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Abstract: Here I investigate some mathematical aspects of the maximum entropy theory of ecology
(METE). In particular I address the geometrical structure of METE endowed by information geometry.
As novel results, the macrostate entropy is calculated analytically by the Legendre transformation
of the log-normalizer in METE. This result allows for the calculation of the metric terms in the
information geometry arising from METE and, by consequence, the covariance matrix between
METE variables.

Keywords: METE; metabolic rate distributions; information geometry; Legendre transformation;
Lambert W function

1. Introduction

The method of maximum entropy (MaxEnt) is usually associated with Jaynes’ work [1–3]
connecting statistical physics and the information entropy proposed by Shannon [4]—
although its mathematics is known since Gibbs [5]. It consists of selecting probability
distributions by maximizing a functional—namely entropy—usually under a set of ex-
pected values constraints, arriving at what is known as Gibbs distributions. Since Shore
and Johnson [6] MaxEnt has been understood as a general method for inference—see
also [7–9]—hence it is not surprising that (i) Gibbs distributions are what is known in
statistical theory as exponential family—the only distributions for which sufficient statistics
exist (see e.g., [10]), (ii) MaxEnt encompasses the methods of Bayesian statistics [11], and
(iii) MaxEnt has found successful applications in several fields of science (e.g., [12–22]).

One of the scientific fields in which MaxEnt has been successfully applied is macroecol-
ogy. The work of Harte and collaborators [23–27] presents what is known as the maximum
entropy theory of ecology (METE). It consists of finding, through MaxEnt, a joint condi-
tional distribution for the abundance of a species and the metabolic rate of its individuals.
From the marginalization and expected values of the MaxEnt distribution, it is possible
to obtain (i) the species abundance distribution (Fisher’s log series), (ii) the species-area
distribution, (iii) the distribution for metabolic rates over individuals, and (iv) the relation-
ship between the metabolic rate of individuals in a species and that species abundance
—for a comprehensive confirmation of METE with experimental data see [28]. In a recent
article Harte [29] brings forward the need for dynamical models based on MaxEnt, as
METE assume the variables to be static—It is relevant to say that Jaynes applied dynamical
methods based on information theory for nonequilibrium statistical mechanics [30] leading
to what is known as maximum caliber [31,32]. However, maximum caliber assumes a
Hamiltonian dynamics and, therefore, does not generalize to ecology and other complex
systems.

The field known as information geometry (IG) [33–36] assigns a Riemannian geometry
structure to probability distributions. In information geometry the distances are given by
the Fisher-Rao information metric (FRIM) [37,38], which is the only metric in accordance
with the grouping property of probability distributions [39]. IG has found important
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applications for probabilistic dynamical systems [34,40–43]. Here the FRIM terms for the
distributions arising from METE will be calculated. In a future publication I will evolve
METE into entropic dynamical models for ecology, as explained in [43], in order to do
so it is necessary to calculate the macrostate entropy and the FRIM terms—which can be
obtained from differentiating the macrostate entropy. Therefore, present article performs
the calculations necessary for an entropic dynamics model for macroecology.

The layout of the paper is as follows: The following section (2) presents MaxEnt in gen-
eral terms followed by the MaxEnt process in METE. In particular we obtain the macrostate
entropy through the Legendre transform, and the Lambert W special function [44,45],
which is a novel result to the best of my knowledge. Section 3 presents some general results
of IG and calculate the information metric terms for METE. Section 4 concludes the present
article by commenting on possible applications and perspectives for IG in a dynamical
theory of macroecology.

2. Maximum Entropy

In information theory, probability distributions encode the available information
about a system’s variables x ∈ X . MaxEnt consists of updating from a prior distribution
q(x)—usually, but not necessarily, taken to be uniform—to a posterior ρ(x) that maximizes
the entropy functional under a set of constraints meant to represent the known information
about the system. Usually these constraints are the expected values Ai of a set of real
valued functions {ai(x)} namely sufficient statistics. The distribution ρ is found as the
solution to the following optimization problem

max
ρ

H[ρ] = −
∫

dx ρ(x) log
(

ρ(x)
q(x)

)
, (1a)

s.t.
∫

dx ρ(x) = 1 (1b)∫
dx ai(x)ρ(x) = Ai . (1c)

where
∫

dx refers to the appropriate measure of the set X ; if one is interested in a discrete
set X = {xµ}, where µ corresponds to an enumeration of X , we have

