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Abstract: For mass spectrometry-based peptide and protein quantification, label-free quantification
(LFQ) based on precursor mass peak (MS1) intensities is considered reliable due to its dynamic
range, reproducibility, and accuracy. LFQ enables peptide-level quantitation, which is useful in
proteomics (analyzing peptides carrying post-translational modifications) and multi-omics studies
such as metaproteomics (analyzing taxon-specific microbial peptides) and proteogenomics (analyzing
non-canonical sequences). Bioinformatics workflows accessible via the Galaxy platform have proven
useful for analysis of such complex multi-omic studies. However, workflows within the Galaxy
platform have lacked well-tested LFQ tools. In this study, we have evaluated moFF and FlashLFQ,
two open-source LFQ tools, and implemented them within the Galaxy platform to offer access
and use via established workflows. Through rigorous testing and communication with the tool
developers, we have optimized the performance of each tool. Software features evaluated include:
(a) match-between-runs (MBR); (b) using multiple file-formats as input for improved quantification;
(c) use of containers and/or conda packages; (d) parameters needed for analyzing large datasets;
and (e) optimization and validation of software performance. This work establishes a process for
software implementation, optimization, and validation, and offers access to two robust software tools
for LFQ-based analysis within the Galaxy platform.

Keywords: proteomics; label-free quantification; galaxy framework; workflows

1. Introduction

Peptide- and protein-level quantification (either labeled or label-free) is routinely used in mass
spectrometry (MS)-based shotgun proteomics data analysis workflows to determine the relative
abundance of peptides or proteins in a given sample [1], including post-translationally modified
peptides [2] and amino acid sequence variants identified by proteogenomics [3,4]. In the field of
metaproteomics, where protein samples obtained from environmental microbiomes are studied, the
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quantification of microbial peptides or “metapeptides” (peptides obtained from shotgun sequencing of
microbial communities) is essential to perform taxonomic and functional quantification of proteins
expressed from the microbiome [5].

In the case of the label-free quantification (LFQ) methods, the peak intensity or area under the
curve of a detected peptide ion allows the relative quantification of peptides across different samples.
LFQ [6,7] is a useful method for quantification when the introduction of stable isotopes is impractical
(for example, in human or animal model studies) or for applications such as proteogenomics or
metaproteomics, which rely on peptide-level quantification. Currently, there are several software
packages available for LFQ analysis [8]. LFQ analysis can be performed by public domain software
suites such as MaxQuant [9] and Skyline [10], or by commercial software such as PEAKS [11] and
Progenesis [12]. Although commercial and actively-supported software offers reliability and ease of
use, its usage comes with a cost and usually includes canned features that are used for most standard
datasets. Open-source software, on the other hand, has the benefit of being amenable to testing and
optimization for emerging disciplines to offer economical options for data analysis.

In this study, through a rigorous testing and evaluation process, we have incorporated and
optimized two established, open-source tools, moFF [13] and FlashLFQ [14] in the Galaxy platform.
In order to achieve this, we worked with the software developers of these tools and tested features using
two benchmark datasets, the ABRF Proteomics Research Group (PRG) 2015 dataset [15] and a Universal
Proteomics Standard (UPS) dataset [1], and compared the outputs with results from MaxQuant,
a highly used standalone software platform capable of LFQ analysis. Based on feedback, the tool
developers of moFF and FlashLFQ made changes to the software’s capabilities, which included (a) using
match-between-runs (MBR); (b) ability to process and analyze large input datasets; (c) compatibility
with a variety of input file formats. After this rigorous evaluation and optimization, these tools were
implemented in the accessible and reproducible Galaxy [16] platform. Galaxy tools are maintained
and developed by an international community of developers (https://galaxyproject.org/iuc/) so as
to facilitate ease of usage and maintain its contemporary status for any emerging software tools or
applications. An additional advantage of having these tools available via the Galaxy platform is the
ability to process the data in workflows, wherein multiple tools can be used in a sequential manner
to generate processed outputs from the input data. The Galaxy for proteomics (Galaxy-P) team has
developed workflows related to MS-based multi-omic studies such as, proteogenomics [17,18] and
metaproteomics [19,20]. The addition of these precursor intensity-based LFQ tools to the existing
workflows will facilitate peptide level quantification for multi-omics research studies, as well as more
standard proteomics applications.

