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Abstract: Individual gene expression and molecular pathway activation profiles were shown to be
effective biomarkers in many cancers. Here, we used the human interactome model to algorithmi-
cally build 7470 molecular pathways centered around individual gene products. We assessed their
associations with tumor type and survival in comparison with the previous generation of molecular
pathway biomarkers (3022 “classical” pathways) and with the RNA transcripts or proteomic profiles
of individual genes, for 8141 and 1117 samples, respectively. For all analytes in RNA and proteomic
data, respectively, we found a total of 7441 and 7343 potential biomarker associations for gene-centric
pathways, 3020 and 2950 for classical pathways, and 24,349 and 6742 for individual genes. Overall,
the percentage of RNA biomarkers was statistically significantly higher for both types of pathways
than for individual genes (p < 0.05). In turn, both types of pathways showed comparable performance.
The percentage of cancer-type-specific biomarkers was comparable between proteomic and tran-
scriptomic levels, but the proportion of survival biomarkers was dramatically lower for proteomic
data. Thus, we conclude that pathway activation level is the advanced type of biomarker for RNA
and proteomic data, and momentary algorithmic computer building of pathways is a new credible
alternative to time-consuming hypothesis-driven manual pathway curation and reconstruction.

Keywords: cancer; gene expression; molecular pathway; human interactome; prognostic biomarker;
survival biomarker; RNA sequencing; proteomic data

1. Introduction

Variation of gene expression among individual tumors enables the personalization of
many diagnostic and treatment options [1]. Indeed, multiple gene expression biomarkers
were proposed for the prediction of patient survival and drug response (e.g., [1–5]). Several
transcriptomic biomarkers were approved for clinical use, e.g., gene expression signatures
predicting recurrence and prognosis in breast and thyroid cancers [6–8].
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However, gene products do not act alone, but rather as the components of complex
molecular networks executing specific functions in cell molecular physiology. Thus, cancer-
specific alterations of gene expression inevitably lead to dysregulation of multiple molecular
pathways [9]. This makes it possible to create the next generation of signatures based on
molecular pathway activities and investigate their association with various characteristics
of cancers, e.g., tumor grade, invasiveness and histological type, patient survival, and
response to therapy [10–13]. Pathways affected in a tumor can be identified using various
statistical methods for both RNA and protein expression data [14–17]. Alternatively, gene
ontology (GO) analysis can identify molecular processes enriched by the differentially
expressed genes [18].

Many such approaches ignore pathway functional topology and fail to determine
the up- or downregulated state of a pathway and the extent of its activation. Indeed,
different components of a molecular pathway may have different functional roles (for
example, increased expression of an inhibitory component would act in favor of pathway
downregulation, and vice versa). Furthermore, pathways may include feedback loops and
other complex interactions that have to be taken into consideration when quantitatively
assessing pathway alterations in cancer [19,20].

In order to translate expression data into quantitative measures of pathway deregula-
tion while considering pathway architecture, a measure termed Pathway Activation Level
(PAL) was introduced [14,21,22]. For a given molecular pathway, PAL is calculated as a
weighted sum of logarithms of case-to-normal ratios for the expression levels of all genes
involved in the pathway of interest, with weights ranging from –1 to 1 according to the
activator/repressor role of the corresponding gene products.

When used to discriminate between nine human cancer types, PAL values showed
better accuracy than expression levels of individual genes [23]. On its own, PAL was
also found to be a good predictor of tissue type in bladder cancer [9] and of sensitivi-
ties to some cancer drugs [13,24–28]. Additionally, PALs demonstrated better stability
against experimental noise and lower batch bias compared to single gene expression levels
in both transcriptomic (microarray and RNAseq) and proteomic data [14,23,29]. These
findings suggest the advantage of PAL values or other metrics of that kind as potential
molecular biomarkers.

Furthermore, a computational recursive approach was proposed that can algorithmi-
cally annotate activator/repressor roles to all pathway nodes depending on the pathway
molecular architecture and the nature (activation/inhibition/other) of each molecular in-
teraction within the pathway [20]. This enables fast, uniform, and simultaneous annotation
of thousands of molecular pathways [30]. In addition, this approach also excludes the oper-
ator error that is a probable event during manual annotation of pathways and interactomes
due to their high complexities.

Recently we published an alternative concept of a molecular pathway that is built
algorithmically as an interacting network around the central node—gene product of inter-
est [31]. This approach is based on the whole-interactome model and is fully automatic. It
has the advantage of reducing bias introduced during manual reconstruction as in the case
of the “classical” pathways. In the manually reconstructed pathways, the gene contents are
typically investigator hypothesis-driven with a strong bias toward well-known “topical”
molecules. As a result, such featured molecules are overrepresented in classical pathways
whereas the others can be ignored or overrepresented instead.

Thus, using the whole interactome model, we constructed a set of so-called gene-
centric pathways: local subnetworks of interacting molecules consisting of a central gene
(main node of the pathway) and other molecular components interacting with this gene
product either directly or indirectly. The gene-centric pathway is characterized by a max-
imal number of molecular interactions starting at the central node and leading to every
other node of the pathway (one or two interactions in the published reports) [31]. One such
algorithmically constructed pathway centered at gene FREM2 emerged as a promising
predictor of tumor grade and survival in human gliomas, strongly exceeding the biomarker
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performance of the FREM2 gene itself [31]. We then investigated a larger number of
gene-centric pathways in human gliomas, where they demonstrated an overall superior
diagnostic and prognostic performance compared to single gene expression levels [32].

However, the relative performance of the gene-centric pathways in comparison to
classical pathways and single genes remained unexplored at the pan-cancer level. Here we
used a human interactome model involving 7470 human gene products to algorithmically
reconstruct molecular pathways termed gene-centric pathways, centered around each of
these genes. We then assessed their general biomarker characteristics in comparison with
the previous generation of molecular pathways (3022 “classical” pathways) and with the
transcripts of 24,862 individual genes. To this end, we investigated potential biomarker
associations with tumor type and overall and progression-free survival in 21 human cancer
types using RNA sequencing and proteomic data for 8141 and 1117 samples, respectively.
For all analytes in RNA and proteomic data, respectively, we found a total of 7441 and
7343 potential biomarker associations for gene-centric pathways, 3020 and 2950 for classical
pathways, and 24,349 and 6742 for individual genes. Overall, the percentage of potential
RNA biomarkers was statistically significantly higher for both types of pathways than for
individual genes (p < 0.05). In turn, both types of pathways showed comparable perfor-
mance. While the percentage of potential cancer type-specific biomarkers was comparable
between proteomic and transcriptomic levels, the proportion of potential survival biomark-
ers was dramatically lower for the proteomic data: up to only 2.3% versus as much as 36.3%
in transcriptomic data. Thus, we conclude that pathway activation level is the advanced
type of cancer biomarker for RNA data, and momentary algorithmic computer building
of pathways is a new credible alternative to time-consuming hypothesis-driven manual
pathway reconstruction.

