models. The base plane provides information
about the orientation and scale of the point cloud data. By defining a horizontal surface
as the base plane, the orientation of the point cloud can be determined with respect to the
ground or any other reference plane. This knowledge is important for accurate visualiza-
tion, analysis, and measurements within the 3D model. The base plane can be used as a
filtering or segmentation criterion to separate the point cloud data into meaningful subsets.
By removing or isolating points that do not belong to the base plane, such as outliers or
noise, you can improve the quality and reliability of the reconstructed 3D model. The base
plane provides a starting point for surface reconstruction algorithms. By leveraging the
known geometry of the base plane, such as planar fitting techniques, the reconstructed 3D
model can be determined with higher accuracy. The base plane serves as a visual reference
for the reconstructed 3D model. It helps users understand the orientation, spatial rela-
tionships, and context of the point cloud data. This information is particularly important
when visualizing and interpreting the model for applications such as architecture, urban
planning, or virtual reality.

3.2. Determination of the Approximated B-Spline Curves

This step aims to approximate a set of B-Spline curves to be used in the surface
reconstruction. Given the normal vector N of the base plane, a plane Fi is generated
considering the δ-displacement value. Then, the nearest 3D points to Fi considering the
(±ε) distance are projected on the generated plane Fi. From these projected points, a
barycenter Bi is calculated to generate a vector Ni+1 linking this barycenter Bi with the
barycenter Bi−1. A new plane Fi+1 is generated based on the calculated vector Ni+1 and
the barycenter Bi (Figure 5). Next, the nearest 3D points to the newly generated plane
Fi+1 are projected on this plane considering the distance (±ε). From these projected
points, a B-Spline curve is approximated. This process is repeated until there are no more
points to project on the last generated plane. The generation of the projected planes in
the 3D surface reconstruction process are necessary for planar fitting, surface segmenta-
tion, surface reconstruction, and geometric representation. These planes provide valu-
able information and serve as a foundation for further processing and refinement in the
reconstruction pipeline.
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• B-Spline curve approximation

The B-Spline curve approximation is a crucial step in the process of 3D surface re-
construction for achieving smoothness, noise reduction, surface regularization, param-
eterization, interpolation, extrapolation, and data compression. It enhances the quality
and accuracy of the reconstructed surface, enabling various analysis and manipulation
techniques in subsequent stages.

The B-Spline curve C is defined by Equation (10), given a set of input data points
I_i (i = 0 to n), a degree p, and a number h (n > h ≥ p ≥ 1). The B-Spline curve of the de-
gree p defined by (h + 1) control points ξ_i (i = 0 to h) should be reconstructed according
two conditions: The curve passes through the first and last data points, i.e., I0 = C(0) = ξ0 and
In= C(1)= ξn, and the 3D data points are approximated by solving the least-squares problem.

C(u) = ∑h
i=0 Ni,p(u)ξi (10)

The equation of the curve approximation is defined by the relation (11).

C(u) = N0,p(u)ξ0 + ∑h−1
i=1 Ni,p(u)ξi + Nh,p(u)ξh (11)

Least squares is the optimal solution to approximate this curve. The sum of all squared
error distances is defined by Equation (12). Equation (12) can be written as in (13).

f (ξ1, . . . , ξh−1) = ∑h−1
k=1 |Ik − C(tk)|2 (12)

f (ξ1, . . . , ξh−1) = ∑h−1
k=1

∣∣∣Qk − ∑h−1
i=1 Ni,p(t)ξi

∣∣∣2; such as Qk = Ik − N0,p(u)ξ0 − Nh,p(u)ξh (13)

The Levenberg–Marquardt algorithm is applied to solve the approximation problem.
The algorithm requires the initialization of the degree of the B-Spline curve and the control
points ξi to be optimized. Then, the system of linear equations for ξi is solved to find the
best control points that approximate the curve. At each iteration of the algorithm, 5892 new
control points are calculated until the distance between the points of the B-Spline curve
defined by these control points and the set of 3D points is minimized (Figure 6).
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3.3. Interpolation of the B-Spline Surface

The B-Spline curve/surface interpolation or approximation technique excels in repre-
senting a small number of data points as a smooth curve or surface. Its ability to smooth
out irregularities, flexibility in shape control, interpolation and approximation capabilities,
data reduction advantages, and high continuity make it a powerful tool for accurately and
efficiently representing data with minimal points. The advantage of B-Spline curve/surface
interpolation or approximation is its ability to represent a small number of data points as
a smooth curve or surface. This property is particularly valuable in situations where the
available data points are sparse or unevenly distributed.

Based on the reconstructed curves, an algorithm is developed to reconstruct the final
B-Spline surface. This surface is defined on each point by Equation (14) [24].