As a result of this study, we made two quantitative software tools available to researchers via
the Galaxy platform. These software are available via the Galaxy Tool Shed [21,22], GitHub, and on
Galaxy public instances.

2. Methods

We used two datasets, (a) an ABRF dataset [15] and (b) a spiked-in benchmark UPS dataset [1] to
determine the accuracy of each tool with regards to their calculated protein fold-changes. We obtained
the MS (raw) data from publicly available repositories and converted them to MGF (Mascot generic
format) files using MSConvert (vendor support) (Galaxy Version 3.0.19052.0) [23] to make it compatible
with search algorithms within the Galaxy Platform. moFF and FlashLFQ processing were performed
within the Galaxy platform (Version 19.09).

2.1. (A) ABRF Dataset

The spiked-in dataset from the ABRF PRG 2015 study was used to determine the accuracy of each
software tool. This dataset, generated through the collaborative work of the ABRF Proteomics Research
Group (https://abrf.org/research-group/proteomics-research-group-prg) contains four proteins added
to human cell lysate samples: ABRF-1 (beta galactosidase from Escherichia coli), ABRF-2 (lysozyme from

https://galaxyproject.org/iuc/
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Gallus gallus), ABRF-3 (amylase from Aspergillus niger) and ABRF-4 (protein G from Streptococcus) [15].
Each sample contained the four proteins at the same concentration, while the concentrations varied
across the four samples: 0 (blank/negative control), 20, 100, and 500 fmol. The peptide raw data for the
ABRF dataset was acquired on the LTQ orbitrap Velos with EASY-nLC.

2.2. (B) Spiked-In UPS Benchmark Dataset

To evaluate these tools, we downloaded publicly available data [1] (PRIDE #5412;
ProteomeXchange repository PXD000279), wherein UPS1 and UPS2 standards (Sigma-Aldrich, St.
Louis, MO, USA) were spiked into E. coli K12 strain samples. Based on the dynamic benchmark dataset
protocol, the UPS and E. coli peptides we quantified using nanodrop spectrophotometer at 280 nm,
and 2 µg of E. coli peptides were spiked with 0.15 µg of UPS1 or UPS2 peptides. About 1.6 µg of
the mix was analyzed on the Q Exactive (Thermo Fisher, Waltham, MA, USA) mass spectrometer [1].
The UPS1 and UPS2 standards contain 48 human proteins at either the same (5000 fmol, UPS1) or
varying concentration (50,000 fmol to 0.5 fmol, UPS2), respectively.

2.3. Peptide Identification

For both datasets, we used SearchGUI (SG) [24] (version 3.3.3.0) and Peptide Shaker (PS) [25]
(version 1.16.26) to search the MS/MS spectra against respective protein FASTA databases along with
contaminants from cRAP database (https://www.thegpm.org/crap/). Although SearchGUI has the
option to use as many as eight search algorithms, we used only four search algorithms (X!tandem,
OMSSA, MSGF+, and Comet) for this evaluation study.

For the spiked-in ABRF PRG dataset, a protein FASTA file was generated by merging the UniProt
human reference database with spiked-in proteins and contaminant proteins (73,737 protein sequences
database generated on 6 February 2019). Search parameters used were trypsin enzyme for digestion,
where two missed cleavages were allowed. Carbamidomethylation of cysteine was selected as a fixed
modification and methionine oxidation was selected as a variable modification. The precursor mass
tolerance was set to 10 ppm and the fragment mass tolerance to 0.5 Da, with minimum charge as 2 and
maximum charge of 6. For Peptide Shaker, the false discovery rate (FDR) was set at 1% at the PSM,
peptide, and protein level, along with filtering the peptide length ranging from 6–65 peptides.

For the spiked-in UPS dataset, the mass spectra were searched against a protein FASTA database
provided by Cox. et al., 2014 [1], (4494 protein sequences database generated on 25 July 2019).
The parameters for SearchGUI-Peptide Shaker analysis were as follows: precursor mass tolerance was
set to 10 ppm and the fragment mass tolerance to 20 ppm with minimum and maximum charge as 2
and 6, respectively.