2. Materials and Methods
2.1. Interactome Model and Gene-Centric Molecular Pathways

A model of the human interactome was built using a set of pairwise molecular interac-
tions extracted from the annotations of 51,672 human molecular pathways. For this, we
used the biggest available collection of molecular interaction-validated molecular path-
ways previously described in [30]. The collection includes pathways from the following six
databases: Reactome [33], NCI Pathway Interaction Database [34], Biocarta [35], Human-
Cyc [36], QIAGEN-Pathway-Central, and PathBank [37]. An overall interactome model
was built as a directed graph with nodes representing gene products or metabolites and
edges standing for direct molecular interactions. The model is publicly available following
reference [31] for our previously published paper where we assessed the biomarker capacity
of gene-centric pathways for human gliomas. The interactome includes known metabolic
reactions and transport processes as well as protein–protein interactions. The first two
types of processes are marked with specific assistive nodes. All interactions were catego-
rized and labeled as “activation”, “inhibition”, or “other”. The “other” interaction type
includes interactions that cannot be related to activation or inhibition. Examples of “other”
interaction types are “SubPathwayInteraction”, “ComplexAssembly”, “Compound”, and
“Indirect values”. In total, the model built contains 64,095 molecular participants including
7496 gene products and 361,654 pairwise interactions, schematized in Figure 1.

Specific gene-centric molecular pathways were constructed for all genes from the
interactome graph with a distance of one interaction from the central node. If one of
those nodes was a “process” node (biochemical reaction or transport process), then all
participants of that process were also included in the respective gene-centric pathway
(7496 gene-centric pathways primarily built).

The pathway annotation algorithm was applied to each gene-centric pathway as
previously described in [20] to assign activator-repressor role (ARR) coefficients to each
component of every pathway, which defines their pathway activator, inhibitor, or neutral
roles. The pathways having all ARR coefficients equal to zeros (2 pathways), or having
either zero ARRs or no available expression data for all nodes (24 pathways) were excluded
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from further analysis, thus giving the total number of 7470 gene-centric pathways for
further analysis. The reconstructed gene-centric pathways are added to the public pathway
databank OncoboxPD, available at open.oncobox.com (accessed on 20 May 2023).
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Figure 1. The human interactome model and example of gene-centric molecular pathway. (A) graph
of the human whole interactome. The edges inherit node colors. Assistive nodes denote biochemical
reactions and molecular transport if such processes include more than two components and cannot
be visualized as an arrow between two participants. (B) example of a gene-centric pathway PROC.
Projections of the central node (PROC gene product, dark green) and of the pathway members (green)
are shown on the whole interactome. The rest of the interactome graph is shown as background.
(C) Isolated view of PROC-centric pathway and its interacting components.

2.2. Classical Molecular Pathways

In this study, previously annotated molecular pathways taken from the specific path-
way databanks were referred to as classical molecular pathways. A total of 3022 such
pathways were extracted from the OncoboxPD collection [30].

2.3. Gene Expression Data and Clinical Annotation

For transcriptomic data, we used clinically annotated solid cancer RNA sequencing
gene expression data of solid tumors and corresponding normal tissues from The Cancer
Genome Atlas (TCGA) project repository [38]. In total, 21 cancer types were selected for

open.oncobox.com
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the analysis, each having at least 100 available primary solid tumor samples (Table 1). For
proteomic data, we used available datasets from the Proteomic Data Commons (PDC) portal
with profiles for both tumor and normal samples (Table 1). Another inclusion criterion for
proteomic data was label-based quantitation (iTRAQ, TMT).

Table 1. Overview of clinically annotated RNA sequencing and proteomic profiles used in this
study. Projects marked with asterisks (*) were simplified by histological type for survival analysis: a
dominant tumor type was identified, and samples of other histological types were excluded from
the analysis.

Cancer Type Abbreviation

RNAseq Data Proteomic Data
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Urothelial carcinoma BLCA * 412 403 19 - - -

Infiltrating ductal carcinoma
of the breast BRCA * 1106 777 113 240 102 21

Cervical squamous
cell carcinoma CESC * 304 252 3 - - -

Colon adenocarcinoma COAD * 478 452 41 95 - 100

Esophageal carcinoma ESCA 162 162 11 - - -

Head and neck squamous
cell carcinoma HNSC 502 502 44 110 - 68

Clear cell renal
cell carcinoma KIRC 540 532 72 110 101 84

Papillary renal
cell carcinoma KIRP 290 290 32 - - -

Hepatocellular carcinoma LIHC * 371 355 50 - - -

Lung adenocarcinoma LUAD 537 516 59 113 105 102

Lung squamous
cell carcinoma LUSC 502 501 49 110 107 102

Infiltrating ductal
adenocarcinoma of

the pancreas
PAAD * 178 143 4 137 108 74

Pheochromocytoma PCPG * 179 149 3 - - -

Prostate adenocarcinoma PRAD * 500 484 52 - - -

Rectal adenocarcinoma READ 166 165 10 - - -

Sarcomas SARC 259 259 2 - - -

Cutaneous melanoma SKCM 103 103 1 - - -

Stomach adenocarcinoma STAD 375 375 32 - - -

Thyroid carcinoma THCA * 504 496 59 - - -

Thymomas THYM * 120 109 2 - - -

Endometrioid
adenocarcinoma UCEC * 553 401 35 103 88 30

All cancer types Total 8141 7426 693 1018 611 581

We excluded from the analysis TCGA-LGG (low-grade gliomas) and TCGA-GBM
(glioblastomas multiforme) cancers because they were recently characterized in our previ-
ous communication [32]. RNA sequencing gene expression data (STAR-counts) and clinical
annotations (XML and BCR Biotab files for TCGA and PDC patient annotations) were
downloaded from the GDC Data Portal, release v32.0 (portal.gdc.cancer.gov, accessed on 1

portal.gdc.cancer.gov
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April 2022). Proteomic gene expression profiles (iTRAQ and TMT log-transformed ratios)
were extracted from PDC Data Portal (pdc.cancer.gov, accessed on 1 April 2022).

For consistency, some projects (marked with asterisks (*) in Table 1) were simplified by
histological type: a dominant tumor type (including possible subtypes) was identified, and
samples of other histological types were excluded from the analysis. For example, in the
TCGA-PCPG (Pheochromocytoma and Paraganglioma) group, only pheochromocytoma
samples were considered.