∫
dx = ∑µ, if one is

interested in a continuous subset of real variables, e.g., X = [a, b], we have
∫

dx =
∫ b

a dx.
The solution of (1) is the Gibbs distribution

ρ(x|λ1, λ2, ..., λn) =
q(x)
Z(λ)

exp

(
−

n

∑
i=1

λiai(x)

)
, (2)

where λ = {λi} is the set of Lagrange multipliers dual to the expected values A = {Ai}
and Z(λ) is a normalization factor given by

Z(λ) =
∫

dx q(x) exp
(
−λiai(x)

)
. (3)

Above, and on the remainder of this article, we use Einstein’s summation notation
AiBi = ∑i AiBi. The expected values can be recovered as

Ai = − 1
Z

∂Z
∂λi

=
∂F
∂λi

, where F(λ) .
= − log(Z(λ)) . (4)

We will refer to F as the log-normalizer, which displays a role similar to free energy in
statistical mechanics.

If one is able to invert the equations arriving from (4), obtaining this way λi(A)
they can express the probability distributions in terms of the expected values, ρ(x|A) =
ρ(x|λ(A)). This also allows one to calculate the entropy H at its maximum—that means
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H[ρ(x|A)] for ρ in (2)—as a function of the expected values, rather than a functional of ρ,
obtaining

H(A)
.
= H[ρ(x|λ(A))] = −

∫
dx ρ(x|λ(A)) log

ρ(x|λ(A))

q(x)
= λi(A)Ai − F(λ(A)) . (5)

We will refer to H(A) as the macrostate entropy, which is what we refer to in statistical
mechanics as thermodynamical entropy—meaning the one that appears in the laws of
thermodynamics (Since the arguments that identify the macrostate entropy as the ther-
modynamical entropy assume that the sufficient statistics are conserved quantities in a
Hamiltonian dynamics [2], analogous ‘laws of thermodynamics’ - e.g., conservation of A2

in (12) or an impossibility of H in (15) to decrease— are not expected in ecological systems).
One can see from (5) that H(A) is the Legendre transformation [46] of F(λ). It also follows
that λi =

∂H
∂Ai .

METE

The first step towards a MaxEnt description involves choosing the appropriate vari-
ables for the problem at hand. In METE [24] one assumes an ecosystem of S species
supporting N individuals with a total metabolic rate E, meaning in a unit of time the
ecosystem consumes a quantity E of energy. The state of the system x on MaxEnt is defined
for a singular species as the number of individuals (abundance) n, n ∈ {1, 2, . . . , N} and
the metabolic rate of an individual of that species ε, ε ∈ [1, E]—note that one can choose a
system of units so that the smallest metabolic rate is the unit, εmin = 1. We represent the
state as x = (n, ε).

The second step consists of assigning the sufficient statistics that appropriately cap-
tures the information about the system. In METE [24] the statistics chosen are the number
of individuals in the species a1(n, ε)

.
= n and the total metabolic rate a2(n, ε)

.
= nε. Substi-

tuting these into the defined expected value constrains for the sufficient statistics (1), we
obtain constraints on average abundance per species

A1 =
N

∑
n=1

∫ E

1
dε n ρ(n, ε|λ) = N

S
.
= N′ , (6)

and a constrain on the average metabolic consumption per species

A2 =
N

∑
n=1

∫ E

1
dε nε ρ(n, ε|λ) = E

S
.
= E′ . (7)

The defined variable N′ and E′ will replace A1 and A2, respectively, when convenient.
Having the state variables and the sufficient statistics chosen, we can compute all

quantities defined in the previous subsection for the specific system defined by METE.
With a uniform prior q, justified by the fact that at its level of complexity organisms should
be considered as distinguishable, this leads to the canonical distribution (2) of the form

ρ(n, ε|λ) = 1
Z(λ)

e−λ1ne−λ2nε , (8)

where the normalization factor (3) is given by

Z(λ) =
N

∑
n=1

∫ E

1
dε e−λ1ne−λ2nε =

N

∑
n=1

e−λ1n
(

e−λ2n − e−λ2nE

λ2 n

)
, (9)

from which the expected values (4) can be calculated as
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A1 = N′ =
1

λ2 Z(λ)

N

∑
n=1

e−λ1n(e−λ2n − e−λ2nE) , (10a)

A2 = E′ =
1

λ2

[
1 +

1
Z(λ)

N

∑
n=1

e−λ1n(e−λ2n − Ee−λ2nE)

]
. (10b)

These are complicated equations, however some approximations may make them more
treatable.

