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Appendix: Admixture Simulations  

In the following, the effect of admixture will be simulated, so as to quantify predictions of 
evolutionary models. 

We begin with a simple scenario. Suppose there is a trait which is 100% heritable and which is conditioned 
by 10 variants of equal effect which can be either A0 or A1, with effect sizes of 0 and 1, respectively. Grant further 
that each variant has a frequency of 50%, which is unrelated to the frequency of the other variants (i.e. complete 
linkage equilibrium; no correlations between variant frequencies between populations). Additionally, grant 
complete additivity — that there are no interactions. Furthermore, grant there is just a single long genome with 
one copy for each locus (haploidity). Finally, suppose we have two populations both with 50,000 people. If we 
simulate data based on these assumptions and calculate each individual’s polygenic score (sum of the variants 
that they have), then the resulting distributions will look as presented in Figure A1. The resulting distributions 
are approximately normal (per the central limit theorem). Since we did not introduce any group differences in 
the assumptions, there are none to be seen aside from minor chance variation. 

 
Figure A1. Simulation 1 - distribution of polygenic scores by group 

In the above, we implicitly assumed that genotype fully corresponds to phenotype. In real life, 
however, no trait is exactly 100% heritable (though some come close), and there is always some 
developmental noise. The amount of noise, as well as other factors not shared by siblings brought up 
together, collectively form the unshared environment variance component (E) estimated in biometric 
analysis. We can add this to our simulation by adding a small unshared environment component that 
consists of a standard normal distribution (mean of 0, standard deviation [sd] of 1). If we run the 
simulation with this change, the histogram will look as it does in Figure A2. Note that we are now 
plotting the phenotypic score. 
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Figure A2. Simulation 2 - histogram of phenotypic scores by group. 

Based on these simple assumptions, we have recreated the normal distribution so often seen in 
real data. However, the distributions have also become complex and not easy to visualize from the 
histogram. In light of this, we take another step and switch to density fits. This consists of estimating 
the underlying distribution of values and plotting the distribution instead of the data. The fitted 
distributions are shown in Figure A3. 

 
Figure A3. Simulation 2 - distribution of phenotypic scores by group. 
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We can now more clearly see the underlying distributions. Because we introduced a noise 
component, the polygenic scores are no longer identical with the phenotypic scores and do not 
correlate perfectly with them. The observed regression lines are of course identical by group, and the 
corresponding correlation is 0.85. 

So far we have been assuming that there are no non-chance group differences in their polygenic 
scores. However, in real life this is unlikely. A group difference in polygenic scores consists of 
differences in the frequencies of one of more of the variants. To show this, we change the frequencies 
of the variants to 0.55 and 0.45 for group A and B, respectively. The resulting distributions are shown 
in Figure A4. 

 

Figure A4. Simulation 3 - Distributions of phenotypic scores by group. 

As expected, we now see a difference in the phenotypic scores as a result of the genetic difference 
we created. Unsurprisingly, if we calculate the mean polygenic scores by group, these are 5.5 and 4.5 
for A and B respectively (number of variants times their probability by group). In terms of effect size, 
the phenotypic gap is 0.64 d (standardized) or 1 in raw units, representing a medium to large gap by 
conventional standards. 

If we repeat the scatterplots that were done in simulation 3, we still find that the lines are identical, as seen 
in Figure A5. 
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Figure A5. Simulation 3 - Scatterplot of polygenic and phenotypic scores by group. 

The absence of any difference in slope or intercept indicates that the group difference was 
completely due to genetic effects, or in other words, that the between group heritability was 100%. 
This is despite the fact that the within group heritability was not 100%.  If we model the data, we see 
that group membership becomes irrelevant once we take polygenic scores into account, as seen in 
Table A1. In other words, controlling for true cause, the non-causal correlate no longer had any 
validity. 

Table A1. Simulation 3 - Models of group differences. Unstandardized betas. 

Model Group membership Polygenic score 

1 1.00  

2 .00 1.00 

Individual differences in many traits are likely to be multifactorial and to include common 
environmental effects. We can introduce individual variation into our simulation by adding another 
normally distributed environmental factor (analogous to shared environment in biometric analysis). 
Note that for it to contribute to the group difference, the distributions must have different means by 
group. In our case, we use means of 1 and 0 for A and B, respectively. Figure A6 shows the phenotypic 
distributions. 
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Figure A6. Simulation 4 - Distribution of phenotypic scores by group. 

The group difference has increased due to the addition of this environmental factor, and is now 
2 in raw units. The standardized difference, however, remains at 0.64 d because the standard 
deviation (pooled) also increased. Table A2 shows the correlations between the variables in the 
simulation. 

Table A2. Simulation 4 - Correlations between variables. 

 
Polygenic 

score 

Shared 

environment 

Unshared 

environment 

Phenotypic 

score 

Polygenic score 1.00 0.14 0.00 0.77 

Shared environment 0.14 1.00 0.01 0.58 

Unshared 

environment 
0.00 0.01 1.00 0.43 

Phenotypic score 0.77 0.58 0.43 1.00 

There is now a small positive correlation, r = 14, between polygenic score and shared 
environment, or in other words, there is a gene-environment correlation (rGE). This results from the 
common cause, namely group membership. Scatterplots of the relationships between the two causes 
and the phenotypic scores are shown in Figure A7. 
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Figure A7. Simulation 4 - Scatterplots of polygenic score/shared environment and phenotypic scores 
by group. 