For MaxQuant analysis (version 1.6.7.0, Cox lab, Max Planck institute of Biochemistry, Martinsried,
Germany), the built-in Andromeda search engine [26] was used. The parameters for MaxQuant
were matched with the SearchGUI-PeptideShaker search. The fixed modification was set for
carbamidomethylation of cysteine and oxidation of methionine as a variable modification. The FDR
was set at 1% and the MS/MS tolerance was set at 10 ppm. The tabular output data from Peptide
Shaker (PSM.tab) and Andromeda (msms.txt) were used for protein quantification.

2.4. Quantification Tools

moFF and FlashLFQ, were initially tested outside of the Galaxy platform. We tested various
releases for moFF (versions 1.2.0 to 2.0.2) and FlashLFQ (versions 0.1.99 to 1.0.3) and provided
developers with feedback to improve software stability and data quality. We then implemented these
updated tools within Galaxy. The results from moFF (version 2.0.2) and FlashLFQ (version 1.0.3) were
then compared with MaxQuant (version 1.6.0.16), a widely used LFQ quantification software suite.
For testing, all the quantification tools were set at monoisotopic tolerance of 10 ppm and run with or
without MBR, where indicated.

https://www.thegpm.org/crap/
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2.5. Normalization and Protein Quantification

After peptide-level precursor intensity values were generated, normalization was performed using
limma [27], and peptides were summarized into protein-level abundances with protein expression
control analysis (PECA) [28]. Specifically, the “normalizeBetweenArrays” limma function was used
for most normalization methods (i.e., scale, cyclic loess, and quantile). For VSN (variance stabilizing
normalization), the “normalizeVSN” limma function was used [27,29]. After normalization, PECA was
used to combine the peptide-level measurements to protein-level values for the detection of differentially
expressed proteins. These two tools were run via custom R scripts (version 1.3), which can be accessed
via the Supplementary Document 2 (https://github.com/galaxyproteomics/quant-tools-analysis).

3. Results

Both moFF and FlashLFQ are established software tools and contain useful features such as
amenability to Galaxy implementation, compatibility with existing Galaxy upstream and downstream
tools, ability to read mzML and Thermo raw file formats, open-source code, MBR functionality,
and results that can be easily evaluated with performance metrics.

moFF is an extensible quantification tool amenable to any operating system. The input for moFF is
peptide search engine output and Thermo raw files and/or mzML files; it performs both MS/MS as well
as MBR quantification. moFF tool also has a novel filtering option for MBR peak intensities [30]. moFF
has been wrapped in Galaxy (Figure 1A) using a Bioconda package [31]. The Galaxy version of moFF is
available via Galaxy toolshed [21], GitHub [32] and Galaxy public instances (proteomics.usegalaxy.eu,
usegalaxy.be and z.umn.edu/metaproteomicsgateway).

FlashLFQ is a peptide and protein LFQ algorithm developed for proteomics data analysis. It was
developed to quantify peptides and proteins from any search tool, including MetaMorpheus, which also
performs PTM identification from MS/MS data. It uses Bayesian statistics to estimate the difference
in the abundance of inferred proteins between samples, though this feature was not evaluated here.
FlashLFQ can normalize fractionated datasets by using a bounded Nelder–Mead optimizer [33] to
find a normalization coefficient for each fraction, similar to MaxLFQ. FlashLFQ was implemented
in Galaxy (Figure 1B) within a Singularity container [34] as FlashLFQ is a Windows application
requiring the NET core framework for deployment in the Unix-based Galaxy environment. Singularity
provides a secure means of running such tools in Galaxy. The Galaxy version of FlashLFQ is available
via Galaxy toolshed [22] GitHub [35] and via Galaxy public instances (proteomics.usegalaxy.eu and
z.umn.edu/metaproteomicsgateway).

Relevant features of moFF and FlashLFQ, as well as the design of the evaluation study, are
summarized in Figure 2. An essential aspect of this study was both of these tools being in active
development by groups amenable to collaboration, which greatly helped optimization-based tests and
feedback from the Galaxy-P team members.

