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1. Introduction

In a recent article, Jak et al. [1] pointed out that the robust chi-square in Mplus produces
a very high type-I error for certain two-level models. In this article, we clarify some of the
issues raised in that article. We identify the situations where the chi-square problem occurs
and give a background on the conditions causing the incorrect results. Our investigation
leads to the conclusion that the robust chi-square relies on the asymptotic theory that
breaks down when the model parameters are at the border of the admissible space. Several
of the models estimated in Jak et al. [1] are indeed at the border of the admissible space,
and those are exactly the models that exhibited the inflated type-I error. Jak et al. [1] did not
identify the source of the inflated type-I error and naturally cast doubt on the Mplus robust
chi-square testing in general. The contribution of this article is two-fold. First, we identify
the modeling situations for which the inflated type-I error occurs. Second, we describe a
modification to the robust chi-square test that is now implemented in the upcoming release
of Mplus version 8.7, which resolves the inflation. Simulation studies are used to compare
the results obtained in Mplus 8.6 and 8.7.

The article is organized as follows. In Section 2, we discuss the two-level SEM model
estimation and consider the implications for the results when the estimated model is at
the border of the admissible space. Various technical aspects of the maximum-likelihood
estimation in borderline modeling situations are discussed. In Section 3, we discuss the
details of the Mplus implementation of the EM algorithm when the estimated model is
at the border of the admissible space. In Section 4, we describe the new modification of
the likelihood ratio test (LRT) correction number that is intended to deal with boundary
conditions. In Section 5, we present the simulation studies. Section 6 concludes with a
summary of our findings.

2. Preliminaries

In this section, we describe some differences between maximum-likelihood estimation
algorithms for two-level SEM models and the implications for the model estimation results.
The two-level SEM model can generally be described as follows. Suppose that Yij is a vector
of dependent variables for the individual i in cluster j. The fundamental equations for the
two-level SEM model are as follows

Yij = Yb,j + Yw,ij (1)

Yb,j ∼ N(µ(θ), Σb(θ)) (2)

Yw,ij ∼ N(0, Σw(θ)), (3)
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where θ is the model parameters. The variable Yb,j is the cluster-specific mean of Yij.
The variable Yw,ij is the individually specific variation away from the cluster-specific mean.
The functions µ(θ), Σb(θ) and Σw(θ) are determined by the structural equation part of the
model. For example, Σw(θ) and Σb(θ) can be the factor model implied variance covariance
matrices when a factor model is used to model Yw,ij and Yb,j.

Generally, there are several approaches to estimating the above model with the
maximum-likelihood method. The first method is the direct likelihood method, which uses
the dependent variable Yij directly

Yij ∼ N(µ(θ), Σw(θ) + Σb(θ)). (4)

Using the approach outlined in Muthén and Satorra [2] and Muthén [3], the likelihood
for Yij can be written in compact form and optimized with respect to the model parameters
with a general optimization routine. Alternatively, the likelihood can be written directly
for the entire cluster j data (Y1j, Y2j, ...), and it can be optimized again with a general
optimization routine. When a general optimization routine is used, the derivatives of the
log-likelihood with respect to the model parameters θ are typically 0 at the ML estimates
θ̂. In certain situations, the ML estimates yield negative variances or, more generally, non-
positive definite variance covariance matrices. In the SEM literature, these are generally
referred to as Heywood cases. Here, we will refer to Heywood cases as any kind of violation
in the variance covariance parameters, including correlations exceeding 1 by absolute value
or more broadly any variance covariance matrix that is not positive definite.

Heywood cases can also occur in the two-level SEM estimation. The most common
situation for two-level Heywood cases is a non-positive definite Σb(θ) matrix. Depending
on the particular setup of the ML estimation, the optimization of the parameters may
or may not be constrained to positive definite Σw(θ) and Σb(θ) matrices. If a Heywood
case exists AND the model estimation is constrained to positive definite matrices, several
important things happen. We have broadly outlined these in the following sections.

2.1. Derivative May Not Be Zero

If a residual variance parameter is estimated to a negative value in an unconstrained
ML optimization, then in a constrained ML optimization, it will typically be estimated
to 0, where the derivative is no longer zero as that value is not at the unconstrained ML
estimation. If the Heywood case involves more than one variable such as correlations
greater than 1, the derivative of the covariance parameter will not be zero. Furthermore,
a general function optimization will likely struggle to operate in the boundary space
of the admissible optimization. Optimization routines that rely purely on derivatives,
i.e., slope of ascend, will likely struggle to operate in the boundary space of the admissible
space. Lagrangian multiplier methods that are designed to properly deal with constrained
optimizations are generally not used for SEM model estimation as the admissible space
requiring positive definite matrices for every variance covariance matrix in the model are
somewhat difficult to implement. A symmetric matrix is positive definite if and only if
the determinants of all upper left square sub-matrices are positive. Thus, for a variance
covariance matrix of size P, there are P fairly complex inequalities that must be satisfied.