Unlike in simulation 3, there is now a difference in the intercepts of the regression lines, 
indicating some unmodeled cause. The slopes, however, are the same. What is the between-group 
heritability in simulation 4? Despite the unstandardized betas of the predictors being identical, the 
variance proportions (and correlations) are not the same. This is because the predictors do not have 
the same variance. Formally, the between group heritability is given by the equation below: ℎଶ ≈ ℎௐଶ ሺ1 − 𝑡ሻrሺ1 − 𝑟ሻt 

Where h² refers to the heritability, subcripts B and W to between and within groups, respectively, 
r is the genotypic intraclass correlation, and t is the phenotypic intraclass correlation. 

The equation was presented by DeFries (1972), and relies upon a number of approximations. If 
we apply it to the data from simulation 4, we find that the between group heritability is 25%, and the 
shared environmental part is thus 75% (since non-shared environment does not contribute in this 
models). In real life, we do not yet have accurate estimates of the true polygenic scores of persons. 
Thus, unless we can account for the measurement error in our modeling, we need to use another 
method. One such method is the admixture analysis.  

Simulating data for this method is more complicated than the previous cases. For more reliable 
results, we need to increase the number of causal variants, and 100 was chosen as a reasonable 
compromise between computation time and realism. Second, we need to add non-causal loci that are 
used to estimate the ancestry of a given person. For this, we add 1000 variants (also with just 0s and 
1s). These are only used to score the ancestry of a person and do not affect the phenotype (i.e. we 
assume no pleiotropy). Third, we assume random mating, no sexes/hermaphrodites (everybody can 
mate with anybody), zero fatality (everyone lives to breed), perfect recombination (recombination 
happens at every locus), and perfect generations (everyone reproduces at the same time with 2 
offspring and then dies). These assumptions are needed to simplify the mating process, but do not 
affect the results in a relevant way. To avoid very long computation times, we also decrease the group 
sizes to 5,000 for each. We then simulate our founder populations for each group, with the same 
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situation as in simulation 3, 100% between-group heritability combined with substantial but non-
perfect within-group heritability (genetics + noise). 

To get admixed persons, we need to mate our total population. Since we assumed random mating, this is 
done by picking pairs at random until no one is left. Each pair then breeds 2 new individuals by picking a random 
half of their variants from each parent. This represents the next generation. We repeat this 5 times, so that we 
have 6 generations (0 through 5). The relationship between ancestry and phenotypic score by generation is 
shown in Figure A8. 

 
Figure A8. Simulation 5 - Scatterplots of ancestry and phenotypic score for 6 generations. 

There are two things of note here. First, that the predicted values at 0 and 100% ancestry stay the 
same despite the increasing admixture: they are always 45 and 55, which are the ancestry mean 
polygenic scores. Second, the correlations do not stay the same because they depend on the variation 
in ancestry. Since variation in ancestry decreases with each generation, the correlations must go 
down. As the size of correlations (and standardized betas) cannot be used to estimate the importance 
of genetic causation for a given difference, one should use the model predicted values at 100% 
ancestry for a given group. 

Simulation 6 – Non-random mating 

Since in simulation 5 we assumed random mating, it takes only a few generations to have no 
visible groups left. As such, there are no two fairly distinct groups we can calculate a between-group 
heritability for, even though the genetic causes are still related to ancestry. Humans do not pick mates 
at random, and in fact, there is evidence that they prefer mates similar in ancestry, even within racial 
groups and when controlling for educational attainment. As a simple solution, mates were matched 
for ancestry imperfectly such that some outbreeding would occur. The relationship between ancestry 
and phenotypic score is shown in Figure A9. 



Psych 2019, 1, 1–25 8 of 10 

 
Figure A9. Simulation 6 - Scatterplots of ancestry and phenotypic score for 6 generations. 

It can be seen that there is vastly more variation in ancestry in simulation 6 compared to 5. The 
standard deviations of ancestry in generation 5 (g5) were .34 and .09, for simulation 6 and 5, 
respectively. A simpler way to see this is to inspect the distribution of ancestry in each simulation 
side by side, as shown in Figure A10. 

 
Figure A10. Comparison of ancestry distributions for simulation 5 (left) and 6 (right). 
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While in simulation the distribution is unimodal, it is still bimodal in simulation 6 after 5 
generations of interbreeding. With our bimodal ancestry distribution in hand, we can now simulate 
results for self-identified racial/ethnic (SIRE) groups. This is done simply by using the ancestry as the 
probability of being in group A, i.e. a person with 99% (A) ancestry would have a 99% chance of self-
identifying as A. The results of this are shown in Figure A11. 

 
Figure A11. Simulation 6 - Ancestry distribution by SIRE. Vertical lines show the mean. 

As expected, each group was higher on its own ancestry and there was significant overlap 
between them. Finally, we draw the regression lines by SIRE to see if we can correctly deduce the 
ancestry mean phenotypic scores. The scatterplot is shown in Figure A12. 
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Figure A12. Simulation 6 - Scatterplot of ancestry and Phenotypic score by SIRE. 

As expected, the predicted values for 0% and 100% ancestry are the same for each SIRE group 
(45 and 55). Finally, we apply the equation mentioned in Section Error! Bookmark not defined. 
(African Americans). It correctly reached the result that 100% of the between-group variance was 
genetic in origin.  

One can further introduce more complexities such as multiple ancestries and non-genetic causation (<100% 
between group heritability). However, we think it is clear at this point that admixture analysis can be used to 
find indirect evidence of genetic causation. Certainly, it can produce evidence incongruent with genetic models 
and thus offers a test of them. 
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