2.4. Calculation of Pathway Activation Levels

To assess the activation status of molecular pathways using gene expression data
relative to controls, we calculated Pathway Activation Levels, PALs [21]. For pathway p,
PAL is calculated as follows:

PALp = ∑n log(CNRn) · PGp,n · ARRp,n/ ∑n |ARRp,n|, (1)

The sum is calculated over all genes in the assay; PGp,n = 1 if gene n is involved
in pathway p and 0 otherwise. CNRn (case-to-normal ratio of gene n) is the ratio of its
expression level in the tumor sample under analysis to the geometric mean expression
level in the control group. ARRp,n (activator-repressor role of gene n), is a coefficient that
characterizes the effect of gene product n on the activity of pathway p. ARRp,n can take
one of the following values: 1 if gene product n activates pathway p, −1 if it inhibits
pathway p, 0.5 or −0.5 if it is rather an activator or repressor of pathway p, respectively,
and 0 if the functional role of n in pathway p is unclear or inconsistent. For all PAL
calculations of the classical pathways, we used our publicly accessible OncoboxPD online
tool open.oncobox.com [30].

2.5. Statistical Analysis of Potential Cancer-Specific Biomarkers

To detect potential cancer type-specific biomarkers, all samples under analysis were
merged and further spread into two groups: (i) cancer type of interest and (ii) the rest.

In order to identify potential tumor biomarkers, samples of cancerous tissues were
compared to samples of normal tissue from the corresponding anatomical site.

For measuring pathway and gene activities, PAL values and gene expression levels
were analyzed, respectively, by assessing the Area Under the ROC Curve (AUC) and
Wilcoxon paired test p-value. The p-values were FDR adjusted according to the Benjamini–
Hochberg method [39]. Pathways/genes were considered statistically significant potential
biomarkers in case of an AUC exceeding 0.7 and adjusted p-value (q) less than 0.05. All
genes and classical and gene-centric pathways were checked for being significant potential
biomarkers for each cancer type. For proteomic data, we used ratios of tumor profiles to
average normal profile on the gene level to exclude the impact of a reference sample from
the specific proteomic project.

2.6. Statistical Analysis of Survival Characteristics

For each cancer type and each gene or pathway, patients were classified into two
groups depending on whether their gene expression or pathway activation level was above
or below the median level. Overall and progression-free survival values were then assessed
using the Kaplan–Meier method, and the statistical significance of differences between the
two groups was determined by the p-value of the log-rank test. In each cancer type and
each category of potential biomarkers (genes and gene-centric and classical pathways),
the p-values were FDR-adjusted using the Benjamini–Hochberg method. The differences
in survival characteristics were assessed by calculating hazard ratio (HR) in a univariate
Cox model. Items with the adjusted p-value (q) < 0.05 and the HR confidence interval
excluding 1 were considered significant. Genes and gene-centric and classical pathways
were then compared for the percentage of statistically significant differential items and the
corresponding HRs.

pdc.cancer.gov
open.oncobox.com
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2.7. Software

Gene expression data were normalized with DESeq2 [40], and PAL values were calcu-
lated for gene-centric pathways using R [41]. PALs for classical pathways were calculated
using the python package oncoboxlib [20].

Statistical analysis was carried out using R [41] with the following packages: pROC [42],
Stats, survival [43,44], survminer [45], and survcomp [46,47]. Results were visualized in
Python 3 using seaborn [48] and matplotlib [49], as well as in R using ggplot2 [50].

3. Results
3.1. Assessment of Potential Cancer-Type Biomarkers

The expression level of every gene was screened for the potential of serving as the
potential cancer-type-specific biomarker. Similarly, pathway activation levels (PALs) were
interrogated for all classical and gene-centric molecular pathways (Supplementary Table S1).
For the 21 cancer types under consideration (Table 1) using both RNAseq and proteomic
data, we identified a number of statistically significant potential biomarkers (AUC > 0.7
and adjusted p-value (q) < 0.05), Table 2.

Table 2. Number of potential cancer-type-specific biomarkers for 21 cancer types under analysis.

TCGA
Cancer ID

Marker
Genes

Marker
Classical
Pathways

Marker
Gene-Centric

Pathways
TCGA

Cancer ID
Marker
Genes

Marker
Classical
Pathways

Marker
Gene-Centric

Pathways

PCPG 9601 (39%) 1488 (49%) 3691 (49%) LUSC 2610 (10%) 974 (32%) 2614 (35%)
BLCA 1959 (8%) 268 (9%) 608 (8%) PAAD 3108 (13%) 824 (27%) 2085 (28%)
BRCA 4590 (18%) 350 (12%) 709 (9%) PRAD 6412 (26%) 451 (15%) 1212 (16%)
CESC 3743 (15%) 1244 (41%) 2961 (40%) SKCM 5969 (24%) 1505 (50%) 3652 (49%)
UCEC 10,579 (43%) 864 (29%) 1904 (25%) STAD 6168 (25%) 781 (26%) 1595 (21%)
COAD 9082 (37%) 1334 (44%) 3322 (44%) THYM 7846 (32%) 1332 (44%) 3164 (42%)
HNSC 5263 (21%) 636 (21%) 2961 (40%) THCA 8343 (34%) 727 (24%) 1760 (24%)
KIRC 6709 (27%) 1198 (40%) 2866 (38%) SARC 4042 (16%) 1037 (34%) 1954 (26%)
KIRP 6186 (25%) 989 (33%) 2790 (37%) ESCA 7963 (32%) 1898 (63%) 4869 (65%)
LIHC 13,180 (53%) 760 (25%) 2429 (33%) READ 7988 (32%) 1304 (43%) 3328 (45%)

LUAD 1660 (7%) 661 (22%) 1780 (24%) Total 24,349 3020 7441

In addition to the absolute values of potential biomarkers identified, we also calculated
the percentage of statistically significant potential biomarkers for genes and classical and
gene-centric molecular pathways (Figure 2A). We observed a statistically higher propor-
tion of high-quality potential biomarkers for the molecular pathways (both classical and
gene-centric) than for the individual genes (t-test p-value 0.042 and 0.038, respectively).
Interestingly, at the same time, we found no significant difference between the biomarker
capacities of gene-centric and classical pathways (p = 0.96).

We then assessed proteomic data (Table 1) in a similar way and found potential cancer-
type-specific biomarkers at the levels of protein expression and activation levels of classical
and gene-centric molecular pathways (Table 3 and Figure 2B). For proteomic data, we
found no statistically significant difference between proportions of potential biomarkers at
the level of proteins and gene-centric and classical pathways (Figure 2B).