To generate peptide identification inputs for moFF and FlashLFQ, datasets were searched against
appropriate protein databases using SearchGUI/PeptideShaker. The speed and accuracy of FlashLFQ
and moFF were evaluated in comparison to MaxQuant, a popular software tool used for LFQ.
For MaxQuant, searches were performed by MaxQuant’s built-in Andromeda search algorithm.
All three software programs have an MBR feature, where unidentified peaks are “matched” to identify
peaks in other runs based on similar m/z and retention time. MaxLFQ, an algorithm within MaxQuant,
normalizes raw intensities, and also aggregates them into protein groups [1]. For moFF and FlashLFQ,
limma was used to normalize peptide intensities, and PECA was used to determine protein fold-changes
and associated p-values. The limma tool within Galaxy implements different normalization techniques
such as quantile, VSN, cyclic LOESS, and scale normalization. Users can choose between these
normalization methods. FlashLFQ also has built-in normalization and protein quantification functions,
which we have used in this study.

https://github.com/galaxyproteomics/quant-tools-analysis
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Figure 1. Galaxy interface of moFF and FlashLFQ: (A) Bioconductor package of moFF is wrapped within
Galaxy and available via Galaxy toolshed [21] and Galaxy public instances (proteomics.usegalaxy.eu).
(B) A docker/singularity container of FlashLFQ is wrapped within Galaxy and available via Galaxy
toolshed [22] and Galaxy public instances (proteomics.usegalaxy.eu).
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100 fmol, and 500 fmol) and a negative control (see methods). The spiked-in proteins should not be 
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outputs showed non-zero intensity values for the spiked-in proteins in blank control samples if MBR 
was enabled (Figure 3A, left). The match-between runs (MBR) module for the earlier version of both 
the software, moFF and FlashLFQ, simply predicted the retention time for the matched peptide in 
the target run by looking for intensity in the target m/z and RT window. If the target peptide was not 
present in that run, overlapping eluting peptides or noise would result in the assignment of spurious 
background signals. As a result, ABRF spiked in proteins were detected in the blank control sample 
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developers to improve their MBR algorithms so that intensity values for these proteins in the blank 
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target peptide and corresponding envelope found in the target run. This method has been published 
in the moFF 2.0 version [30]. The FlashLFQ developers implemented an optional setting that requires 

Figure 2. Experimental design of the evaluation study: spectra files are converted to MGF before mass
spectra are matched with peptides using respective search engines. Each of the quantification tools use
RAW files and the peptide identification tabular output as inputs. The figure also shows the features
of each tool. The outputs from all of the tools were then compared against each other. The asterisk
symbol (*) denotes that the files were run on same computing device.

After ascertaining that moFF and FlashLFQ results correlate well with MaxQuant results
(Supplementary Figure S1), we set out to evaluate the MBR feature of the software tools. For this,
we used the ABRF PRG datasets, with four spiked-in proteins at three different concentrations (20 fmol,
100 fmol, and 500 fmol) and a negative control (see methods). The spiked-in proteins should not be
detected in the negative control, either with or without MBR. We observed that moFF and FlashLFQ
outputs showed non-zero intensity values for the spiked-in proteins in blank control samples if MBR
was enabled (Figure 3A, left). The match-between runs (MBR) module for the earlier version of both
the software, moFF and FlashLFQ, simply predicted the retention time for the matched peptide in
the target run by looking for intensity in the target m/z and RT window. If the target peptide was not
present in that run, overlapping eluting peptides or noise would result in the assignment of spurious
background signals. As a result, ABRF spiked in proteins were detected in the blank control sample
whole using the MBR mode in the earlier versions of the software tools. We worked with the developers
to improve their MBR algorithms so that intensity values for these proteins in the blank control samples
were correctly reported as zero (Figure 3B, right). moFF’s new version removes spurious matches
by filtering scans for the similarity between the theoretical isotopic envelope of target peptide and
corresponding envelope found in the target run. This method has been published in the moFF 2.0
version [30]. The FlashLFQ developers implemented an optional setting that requires a protein to have
at least one peptide assigned to an MS/MS spectrum in a sample group so that a non-zero value can be
assigned to the peptides in the sample group. Due to the above-mentioned changes in the algorithms
and subsequent filtering steps, the newer versions of these tools do not detect spurious signals for
target peptides in blank control samples.
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Figure 3. (A) Effect of MBR after software version updates: The log10 values of the intensities (blue
bars) from each of the four ABRF spiked-in proteins (ABRF-1: beta Galactosidase from E. coli, ABRF-2:
Lysozyme from Gallus gallus, ABRF-3: amylase from Aspergillus, ABRF-4: protein G Streptococcus) were
plotted. The results from prior versions of moFF (v1.2.1) and FlashLFQ (v0.1.99) (before) shows that
MBR detects ABRF proteins (shown in red) in the negative control sample in both software. The results
from the current versions of moFF (v2.0.2) and FlashLFQ (v1.0.3.0) implemented in Galaxy (after),
shows that the MBR feature does not detect ABRF proteins in the negative control. (B) Accuracy of
fold-change estimation: for evaluating the accuracy of quantified results, we estimated the fold change
of the spiked-in proteins in the 500 fmol sample as compared to 100 fmol sample. The root mean
squared log error (RMSLE) was calculated for fold change estimation. For this dataset, moFF with
MBR displayed significantly higher RMSLE value, whereas FlashLFQ’s MBR performed similarly to
MaxQuant’s MBR.