S(u, v) = ∑n
i=0 ∑m

j=0 βi,p(u)β j,q(v)ξi,j (14)

The knot vectors U and V have (r + 1) and (s + 1) nodes, respectively, where
r = n + p + 1 and s = m + q + 1. ξi,j are the surface control points. This surface is
defined with a p degree in the u-direction and a q degree in the v-direction, such that u and
v are the location parameters that locate a point in the surface [15]. The surface node values
must be in the interval [0, 1]. Thus, the knot vectors should take the form in Equation (15).

S(u, v) = ∑n
i=0 ∑m

j=0 βi,p(u)β j,q(v)ξi,j (15)

βi,p and β j,q are the B-Spline basis functions of the p degree in the u-direction and the
q degree in the v-direction. These basis functions are computed in a recursive way (16).

βi,p(u) =
u−ui

ui+p−ui
.βi,p−1(u) +

ui+p+1−u
ui+p+1−ui+1

.βi+p+1,p−1(u)

such as
{

Ni,0(u) = 1 i f ui ≤ u ≤ ui+1
Else Ni,0(u) = 0

(16)

The interpolation of the B-Spline surface requires the following steps:

• Choose a fixed number α of points to be selected from all the reconstructed curves.
• Generate a perpendicular plane Fp to the base plane.
• Given the barycenter of each approximated curve, the plane Fp is rotated using a

calculated angle α based on the number α of selected points.
• The selected points on each curve are obtained by the intersection of the rotated plane

with the corresponding B-Spline curve.
• Interpolate the final B-Spline surface given all the selected points and the number of

approximated curves.
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4. Experimental Results on Quality Assessment

The quality of the reconstructed surface can be influenced by the characteristics of the
point cloud obtained from the scan. Point clouds may exhibit various characteristics such
as noise, outliers, irregularities, or missing data, which can affect the reconstruction process.
These factors can affect the quality and the need for cleaning or smoothing operations.
These operations help to improve the quality and reliability of the reconstructed surface by
reducing noise, eliminating outliers, addressing irregularities, and filling in missing data.
Cleaning and smoothing the point cloud enable the reconstruction algorithm to work with
a more accurate and consistent dataset, resulting in a higher-quality reconstructed surface.
These pretreatment operations are applied on the given 3D point cloud before executing
the proposed approach.

The robustness of the developed algorithm is evaluated based on the reconstruction
error of two input data point sets. The Maximum Root Mean Square Error (MRMS) metric
is used to evaluate the surface reconstruction quality. The MRMS metric calculates the
distance between the points of the initial surface S and the reconstructed surface S′ (17) [25].

MRMS = max
(
dRMS

(
S, S′), dRMS

(
S′, S

))
(17)

dRMS represents the root mean square error between two surfaces S and S′ (18).

dRMS
(
S, S′) = √

1
n∑(∆x2 + ∆y2 + ∆z2) (18)

where ∆x, ∆y and ∆z are the normal distances between two points p and p′ along the
surfaces S and S′ in the x-, y-, and z-directions, and n is the total number of points.

The reconstruction cases consist of two data clouds containing 6294 and 6365 points,
respectively. Figure 7 presents the reconstruction results using the proposed method.
The MRMS errors of the two reconstructed surfaces are mentioned in (Table 2). The
reconstruction quality is acceptable as compared to the 700 × 10−6 mm root mean square
error resulting from the reconstruction of regular feature models in [26].
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Table 2. Reconstruction error.

Number of Points Reconstruction Error (mm)

1st case 6294 0.06821 × 10−6

2nd case 6365 3.204 × 10−6

The proposed approach can be used in various fields and industries such as Computer
Vision and Robotics, Virtual Reality and Augmented Reality, Cultural Heritage and Ar-
chaeology, Medical Imaging and Biomechanics, Industrial Design and Manufacturing, and
Architecture and Construction. In this paper, we have applied the developed approach in
order to reconstruct a customized orthosis for human parts (finger and foot).

5. Surface Reconstruction Results
5.1. Surface Reconstruction for Customized Finger Orthosis Design

In the design process of an orthotic model for a specific human finger, the body part is
first 3D-scanned (Figure 8). Then, the proposed algorithm is executed to reconstruct the
corresponding B-Spline surface. The resulting MRMS error is 6.418 × 10−7 mm. Using
the same input data, the surface is reconstructed using Ben Makhlouf’s method [22]. An
MRMS error of 1.006 × 10−6 mm is obtained.
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The result demonstrates that the reconstruction error using the proposed approach
is lower than the reconstruction error resulting from the method in [22]. In this paper,
the Levenberg–Marquardt algorithm is developed to approximate the B-Spline surface
with a minimum error. In the proposed approach, those errors are minimized since the
approximation is established in the curve generation level, the approximation accuracy is
driven by the reference plan number (i.e., δ-displacement value), and the B-Spline surface
is generated by the interpolation method.