We also screened for biomarker capacity expression levels of individual genes that
serve as the central nodes for the corresponding gene-centric pathways, and PALs of the
corresponding gene-centric pathways. Again, we observed a significantly higher proportion
of high-quality potential biomarkers among the gene-centric pathways for RNAseq data
(p = 1.25 × 10−5) but not for the proteomic profiles (Figure 3).
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Figure 2. Percentage of significant potential cancer-type-specific biomarkers among the total number
of tested items. (A) In transcriptomic datasets, 21 cancer types, 7470 gene-centric molecular pathways,
3022 classical molecular pathways, and 24,862 individual genes were investigated. (B) Protein ex-
pression analysis: eight cancer types, 7418 gene-centric molecular pathways, 2994 classical molecular
pathways, and 6862 proteins.

Table 3. Number of potential expression biomarkers for eight cancer types identified at the pro-
teomic level.

CPTAC Project ID Proteins Classical Pathways Gene-Centric
Pathways

Label,
TMT10/TMT11 Mass Spectrometer

KIRC PDC000127 3585 (52%) 4231 (57%) 1691 (56%) TMT10 Orbitrap Fusion
Lumos

LUAD PDC000153 1488 (22%) 2000 (27%) 793 (26%) TMT10 Q Exactive HF-X
COAD PDC000116 1554 (23%) 1923 (26%) 776 (26%) TMT10 Q Exactive Plus
BRCA PDC000120 3607 (53%) 4131 (56%) 1659 (55%) TMT10 Orbitrap Fusion

Lumos
UCEC PDC000125 3220 (47%) 3698 (50%) 1620 (54%) TMT10 Orbitrap Fusion

Lumos
HNSC PDC000221 1410 (21%) 1631 (22%) 659 (22%) TMT11 Orbitrap Fusion

Lumos
LUSC PDC000234 2371 (35%) 3888 (52%) 1209 (40%) TMT11 Q Exactive HF-X
PDAC PDC000270 3977 (58%) 4793 (65%) 1983 (66%) TMT11 Orbitrap Fusion

Lumos
Total 6742 2950 7343
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Figure 3. (A) Profile of percentage share of significant potential biomarkers for 21 cancer types under
analysis for PALs of gene-centric pathways and expression levels of genes serving as their central
nodes, using RNAseq data. (B) Profile of percentage share of significant potential biomarkers for eight
cancer types for proteomic-based PALs of gene-centric pathways and expression levels of proteins
serving as their central nodes.

To assess any potential technical bias in the proteomic data used in this study, we
examined the clustering of samples in relation to tumor type, tandem mass tag (TMT10 and
TMT11), and the model of the mass spectrometer used (Figure 4). We quantitatively evalu-
ated the quality of hierarchical clustering using the Watermelon multisection method [51].
This method provides a WM metric that indicates the effectiveness of sample clustering
into predetermined groups, where a higher WM score means better clustering. The WM
scores were 0.94, 0.98, and 0.99 for clustering by tandem mass tag, tumor type, and mass
spectrometer model, respectively. Thus, we observed the strongest clustering by the type
of spectrophotometer, about the same for tumor type, and less significant clustering by the
type of tandem mass tag. Consequently, in high-throughput combinatory proteomic stud-
ies, attention should be paid to possible batch effects mainly connected with the equipment
used. We then compared the average percentage shares of potential biomarkers for the
datasets produced by the Orbitrap Fusion Lumos, Q Exactive HF-X, and Q Exactive Plus
mass spectrometers (Table 4). We found that approximately 50% of the tested individual
proteins and pathways were significant potential proteomic biomarkers in the datasets
produced by the Orbitrap Fusion Lumos spectrometer. In contrast, up to 29% of proteins
and up to 39% of pathways were detected as significant potential biomarkers in the datasets
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produced by spectrometers of the Q Exactive series. However, it is important to note that
different spectrometers were used to interrogate cohorts of different cancer types and that
apparent differences in biomarker abundance can be also related to the biological nature of
the samples under analysis.
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Figure 4. Clustering of log-transformed ratios of tumor profiles to average normal profiles. The height
of dendrogram branches corresponds to the Euclidian distance between clusters. The clustering
method is ward.d2.

Table 4. Average percentage share of statistically significant proteomic expression biomarkers for
datasets produced by three types of mass spectrometers.

Mass Spectrometer Individual Proteins (%) Classical Pathways (%) Gene-Centric Pathways (%)

Orbitrap Fusion Lumos
(5 datasets) 46 50 51

Q Exactive HF-X
(2 datasets) 29 39 33

Q Exactive Plus (1 dataset) 22 27 26

3.2. Assessment of Potential Tumor Biomarkers

To detect potential tumor biomarkers, we compared the expression levels of each gene
in the tumor with those in the normal tissue. Similarly, we evaluated all classical and gene-
centric molecular pathways by analyzing pathway activation levels (PALs) (Supplementary
Table S2). Using RNAseq data, we found statistically significant potential biomarkers for 16
out of 21 considered cancer types, where the AUC > 0.7 and the adjusted p-value (q) < 0.05
(Table 5).

Table 5. The number of transcriptomic tumor potential biomarkers analyzed for 21 types of cancer.

TCGA
Cancer ID Marker Genes

Marker
Classical
Pathways

Marker
Gene-Centric

Pathways
TCGA

Cancer ID Marker Genes
Marker

Classical
Pathways

Marker
Gene-Centric

Pathways

PCPG 0 (0%) 0 (0%) 0 (0%) LUSC 11,508 (46%) 2013 (67%) 4989 (67%)
BLCA 7379 (30%) 1294 (43%) 2939 (39%) PAAD 0 (0%) 0 (0%) 0 (0%)
BRCA 8328 (33%) 1515 (50%) 3427 (46%) PRAD 6031 (24%) 1271 (42%) 3005 (40%)
CESC 0 (0%) 537 (18%) 784 (10%) SKCM 0 (0%) 0 (0%) 0 (0%)
UCEC 9445 (38%) 1568 (52%) 3868 (52%) STAD 8032 (32%) 813 (27%) 1825 (24%)
COAD 10,351 (42%) 2048 (68%) 4701 (63%) THYM 0 (0%) 0 (0%) 0 (0%)
HNSC 6172 (25%) 1011 (33%) 2563 (34%) THCA 7481 (30%) 845 (28%) 1759 (23%)
KIRC 10,559 (42%) 1500 (50%) 3471 (46%) SARC 0 (0%) 0 (0%) 0 (0%)
KIRP 12,673 (51%) 1738 (58%) 4140 (55%) ESCA 10,671 (43%) 1712 (57%) 4537 (61%)
LIHC 12,245 (49%) 1276 (42%) 3627 (48%) READ 10,510 (42%) 2005 (66%) 4640 (62%)

LUAD 10,836 (44%) 1271 (42%) 3008 (40%) Total 24,548 3021 7466
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A higher proportion of high-quality potential biomarkers was observed for the classi-
cal molecular pathways compared to the individual genes (t-test p-value = 0.037, Figure 5A
and Table 5). A similar trend was observed when comparing the gene-centric molecular
pathways and the individual genes (t-test p-value = 0.096). Furthermore, we found no sig-
nificant difference between the biomarker capacities of gene-centric and classical pathways
(t-test p-value p = 0.72).
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Figure 5. The percentage of significant potential tumor biomarkers out of the total number of tested
items is shown. (A) The study investigates a total of 21 types of cancers, 7470 gene-centric molecular
pathways, 3022 classical molecular pathways, and 24,862 individual genes present in transcriptomic
datasets. (B) Protein expression analysis was performed for eight cancer types, the number of items
tested for each type is available in Supplementary Table S3.