The 500 fmol and 100 fmol datasets from the ABRF dataset were used to determine the fold-change
accuracy (Figure 3B). In order to determine the accuracy of the fold-change, root mean squared log
error (RMSLE) [36] was calculated,

RMSLE =

√∑N
i=1(log10 ri − log10r̂i)

2

N
(1)

where, ri is the true ratio, r̂i is the estimated ratio and N is the number of proteins identified via
sequence database searching of the sample.

Root mean squared log error is a metric to evaluate the difference between predicted and observed
values. In this case, the values being compared are the predicted (known) fold-changes and the
observed fold-changes. RMSLE being an error based metric provides the true picture of prediction
quality, however, deciding a suitable threshold value is challenging. The objective was to obtain an
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RMSLE value closer to zero for all the tools. The RMSLE values for the three tools are shown in
Figure 3B, with the MBR feature enabled. We observed that moFF with MBR had slightly higher error
compared to the other tools. MaxQuant’s MBR and FlashLFQ’s MBR perform quite similarly, though
all three tools show a low error when the MBR is enabled.

Although MaxLFQ and FlashLFQ have their own in-built methods for normalizing peptide
abundance, for a more direct comparison of moFF and FlashLFQ performance, we normalized the
peptide intensity levels using limma and obtained differentially expressed proteins through the PECA
bioconductor package. Normalized peptide intensity values from moFF and FlashLFQ were input into
PECA, wherein, the tool calculates the p-values of the peptide level data and then groups the values
into protein level data. The PECA output was then compared with MaxQuant values using the UPS
benchmark dataset. For this, quantitative information for the 48 proteins from the UPS dataset was
extracted using an R-script to generate a tabular output with fold-change values.

The fold-change accuracy of all quantified UPS proteins after normalization was calculated by
comparing the estimated protein fold-change with the true fold-change using the RMSLE (Figure 4A).
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Figure 4. (A) Fold-change accuracy (MBR) of all proteins: after normalization, the estimated protein
abundance ratios for all the identified UPS proteins were compared to the true abundance ratios,
using the root mean squared log error (RMSLE). The plot represents the RMSLE values using different
normalization methods. *LFQ denotes the LFQ values represent FlashLFQ’s and MaxQuant’s inbuilt
normalization value. The value on the top of the bars denotes the number of proteins that were
quantified. (B) Fold change accuracy (MBR) of proteins with similar estimated ratios: In total there are
48 UPS proteins, we classified the UPS proteins into different groups based on the UPS2/UPS1 ratio
estimation, the true ratios run from 10 to 10−4. The value on the top of the bars denotes the number of
proteins that were quantified using each normalization method. The RMSLE of the intensity ratio was
used to measure the accuracy of the estimated fold changes.