A fair assumption, knowing what the variables are supposed to represent, is that there
are far more individuals than species, N � S and the average metabolic rate per individual
is far greater than the unit of metabolic rate E/N = E′/N′ � 1. This allows for a sequence
of approximation that we will treat like assumptions here, namely (i) e−λ2nE � e−λ2n,
(ii) Ee−λ2nE � e−λ2n, (iii) λ1 + λ2 � 1, and (iv) e−(λ1+λ2)N � 1. Further explanation on
the validity of these assumptions, under S � N � E, can be seen in [24,26] and their
confirmation by numerical calculation can be seen in [24]. Under this understanding we
can substitute (9) into (10a) obtaining

N′ =

N
∑

n=1
e−λ1n(e−λ2n − e−λ2nE)

N
∑

n=1

1
n e−λ1n

(
e−λ2n − e−λ2nE

) ≈
N
∑

n=1
e−(λ1+λ2)n

N
∑

n=1

1
n e−(λ1+λ2)n

(11a)

N′ ≈ −
[

1
(λ1 + λ2) log(λ1 + λ2)

]
. (11b)

We can also rewrite (10b) obtaining

E′ =
1

λ2
+

N
∑

n=1
e−λ1n(e−λ2n − Ee−λ2nE)

N
∑

n=1

1
n e−λ1n

(
e−λ2n − e−λ2nE

) ≈ 1
λ2

+ N′ . (12)

In order to obtain the macrostate entropy analytically (5) one needs to perform the
Legendre transformation for METE, which includes inverting (11) and (12) obtaining
λ1(N′, E′) and λ2(N′, E′). In page 149 of [24] it is said to be unfeasible. However, it is
possible to do so obtaining

λ1 = β(N′)− 1
E′ − N′

, and λ2 =
1

E′ − N′
, (13)

where

β(N′) .
= −

[
N′ W−1

(
− 1

N′

)]−1
, β̇(N′) .

=
dβ

dN′
=

[
N′2 − N′

β(N′)

]−1

, (14)

and W−1 refers to the second main branch of the Lambert W function (see [44,45]). The
details on how (13) inverts (11) and (12) are presented in Appendix A. The macrostate
entropy can be calculated directly from (5) as

H(N′, E′) = N′β(N′) + log
(
E′ − N′

)
− log

(
N′β(N′)

)
+ 1 . (15)

With the calculation of the macrostate entropy finished, we can move into a geometric
description of METE.
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3. Information Geometry

This section presents the elementary notions of IG—for more in depth discussion and
examples see e.g., [33–36]—and some useful identities for the IG of Gibbs distributions.
IG consists of assigning a Riemmanian geometry structure to the space of probability
distributions, meaning if a set of distributions p(x|θ) is parametrized by a finite number
of coordinates, θ = {θi}, the distances—which are a measure of distinguishability—d` be-
tween the neighbouring distributions P(x|θ + dθ) and P(x|θ) are given by d`2 = gijdθidθ j.
The work of Cencov [39] demonstrated that the only metric invariant under Markov
embeddings—and, therefore, the only one adequate to represent a space of probability
distributions—is the metric of the form

gij =
∫

dx P(x|θ)∂ log P(x|θ)
∂θi

∂ log P(x|θ)
∂θ j , (16)

know as FRIM.
Considering the MaxEnt results presented in previous section, we can restrict our

investigation to the Gibbs distributions using the expected values A as coordinates—
θi = Ai and P(x|θ) = ρ(x|A) as in (2). Two useful expressions arise in that case—for
proofs see e.g., [33]—first: the metric terms are the Hessian of the negative of macrostate
entropy, meaning

gij = −
∂2H

∂Ai∂Aj = −
∂λi

∂Aj , (17)

and second: the covariance matrix between the sufficient statistics ai(x) is the inverse
matrix of gij, meaning

Cijgjk = δi
k , where Cij =

〈
ai(x)aj(x)

〉
− Ai Aj . (18)

We can, then, see how these quantities are calculated for METE.