Besides the number or percentage of potential biomarkers, we compared the AUC
distribution for the pathways and genes that were tested. The medians of the distributions
for potential pathway-based biomarkers were higher than those for potential single-gene
biomarkers (Supplementary Figure S1). We performed a similar analysis of adjusted p-values,
and the median of distribution was highest for genes (Supplementary Figure S1). These
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results confirm the trend observed in the analysis of the proportions of significant poten-
tial biomarkers.

Potential tumor biomarkers were similarly detected by analyzing protein expres-
sion and activation levels of classical and gene-centric molecular pathways (Table 6 and
Figure 5B). Our proteomic data analysis revealed a statistically higher proportion of high-
quality potential biomarkers for the molecular pathways (both classical and gene-centric)
compared to individual genes (t-test p-value of 1.5 × 10−4 and 1.5 × 10−5, respectively).
Similar to the results of RNAseq analysis, there is no significant difference (p = 0.38) in the
biomarker proportions between gene-centric and classical pathways.

Table 6. Number of expression biomarkers for eight cancer types identified at the proteomic level.

CPTAC Project ID Proteins Classical Pathways Gene-Centric
Pathways

Label,
TMT10/TMT11 Mass Spectrometer

KIRC PDC000127 5649 (57%) 2078 (71%) 5054 (69%) TMT10 Orbitrap Fusion
Lumos

LUAD PDC000153 5622 (51%) 1936 (66%) 5419 (74%) TMT10 Q Exactive HF-X
COAD PDC000116 3657 (49%) 1927 (67%) 5116 (71%) TMT10 Q Exactive Plus
BRCA PDC000120 5417 (52%) 2076 (71%) 5299 (72%) TMT10 Orbitrap Fusion

Lumos
UCEC PDC000125 6147 (57%) 2047 (70%) 4889 (67%) TMT10 Orbitrap Fusion

Lumos
HNSC PDC000221 4650 (45%) 1571 (53%) 4607 (63%) TMT11 Orbitrap Fusion

Lumos
PDAC PDC000270 4387 (43%) 1844 (63%) 4401 (60%) TMT11 Orbitrap Fusion

Lumos
LUSC PDC000234 6673 (58%) 2055 (70%) 5386 (73%) TMT11 Q Exactive HF-X

Total

We screened the proportion of significant potential tumor biomarkers at the level
of individual genes that serve as the central nodes for the corresponding gene-centric
pathways. Additionally, we screened PALs of the corresponding gene-centric pathways.
We found a significantly higher proportion of high-quality potential biomarkers among the
gene-centric pathways for proteomic data (p = 1.3 × 10−4), but not for the RNAseq profiles
(p = 0.4), (Figure 6).

3.3. Assessment of Potential Survival Biomarkers

We then compared the biomarker capacity of the same three types of transcriptional
variables for predicting patient overall survival and progression-free survival. Interestingly, for
all types of available molecular data (genes and gene-centric and classical pathways), we iden-
tified statistically significant potential survival biomarkers for only 13 out of 21 cancer types.
For both overall and progression-free survival, the biggest proportion of potential prognostic
biomarkers of all three types was found in papillary and clear cell renal cell carcinomas, and in
hepatocellular carcinoma. Moreover, a large number of potential biomarkers were detected for
overall survival in head and neck squamous cell carcinoma and for progression-free survival
in prostate adenocarcinoma (Figure 7 and Supplementary Table S4).

In order to estimate the likelihood of each category to provide a potential prognostic
biomarker, we calculated the percentages of all genes and gene-centric and classical path-
ways that were linked with survival in different cancers and compared the results. For
example, in clear cell renal cell carcinoma, as many as 7998 genes and 2110 gene-centric
pathways were identified as potential prognostic biomarkers for overall survival, thus
constituting 32.1% and 28.2% of all genes and gene-centric pathways, respectively; shown
for all cancers in Figures 7A and 8.

Of note, proteomic data analysis showed one or two orders of magnitude lower numbers
of significant potential biomarkers than RNAseq data. We found that only pancreatic cancer
had potential survival biomarkers at the level of single protein levels, and activation levels of
gene-centric and classical molecular pathways (Figures 7B and 8B). Breast, lung, and endome-
trial cancers each had small numbers of individual protein potential survival biomarkers.
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Figure 6. (A) Profile of the percentage share of significant potential tumor biomarkers for 21 cancer
types analyzed for PALs of gene-centric pathways and expression levels of genes serving as their
central nodes, using RNAseq data. (B) Profile of the percentage share of significant potential tumor
biomarkers for eight cancer types for proteomic-based PALs of gene-centric pathways and expression
levels of proteins serving as their central nodes.

Similar to the case of cancer type-specific biomarkers, gene-centric pathways and
classical pathways demonstrated an advantage over individual genes for both types of
survival biomarkers at the transcriptome level (Figure 8). Thus, for overall survival, the
highest number of biomarkers is observed in two, five, and three cancer types for individual
genes and gene-centric and classical pathways, respectively. For progression-free survival,
the advantage has been shown in four, three, and five cancer types for individual genes
and gene-centric and classical pathways, respectively.

At proteome level data, potential single protein biomarkers were found in four cancer
types. Potential pathway-based biomarkers were found only for pancreatic cancer, with the
highest percentage share of significant biomarkers among gene-centric pathways.
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Figure 7. Percentage of potential prognostic biomarkers characterized by category, type of survival
data, and cancer type. (A) Numbers of potential biomarkers found in the three biomarker categories
by cancer type and by type of survival data using RNAseq data. (B) Numbers of potential biomarkers
found in the three biomarker categories by cancer type and by type of survival data using proteomic
data. Percentages refer to the fractions of statistically significant biomarkers within each category.
Cancer types with no biomarkers detected are not shown.