This comparison study proves the efficiency and robustness of the developed ap-
proach. These results bridge the research gap of surface reconstruction inefficiency for
rapid prototyping of orthoses.
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5.2. Surface Reconstruction for Customized Orthosis Design of Part of Foot

In this case, study, a customized orthotic model for a part of a human foot is recon-
structed given a 3D set of points obtained from a 3D scanner (Figure 9). The developed
algorithm is executed to reconstruct the adequate B-Spline surface of the human foot part.
The measured MRMS error is 9.53 × 10−6 mm. The reconstruction error of the same input
surface using Ben Makhlouf’s method [22] is 2.43 × 10−5 mm.

Prosthesis 2024, 6, FOR PEER REVIEW 13 
 

 

(a) Input 3D points (b) Reconstructed curves (c) Reconstructed B-Spline surface (d) Final surface

Reconstruction 
of the 3D surface

Foot scanned points used for the 
design of the customized orthosis

 
Figure 9. Surface reconstruction steps for foot orthosis design. 

5.3. Discussion 
The obtained results prove that the proposed methodology is efficient and can help 

clinical staff to model an adequate orthosis for a specific patient by simply scanning the 
patient’s body part. The developed algorithm gives a precise reconstruction of the 3D sur-
face compared to existing methods. In fact, it is true that the precise reconstruction of the 
3D surface affects the quality of the orthotic model, but adaptive support with the elastic 
deformity of the soft tissue can also affect the quality of the final product. In future work, 
new criteria should be considered to validate the methodology. In addition, an automatic 
definition of the plane displacement according to the input points’ size will optimize the 
method’s accuracy and runtime. Further experimental investigations including AM of or-
thopedic devices and rehabilitation treatment analysis will prove the above verdict. 

6. Conclusions 
This paper presents an original approach based on the B-Spline curve approximation 

for reconstructing a 3D surface. Several steps are followed to obtain an accurate recon-
structed surface. First, the orientation of the surface to be reconstructed is determined, 
allowing the association of a base plane with the input point set. Then, reference planes 
are created in an iterative process based on a user-predefined displacement. In each itera-
tion, the nearest points to the reference plane are projected to approximate the B-Spline 
curve. By the approximation of selected points on the reconstructed curves, the final B-
Spline surface is determined. Two modeled surfaces and two scanned parts of the human 
body are reconstructed to evaluate the proposed approach. Numerical experiments high-
light the reconstructed surface quality. Also, the experiments show the suitability and re-
liability of the proposed method for customized orthosis designs. This efficient technique 
is a promising tool for enhancing the patient’s comfort. 

Author Contributions:  Conceptualization, N.H.A. and B.L.; methodology, N.H.A., A.B.M., and 
B.L.; software, A.B.M. and B.L.; validation, N.H.A., A.B.M. and B.L.; formal analysis, N.H.A., A.B.M. 
and B.L.; investigation, N.H.A., A.B.M., B.L. and M.T.; resources, A.B.M. and B.L.; data curation, 
A.B.M. and B.L.; writing—original draft preparation, N.H.A., A.B.M., B.L., M.L. and K.H.; writing—
review and editing, N.H.A., A.B.M., B.L., M.L. and K.H.; visualization, N.H.A., A.B.M. and B.L.; 
supervision, B.L.; project administration, B.L. All authors have read and agreed to the published 
version of the manuscript. 

Figure 9. Surface reconstruction steps for foot orthosis design.

This second case study proves that the proposed approach improves the reconstruction
quality and guarantees more precision of the customized orthotic model.

5.3. Discussion

The obtained results prove that the proposed methodology is efficient and can help
clinical staff to model an adequate orthosis for a specific patient by simply scanning the
patient’s body part. The developed algorithm gives a precise reconstruction of the 3D
surface compared to existing methods. In fact, it is true that the precise reconstruction of
the 3D surface affects the quality of the orthotic model, but adaptive support with the elastic
deformity of the soft tissue can also affect the quality of the final product. In future work,
new criteria should be considered to validate the methodology. In addition, an automatic
definition of the plane displacement according to the input points’ size will optimize the
method’s accuracy and runtime. Further experimental investigations including AM of
orthopedic devices and rehabilitation treatment analysis will prove the above verdict.

6. Conclusions

This paper presents an original approach based on the B-Spline curve approximation
for reconstructing a 3D surface. Several steps are followed to obtain an accurate recon-
structed surface. First, the orientation of the surface to be reconstructed is determined,
allowing the association of a base plane with the input point set. Then, reference planes are
created in an iterative process based on a user-predefined displacement. In each iteration,
the nearest points to the reference plane are projected to approximate the B-Spline curve.
By the approximation of selected points on the reconstructed curves, the final B-Spline
surface is determined. Two modeled surfaces and two scanned parts of the human body
are reconstructed to evaluate the proposed approach. Numerical experiments highlight
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the reconstructed surface quality. Also, the experiments show the suitability and reliability
of the proposed method for customized orthosis designs. This efficient technique is a
promising tool for enhancing the patient’s comfort.
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