Information Geometry of METE

By substituting the macrostate entropy for METE (15) in (17) we obtain the FRIM terms:

g11 = −β̇(N′) +
1

(E′ − N′)2 , g12 = g21 = − 1
(E′ − N′)2 ,

g22 =
1

(E′ − N′)2 , and g =− β̇(N′)
(E′ − N′)2 .

(19)

where g = det gij. Per (18) and from the general form of inverse matrix of a two dimensional
matrix, the covariance matrix terms can be calculated directly inverting (19) obtaining

C11 =
g22

g
=

N′

β(N′)
− N′2 , C12 = C21 = − g12

g
=

N′

β(N′)
− N′2 ,

and C22 =
g11

g
= E′2 − 2E′N′ +

N′

β(N′)
;

(20)

completing the calculation. The matrix Cij can be interpreted directly as the covariance
between a species abundance and its total metabolic rate—METE sufficient statistics. The
information metric terms presented in (19) allow for further studies on dynamical ecology
from a information theory background, as we will comment in the following section.

4. Discussion and Perspectives

The present article calculates the macrostate entropy (15) for METE. This was made
possible by the analytical calculation of the Lagrange multipliers (13) as functions of the
expected values (10), previously believed to be unfeasible. This allows for a complete
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description of METE in terms of the average abundance N′ and the expected metabolic rate
E′ of each of the ecosystem species. This opens a broad range of investigations possible by
analytical calculations. In particular, the IG arising from METE is presented by calculating
the FRIM terms in (19). Independently of any geometric interpretation, that was equivalent
to calculate the covariance between METE sufficient statistics (20).

The variables that define an ecosystem’s state are not expected to remain constant.
Because of this, and the growing relevance of IG in dynamical systems, the calculations
made in the present article are an important step into expanding maximum entropy ideas
into further investigation in macroecology. The calculations done here allow for evolving
METE into an entropic dynamics for ecology, as in the framework developed in [43], this
venue of research will be explored in future publication.
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Appendix A. On the Lambert W Function

In this appendix we will explain how (13) inverts (11) and (12). The Lambert W
function is defined as the solution of

W(x)eW(x) = x . (A1)

The python library SciPy [47] implements the numerical calculation of W. This relates to
(11b) in the following manner: by defining the variable β = λ1 + λ2 we obtain

1
N′

= −β log β ⇐⇒ 1
βN′

e
− 1

βN′ =
1

N′
, (A2)

hence β = −
[

N′W
(
− 1

N′

)]−1
. It is relevant to say that, from (A1), W(x) is multivalued—

the terminology Lambert W ‘function’ is used loosely. The several single-valued functions
that solve (A1) are known as the different ‘branches’ of the Lambert W. In (13) and (14)
only the W−1 branch was taken into account. Given our object of study, we will restrict to
functions that are guaranteed to give a β that is real for large N′. As explained in [44], the
two branches W0(x) and W−1(x) are real and analytic for −e−1 < x < 0, of equivalently β
is real for N′ > e. Coherent with the fact that (11) was derived for large N′.

Figure A1 presents the graphs of β obtained from the W0(x) and W−1(x) branches, as
well as a comparison to the β obtained numerically from inverting (11a). Even though per
(A2) the β obtained by both branches inverts (11b), it can be seen from Figure A1 that only
the one obtained from W−1(x) approximates the inverse of (11a) for large N′ and, therefore,
it is the only one appropriate for the present investigation.

To complete the claim that λ1 and λ2 in (13) are calculated analytically, it is relevant to
say that W−1

(
− 1

N′

)
can be calculated using the series expansion (see page 153 in [44])

W−1

(
− 1

N′

)
= −

∞

∑
m=0

amzm , where z =
√

2(log N′ − 1) , (A3)

and am is defined recursively as a0 = 1, a1 = 1, and

am =
1

m + 1

(
am−1 −

m−1

∑
k=2

k ak am+1−k

)
. (A4)
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Note that real z implies N′ > e, which is coherent with the condition for W−1 to be real.

Figure A1. Graphical comparison between the functions defined as: β0(N′) .
= −

[
N′W0

(
− 1

N′

)]−1
,

β−1(N′) .
= −

[
N′W−1

(
− 1

N′

)]−1
, and βi(N′)—obtained numerically from inverting (11a), here using

S = N/N′ = 20. W0 and W−1 have complex values for N′ < e, the graph above only plots the real
part in that region.
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