3.4. Prognostic Performance of Hazard Ratio for Overall Survival and Progression-Free Survival

Alternatively, the prognostic robustness of potential biomarkers was assessed at the
level of hazard ratios (HRs) for overall survival and progression-free survival of cancer
patients (Figures 8 and 9). We compared distributions of HRs for cancer types with all three



Proteomes 2023, 11, 26 15 of 25

types of potential biomarkers: clear renal cell carcinoma, papillary renal cell carcinoma,
hepatocellular carcinoma, head neck squamous cell carcinoma (overall survival only),
and prostate adenocarcinoma (progression-free survival only). A majority of potential
biomarkers for these cancers (except for clear renal cell carcinoma) are associated with poor
prognosis independent of biomarker type (Figures 8A,B and 9A,C). To assess if biomarker
types for the same cancer differ by value of predicted risk, we compared absolute values
of log-transformed HRs by the Wilcoxon test (Supplementary Table S5). We observed
statistically significant differences between different biomarker types in most of the pairwise
comparisons made; however, the magnitudes of these differences are low (0.001 to 0.17
between medians of HR distributions, Supplementary Table S5).
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Figure 8. Percentage of potential prognostic biomarkers characterized by category, type of survival
data, and cancer type. Percentage values are reflected by the logarithmic color scale and text labels.
For zero values, the labels are not shown. In each cancer type, the percentage for the category with
the highest percentage of potential biomarkers (winning position) is highlighted in bold. Cancer
types with no biomarkers detected are not shown. Cancer-type abbreviations are given according to
Table 1.

Additionally, we compared HR distributions for gene-centric pathways and their corre-
sponding central genes (Figures 8A,B and 9B,D). We identified significant differences only
for progression-free survival in papillary renal cell carcinoma (Supplementary Table S5 and
Figure 9C,D) and for both types of survival data in hepatocellular carcinoma (Supplementary
Table S5 and Figure 10C,D). Potential individual gene biomarkers tended to have greater
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absolute values of log-transformed HRs than the corresponding gene-centric pathways for
progression-free survival in papillary renal cell carcinoma and for overall survival in hepa-
tocellular carcinoma. In contrast, gene-centric pathways were leading for progression-free
survival in hepatocellular carcinoma (Supplementary Table S5). Nevertheless, despite the
differences being statistically significant, their absolute values were relatively small.
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Figure 9. Distributions of hazard ratios of potential biomarkers in renal cell carcinomas by biomarker
category and survival type. n is the number of potential biomarkers in the respective distribution. The
dashed line at HR = 1 corresponds to no difference in survival. (A) HRs of genes, gene-centric pathways,
and classical pathways significantly associated with overall and progression-free survival in clear cell
renal cell carcinoma. (B) HRs of gene-centric pathways and their central genes, paired together, in
cases where both were significantly associated with overall and progression-free survival in clear cell
renal cell carcinoma. (C) HRs of genes, gene-centric pathways, and classical pathways significantly
associated with overall and progression-free survival in papillary renal cell carcinoma. (D) HRs of
gene-centric pathways and their central genes, paired together, in cases where both were significantly
associated with overall and progression-free survival in papillary renal cell carcinoma. Panels (A,C)
show all genes, gene-centric pathways, and classical pathways significantly associated with survival.
Panels (B,D) show genes serving as central nodes in gene-centric pathways, connected by lines with
their respective pathways, in cases where both were significantly associated with survival. In cases with
more than 100 genes and pathways, only 100 randomly selected gene-pathway pairs are connected
by lines.
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Figure 10. Distributions of hazard ratios of potential biomarkers in hepatocellular carcinoma, head
and neck squamous cell carcinoma, and prostate adenocarcinoma by biomarker category and survival
type. (A) HRs of genes, gene-centric pathways, and classical pathways significantly associated with
overall and progression-free survival in hepatocellular carcinoma. (B) HRs of gene-centric pathways
and their central genes, paired together, in cases where both were significantly associated with
overall and progression-free survival in hepatocellular carcinoma. (C) HRs of genes, gene-centric
pathways, and classical pathways significantly associated with overall and progression-free survival
in head and neck squamous cell carcinoma. (D) HRs of gene-centric pathways and their central genes,
paired together, in cases where both were significantly associated with overall and progression-free
survival in head and neck squamous cell carcinoma. (E) HRs of genes, gene-centric pathways, and
classical pathways significantly associated with overall and progression-free survival in prostate
adenocarcinoma. (F) HRs of gene-centric pathways and their central genes, paired together, in cases
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where both were significantly associated with overall and progression-free survival in prostate
adenocarcinoma. For the latter two cancer types, only overall survival and progression-free survival
potential biomarkers are shown, respectively, as these were the only survival categories that had
enough potential biomarkers to visualize a comparison; n is the number of potential biomarkers in
the respective distribution. The dashed line at HR = 1 corresponds to no difference in survival. The
panels (A,C,E) show all genes, gene-centric pathways, and classical pathways significantly associated
with survival. The panels (B,D,F) show only genes serving as central nodes in gene-centric pathways,
connected by lines with their respective pathways, in cases where both were significantly associated
with survival. In cases with more than 100 genes and pathways, only 100 random gene-pathway
pairs are connected by lines.

Due to the small number of potential proteomic biomarkers, the same comparison
could not be carried out at the level of proteomic data.

4. Discussion

We performed here the first pan-cancer screening including gene expression data for
21 human cancer types to compare the biomarker performance of manually and algorith-
mically reconstructed molecular pathways, and of individual genes. We found statistically
significant cancer-type potential biomarkers in each cancer type under analysis, both among
genes and gene-centric, and classical molecular pathways. The percentage of cancer-type
biomarkers was significantly higher in both types of pathways (both gene-centric and clas-
sical) than among individual genes. The cancer-type-specific biomarkers may be important
for a better understanding of tissue-specific aspects of carcinogenesis. In addition, we
screened for potential biomarkers between tumors and normal tissues and observed the
same trend that pathway-based potential biomarkers outperform single genes or proteins.

In 13 cancer types, we also identified putative prognostic biomarkers of all three
types (genes and gene-centric and classical pathways). For overall survival, gene-centric
pathways and classical pathways showed a higher percentage of significant potential
biomarkers than individual genes in five and three cancer types, respectively, whereas
potential gene biomarkers prevailed in two cancer types. For progression-free survival, the
advantage has been shown, respectively, in four, three, and five cancer types for individual
genes and gene-centric and classical pathways. Thus, we conclude that a pathway-based
approach can result in enriched sets of potential biomarkers predicting survival than
individual genes.

In terms of magnitudes of HRs associated with significant potential survival biomark-
ers, there were statistically significant yet relatively small differences between the above
three biomarker types and no overall trend of an advantage of the certain biomarker type
in all cancers.