Figure 4A shows the comparison of different normalizations using the MBR values. Although
the bar graph shows that MaxQuant’s MaxLFQ performed the best compared to all, it did so at the
cost of the number of proteins quantified. However, we noticed that MBR from FlashLFQ, with its
in-built normalization (light blue bar in Figure 4A), performed better overall in terms of quantification
and the number of proteins identified. Meanwhile, moFF and FlashLFQ provided higher numbers of
quantified proteins while still maintaining low RMSLE values. We also performed comparison studies
of MBR vs. no MBR, the results of which are shown in Supplementary Figure S3A. We also found
that moFF and FlashLFQ quantified similar numbers of peptides across the ABRF and UPS datasets
(Supplementary Figure S2).

After evaluating the RMSLE for all proteins, we estimated the accuracy of similarly abundant
UPS proteins (Figure 4B). We categorized the UPS standards by their concentration ratio (UPS2/UPS1),
which resulted in 6 different categories (i.e., ratios of 1 to 0.0001). The results showed that MaxQuant
quantification works optimally for high and medium abundant proteins. However, for low abundance
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proteins, the fold-accuracy was lower, presumably because of missing intensity values. Another
important observation was that MaxLFQ denotes a smaller error compared to the other tools in the
low abundance samples, but quantifies fewer proteins. An evaluation study for MBR vs. noMBR was
also performed and showed a similar trend represented in Supplementary Figure S3B.

After evaluation of the moFF and FlashLFQ tools, we worked with the developers of these tools to
implement their optimized software in Galaxy, enabling integration into diverse MS-based proteomics
workflows and promoting their usage by the Galaxy community. Our implementation will allow the
users to choose their choice of tool and normalization (Supplementary Figure S4), which will benefit
their research.

4. Discussion

Protein and peptide-level quantification has been used by proteomics researchers to determine
how the proteome responds to biological perturbation [37]. In particular, precursor-intensity based LFQ
has enabled researchers to perform quantitative proteogenomics analyses [38]. Quantitative changes
in the proteome can also be correlated with transcript abundance changes [39] to get a more complete
picture of how an organism responds to a stimulus. For example, in cancer proteogenomics studies,
these abundance measurements help identify differential expression patterns of variant peptides that
may have functional significance in cancer [40,41].

Peptide-level quantification also aids in functional studies of microbial communities and
microbiomes using metaproteomics. For example, in metaproteomics studies, metapeptides or
metaproteins detected from environmental [42] or host-derived samples [43] can be quantified to
shed light on the dynamics of the taxa, biological function, and their abundance [44]. Our group
has developed and optimized Galaxy-based tools and workflows for proteogenomics [45] and
metaproteomics analyses [19,20]. Tools implemented through this study will extend these workflows
to enable quantification of metapeptides and/or metaproteins.

In our analyses, the three LFQ tools, moFF, FlashLFQ, and MaxQuant, correlate well in their
results according to our evaluation. In this study, we have added moFF and FlashLFQ to the Galaxy
framework, which not only facilitates the dissemination of these tools but also enables automated
data analysis by using them within workflows [16]. We also highlight the importance of the process
of careful user evaluation, feedback to developers, and optimization of the tools and workflows.
Preliminary testing was performed on the command line or GUI versions of the tool. These tools
were then packaged into the Galaxy platform, where results were compared to the command-line/GUI
versions and also optimized more usage in automated workflows.

Open-source software usage has faced challenges due to dependencies such as operating system
(Windows, Linux, OSX), language or platforms (Python, C++, Java), lack of adhering to HUPO
standards [46], and installation or usability issues [47]. To overcome these issues, the Galaxy-P project,
as well as others in the Galaxy community, have sought collaborations with many research groups
that have developed these tools, following a protocol which includes defining key input and output
data types, establishing key operating parameters for the Galaxy tool, overcoming operating system
compatibility issues (e.g., Singularity containers for Windows tools), along with rigorous testing and
optimization. This collaborative and iterative process of development and optimization ensures the
software performs accurately and efficiently within the Galaxy platform.