Many previous studies attempted to link the activities of genes and their inter-
acting networks with clinical outcomes [52–57]. In most of them, an overall analytic
pipeline included assessment of differential gene expression and building co-expression
networks, e.g., using Ingenuity Pathways Analysis [52] or by identification of fully con-
nected gene sets enriched for certain functions, e.g., using the CytoScape ExpressionCorre-
lation tool [53]. Alternatively, genes could be grouped using weighted correlation network
analysis (WGCNA) [58], e.g., for studying survival biomarkers in lung adenocarcinoma, in
colon and renal cancers [54–56]. Protein–protein interactions from the STRING database
(http://string-db.org/, accessed on 20 May 2023) were also used to supplement WGCNA
for a more accurate prediction of patient survival in bladder cancer [57]. We tried to com-
pare these approaches with the current study findings in terms of input data and output
results in Table 7.

http://string-db.org/
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Table 7. Biomarkers found in different gene network approaches.

Reference Disease Input Data Results Gene Network
Construction Method

[52] Lung squamous cell
carcinoma

RNA expression data for
15 patients

Seven out of 24 gene
networks generated from

differentially expressed genes
were correlated with overall

survival

http://www.ingenuity.com
(accessed on 20 May 2023)

[53] Gastric cancer
RNA expression data for

265 (TCGA) + 200 (GSE15459)
patients

Gene correlation network of
249 genes significantly
associated with overall

survival. Four functional
network components were

highlighted

http://baderlab.org/Software/
ExpressionCorrelation

(accessed on 20 May 2023))

[54] Colon cancer RNA expression data for
461 patients (GSE39582)

11 gene networks associated
with tumor grade and

progression-free survival
WGCNA

[55] Lung adenocarcinoma RNA expression data for
82 patients

Gene network enriched with
cell cycle-related genes

correlated with tumor grade
and overall survival

WGCNA

[56] Renal clear cell carcinoma RNA expression data for
533 patients (TCGA)

From 12 gene networks, two
(“cell cycle” and “p53
signaling” pathways)

associated with overall
survival

WGCNA

[57] Bladder cancer RNA expression data for
414 patients (TCGA)

Protein interactions of
77 genes: 37 genes formed a
network related to overall

survival

WGCNA + STRING

This study; cancer type
markers

Pan-cancer analysis: 21 cancer
types

RNA expression data for
8141 patients (TCGA)

For 14 of 21 cancer types, both
gene-centric and classical

pathways were better cancer
type-specific biomarkers than

individual genes. In total,
3020 classical and 7441

genecentric pathways were
identified as cancer

type-specific biomarkers.

Classical and gene-centric
molecular pathways

This study; cancer type
markers

Pan-cancer analysis: 8 cancer
types

Proteomic data for
1018 patients (CPTAC)

For all cancer types, both
gene-centric and classical

pathways had a higher
percentage of significant
biomarkers than single

proteins. In total,
2950 classical and

7343 gene-centric pathways
were identified as

cancer-type-specific
biomarkers.

Classical and gene-centric
molecular pathways

This study; survival
markers

Pan-cancer analysis: 21 cancer
types

RNA expression data for
7426 patients (TCGA)

For overall survival, the
highest percentage of

biomarkers was observed in
five and three cancer types for

gene-centric and classical
pathways, respectively. For

progression-free survival, the
advantage for gene-centric
and classical pathways was

shown for three and five
cancer types, respectively.

Classical and gene-centric
molecular pathways

This study; survival
markers

Pan-cancer analysis: 6 cancer
types

Proteomic data for
611 patients (CPTAC)

Statistically significant
survival pathway-based

biomarkers were found for
pancreatic cancer

(168 gene-centric and
45 classical pathways).
Gene-centric pathways

showed the highest
percentage of biomarkers

identified.

Classical and gene-centric
molecular pathways

Thus, in this study, we considered not only the proximity of genes within topological
interaction networks but also their functional roles. Unlike in the previous research, in
addition to well-known classical pathways from popular databases, we also generated and
in-depth analyzed algorithmically constructed gene-centric pathways.

http://www.ingenuity.com
http://baderlab.org/Software/ExpressionCorrelation
http://baderlab.org/Software/ExpressionCorrelation
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Overall, the algorithmic approach was shown to be a robust method of obtaining new
molecular pathways. The algorithm selected highly connected gene-centric subnetworks
in the human interactome, and the molecular pathways obtained in such a way have
demonstrated biomarker values comparable with pathways manually constructed by
expert curation.

It is now widely accepted that a combination of biomarkers, such as gene signatures or
pathways, is more robust and performs better than using individual genes or proteins. Our
results confirm this trend. However, the number of algorithmically constructed pathways
was about two times higher than for the source classical pathways. The ultra-fast speed
and efficiency of this approach, therefore, make it a useful solution for hypothesis-free
algorithmic annotation of the whole connectomes.

In the domain of tumor-type biomarkers, many studies rely on a deep learning ap-
proach [59–61], including convolutional neural networks [62,63]. However, to our knowl-
edge, the only type of input data in such models was gene expression, and the nature of
functional interactions within groups of genes generated was not considered. We speculate
here that applying our gene-centric pathway approach, based on the whole-interactome
model, to such deep learning settings, can further increase the biomarker capacity of
both methods.

Besides gene expression values, we analyzed the biomarker capacity of proteins
profiled using two labels (TMT10 and TMT11) and three models of mass spectrometers
(Orbitrap Fusion Lumos, Q Exactive Plus, and Orbitrap Fusion Lumos). TMT11 and
TMT10 labels utilize the same six reporter ions ranging from 126 to 131 Da. The difference
between TMT11 and TMT10 is the splitting of the 131 (last) channel into 131-N and 131-
C. The analysis of data clustering shows that TMT10 and TMT11-labeled tumor profiles
are relatively mixed with each other, which allowed us to analyze proteomic profiles
obtained using these two labels as a single dataset. However, we observed very strong
clustering of data by the model of mass spectrometer which was even stronger than
clustering by the cancer type. The Orbitrap Fusion Lumos is a tribrid mass spectrometer
that combines three mass analyzers: quadrupole technology, Orbitrap, and linear ion trap.
The Q Exactive HF-X and Q Exactive Plus include quadrupole technology and Orbitrap
mass spectrometry. However, there are some technical differences between them, e.g., the
resolving power is up to 240 and 140 kFWHM for Exactive HF-X and Q Exactive Plus,
respectively. We demonstrated that the datasets produced by the Orbitrap Fusion Lumos,
Q Exactive HF-X, and Q Exactive Plus have a different number of significant potential
biomarkers (Orbitrap Fusion Lumos platform gave a ~2-fold higher proportion of potential
proteomic biomarkers than the Q Exactive Plus engine, Table 4). Currently, we do not
know whether this difference is related to platform-specific data quality or to the biological
properties of the tissues investigated with the respective platforms. For the same reasons,
we cannot correctly compare the potential biomarker capacities of the TMT10 and TMT11
labels. However, we believe that it has to be investigated in detail in the future to enable
high-quality comparative combinatorial studies of proteomic datasets.