Ideally, software tools that are UNIX based, such as moFF, are easier for deployment within
Galaxy. We also demonstrated here that tools such as FlashLFQ could be packaged within a singularity
container to enable easy and secure implementation within Galaxy. MaxQuant, which is a popular,
public-domain proteomics software package, is available in both Windows and Linux-compatible
versions [9]. Although in the early development and testing phase, the LFQ module that uses MS1
precursor intensity data within MaxQuant (MaxLFQ) was made available within Galaxy toolshed [48].
Once fully tested and evaluated, accessibility to this software via the Galaxy platform will offer even
more choices for precursor-intensity based quantification. Offering users a choice of multiple validated
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software tools also highlights the benefits of a workflow engine such as Galaxy, where users can easily
develop parallel workflows using different combinations of tools to determine methods that provide
optimal results based on user requirements.

In our tests, we observed that FlashLFQ has a faster runtime as compared to the other two
tools. MaxQuant processing time is longer, presumably since it performs peptide identification and
quantitation simultaneously. For example, on the same computing device, the UPS dataset was
processed by FlashLFQ in approximately 15 min for quantification only, whereas MaxQuant and moFF
took 34 min and 3 h, respectively. Our evaluation and availability of these tools within a unified
platform such as Galaxy offers users a choice for their workflows where the speed of analysis can also
be considered.

5. Conclusions

This study demonstrates a successful collaborative effort in software tool development and
dissemination, which is a hallmark of the Galaxy community and the Galaxy-P project [19].
This community-driven approach brings together users and software developers who work together
to validate and make the tool accessible and usable for other researchers across the world. The study
described here provides a model of success for the process used to ultimately provide optimized,
well-validated tools for community use. We did not seek a goal to determine the single best tool for
LFQ use, but rather focused on offering users a choice of validated quantification tools amenable to
customizable analytical workflows. In addition to our work here, others from the Galaxy community
are also working on integrating tools within the MaxQuant suite [49], which will extend the choices
for LFQ quantification available. As a result of this study, Galaxy users can now confidently use two
rigorously validated LFQ software tools (moFF and FlashLFQ) for their quantitative proteomic studies.
We are currently working on incorporating the quantitative capabilities of moFF and FlashLFQ within
existing metaproteomics and proteogenomics workflows, so that they can be used by the research
community in their quantitative multi-omics studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-7382/8/3/15/s1,
Figure S1: Peptide Correlation: The raw intensities of the ABRF peptides were correlated using Pearson
Correlation coefficient. Output from FlashLFQ and moFF correlated well with MaxQuant. Figure S2: Peptide
Overlap across FlashLFQ and moFF: A Venn diagram of the quantified ABRF (a) and UPS (b) unique peptides
are shown to display the coverage of the peptides across FlashLFQ and moFF. The input for both the tools was
the PSM report from the Peptide shaker containing 18172(ABRF) and 33497 (UPS) unique peptides. Figure S3.
(A) Fold-change accuracy (MBR vs no-MBR) of all proteins: After normalization, the estimated protein ratios
for all the identified UPS proteins were compared to the true ratios, using the Root mean squared log error
(RMSLE). The plot represents the comparison between MBR and no-MBR using normalization methods. Note
that LFQ values represent MaxQuant’s and FlashLFQ’s normalized value. The value on the top of the bars
denotes the number of proteins that were quantified. Although the bar graph shows that MaxQuant’s MaxLFQ
performs the best compared to all, we notice that the number of UPS proteins identified and used for the
calculation were less compared to other tools. (B) Fold change accuracy (MBR vs no-MBR) of proteins with
similar estimated ratios: In total there are 48 UPS proteins, we classified the UPS proteins into different groups
based on the UPS2/UPS1 ratio estimation, the true ratios run from 10 to 10−4. Value on the top of the bars
denote the number of proteins that were quantified using each normalization method. This is a comparative
study between MBR and no MBR. The RMSLE of the intensity ratio was used to measure the accuracy of the
estimated fold change. The figure shows that moFF and FlashLFQ work well in comparison to MaxQuant for
ratio estimation of low abundance proteins (<0.1). Figure S4: Fold Accuracy of Tools with inbuilt and external
normalization and protein quantitation: This figure displays the errors in Fold change accuracy while using
inbuilt and external normalization and protein level quantitation features of the evaluated tools. Supplementary
document 2 (https://github.com/galaxyproteomics/quant-tools-analysis) is the GitHub repository of the Rscripts.
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