Furthermore, the resolution of the proteomic platforms investigated here in terms
of the number of items for which expression can be quantitatively assessed is ~3.6-fold
lower than for the transcriptomic data obtained by RNA sequencing [15]. However, the
percentage of potential cancer type-specific biomarkers was comparable between proteomic
(21–58%, average 39%) and transcriptomic (7–53%, average 26%) data at the level of single
gene products (Tables 2 and 3). Similarly, the percentage of proteomic pathway-based
biomarkers was also similar to the transcriptomic results: 22–66% (average 44%) and 8–65%
(average 33%), respectively (Tables 2 and 3).

However, the proportion of potential survival biomarkers was dramatically lower for
the proteomic data, where statistically significant potential biomarkers were found only
in four of eight cancers (50%) versus 13 of 21 (62%) for the transcriptomic data, and their
percentage was only up to 2.3% versus 36.3% in transcriptomic data (Figures 6 and 7). For
example, only six individual proteins and no molecular pathways were associated with
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overall survival in lung squamous cell carcinoma while no individual genes, 17 gene-centric
pathways, and 154 classical pathways were associated at the transcriptomic level. At the
same time, we could find survival biomarkers of pancreatic cancer only at the proteomic
level (Figures 6 and 7).

We used the same statistical criteria for both transcriptomic and proteomic data.
However, despite the similar tumor stage distributions, the CPTAC and TCGA cohorts
may differ significantly by treatment. The therapy used is not completely described, and
standard treatment protocols may be not the same because the time gap between sample
collections is about 10 years. This factor may impact survival analysis results.

This study used protein abundance data that correspond to the gene level. However,
each gene may have multiple proteoforms due to alternative splicing and posttranslational
modifications (PTMs). The presence of various proteoforms can have a significant impact
on the potential use of a protein as a biomarker. To assess data complexity, we tested the
kidney cancer phosphoproteomic CPTAC dataset PDC000128 using the COPF approach [64].
COPF is a data-driven method that detects groups of highly correlated peptides in bottom-
up proteomic datasets. Such groups can, but do not have to represent unique, specific
proteoforms. We found that 485 out of 4689 proteins (10.3%) have highly correlated groups
of phosphopeptides (p-adjusted < 0.1). Moreover, to assess potential proteoforms, we need
information about other PTMs for the same samples, that can substantially increase the
number of proteins with highly correlated groups of peptides. Furthermore, methods for
the detection of proteoforms in bottom-up proteomics should be developed and validated
for different PTMs. Certainly, an analytical approach for bottom-up proteomics can be
used to assess potential proteoform groups, however, top-down data are needed to detect
specific proteoforms. We believe that with further accumulation of data on posttranslational
modifications for a larger number of samples and cancer types, our biomarker assay should
also be repeated at the level of different proteoforms.

In our study, the gene-centric pathways could identify cancer types better than their
corresponding central genes (Figure 3). For some cancer types, they also provided a larger
proportion of potential biomarkers than classical pathways, yet no clear overall trend could
be identified.

On the other hand, in the case of potential survival biomarkers (Figures 9B,D and
10B,D,F) pathways of either type did not show a high advantage over single genes (Figure 8).
In terms of the percentage of successful potential biomarkers, single genes were the best
category in six cancer types, whereas gene-centric and classical pathways were each on the
top in eight cancer types.

We also speculate here that our approach can be employed not only to screen for cancer
type or survival biomarkers but also to identify new therapeutic response biomarkers or
tumorigenesis-associated gene networks. Overall, we found that the percentage of high-
quality potential biomarkers was statistically significantly higher among the molecular
pathways, both gene-centric and classical, than in individual genes. In turn, both types of
pathways showed comparable performance. Thus, we conclude that pathway activation
level is the advanced type of new generation of cancer biomarkers.

The potential biomarkers identified here may be of interest for molecular cancer
research. By analyzing pathway activities, we can gain deeper insights into the patho-
physiology of specific cancer types and unravel complex molecular networks that drive
tumorigenesis. Moreover, the identification of new algorithmically constructed pathways
with clinical relevance may enhance the search for novel drug targets and the development
of more effective therapeutic interventions.

Furthermore, we believe that such momentary algorithmic computer building of
pathways is a new credible alternative to time-consuming hypothesis-driven manual
reconstruction of pathways and can replace it in the nearest future.
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5. Limitations

Cancer type-specific differential expression of genes and their association with survival
has been already extensively investigated in a number of previous reports. The primary
focus of this study was to compare the biomarker predictive capacity of algorithmically
constructed pathways with those of the previously established types of biomarkers: manu-
ally curated molecular pathways and single genes. We demonstrate here that both types of
pathways significantly outperform single gene expression levels as potential biomarkers.
However, prior to considering any clinical use of such putative biomarkers identified in
our bioinformatic assay, they need to undergo further clinical validation on independent
patient cohorts.

In this study, we used only uniformly generated proteomic datasets obtained during
the CPTAC project, with sample-independent default normalization (subtraction of the
median). To eliminate possible effects of different experimental references (the pooled
samples), we used relative ratios of protein expression levels in tumor tissues to normal
tissues. Unfortunately, we were unable to use correction for batch effects because in this
case, the biological factor (cancer type) coincides with the batch factor. A single large
proteomic dataset with different cancer types is required to assess differences between
cancers without a potential batch factor.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/proteomes11030026/s1, Supplementary Table S1. AUC, p-value and
adjusted p-value for gene expression, PAL (classical pathways), PAL (gene-centric pathways) for
the comparison of cancer types. Supplementary Table S2. AUC, p-value and adjusted p-value
for gene expression, PAL (classical pathways), PAL (gene-centric pathways) for the comparison
of tumor and normal tissues. Supplementary Table S3. The number of tested items (proteins and
pathways) for the comparison of tumor and normal tissues. Supplementary Table S4. Top-10 genes,
top-10 gene-centric pathways, and top-5 classical pathways associated with survival by cancer type.
Supplementary Table S5. Differences between distributions of absolute values of log-transformed
hazard ratios (from Figures 6 and 7). Supplementary Table S6. Posttranslational modification PDC
datasets for the proteomic profiles under investigation. Supplementary Figure S1. Distributions of
AUC and p-adjusted values from the comparison of tumor and normal tissues for genes, classical
and gene-centric pathways.
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