In real terms, there is an even more important reason why SEM models with Heywood
cases are not considered a vital constrained optimization problem. Usually, a fairly simple
model modification can easily be obtained that not only avoids problems caused by param-
eter estimates at the border of the admissible space but also makes for a more meaningful,
parsimonious and more interpretable model. Thus, from a SEM modeling point of view,
the issue at hand would be to find a model that has admissible parameter estimates, rather
than to successfully optimize the log-likelihood function that has correlation parameters
equal to 1.
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2.2. Unstable Computation on the Border

When parameter estimates are at the border of the admissible space, such as zero
residual variances, the log-likelihood will likely involve a division by zero, depending
on which of several equivalent expressions is used. Divisions by zero due to singular
variance covariance matrices will generally yield unstable and unpredictable computations
as numerically—0/0 is not a quantity that can easily be dealt with. This further corrupts
the results. Not only are the theoretical assumptions of the estimation violated, which
generally require the log-likelihood to have a parabolic shape that can be optimized at a
peak, but also the computational round off error can contaminate the results.

2.3. Asymptotic Results Failure Due to Border Conditions

The computation of the asymptotic standard errors relies on the assumption that
the maximum-likelihood estimates are in the interior of the admissible space and that
asymptotically the log-likelihood function has a parabolic shape, which can be maximized
at the peak of that parabolic shape. The second derivative of the log-likelihood is the
negative of a positive definite matrix, which is inverted to obtain the asymptotic variance
covariance matrix for the parameters estimates. All of these assumptions will be violated
when a parameter estimate is at the border of the admissible space, and thus, the asymptotic
standard errors will likely be unreliable.

There are a couple of general tools that one can use to improve this situation. One
approach is to simply fix the offending parameter. If a residual variance, for example,
converges to 0, it can be fixed to 0, i.e., the random component this residual variance refers
to can be eliminated from the model. This approach has a couple of caveats. Not every
variance can be fixed to zero in Mplus. Depending on the model, the estimator, and the
algorithm, the variance may or may not be fixable to 0. A value greater than zero but
approximately zero can be used, such as 0.0001 or 0.01. In such situations, the model
becomes an approximation to the desired model where the variance is fixed precisely to
zero. The actual small value that would work best in a particular situation will likely
depend on the scale of the observed variables. We generally recommend that variables
are standardized in such circumstances to avoid any large discrepancies in the scales of
the variables in the model. To obtain a good approximate model, no more than 1% of
the variance of the dependent variable should be used for this approximation process.
The second caveat of this approach is that fixing a variance to a small value may result
in convergence difficulties, i.e., slow convergence. Algorithms such as the EM algorithm
or the MCMC Bayesian estimation would have difficulty in estimating the mean or other
regression coefficients for a variable with zero residual variance. Some additional model
re-parameterization could be required in this case.

The second approach to dealing with parameters at the border is to re-parameterize
the model so that the asymptotic assumptions are met. For example, if a parameter v
converges to zero, which is at the border of the admissible space, one can use a different
model parameter, via Mplus model constraints, w = log(v), i.e., v = Exp(w). While v is at
the border, the parameter w does not have to be since the admissible space for w is (−∞, ∞).
This approach may help in some situations, but it is not expected to resolve all the problems
as divisions by zero are going to be replaced by divisions by very small numbers, which is
numerically equivalent and will likely also cause instability in the computations.

2.4. The Log-Likelihood Correction Factor

When the ML estimates are on the border of the admissible space, not only are
the asymptotic standard errors compromised, but anything else that depends on these
asymptotic standard errors will be compromised as well. Importantly, the log-likelihood
correction factor will be compromised. The correction factor is computed approximately as
the average of the ratios of the MLF asymptotic variances (see Muthén and Muthén [4])
over the ML asymptotic variances for all model parameters. If these asymptotic variances
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are compromised due to parameter estimates at the border of the admissible space, we can
expect that the log-likelihood correction factor will be compromised as well.

2.5. The Log-Likelihood Correction Factor Dependence on the Convergence Criteria

When a parameter approaches the boundary of the admissible space, it usually does
so very slowly in the iteration process. The convergence criteria of the estimation will
determine how close to the boundary the eventual solution will be. If, for a particular
parameter, both the first and the second derivatives of the log-likelihood approach 0,
the computation of the correction factor will have a term that is numerically equivalent to
0/0. This term is numerically unstable and will likely depend on the convergence criterion.
It is imperative that models with extreme solutions be explored in terms of the actual
convergence criteria. This is particularly so for the LRT correction factor.

2.6. The Log-Likelihood Correction Factor for Poorly Identified or Unidentified Models

When the model appears to be poorly identified or unidentified, and Mplus is still
able to report a correction factor, this correction factor comes from the inversion of singular
information matrices and is likely not reliable. The poor identification should be addressed
first via model modifications before the robust LRT is used.

2.7. The Log-Likelihood Correction Factor Dependence on Sample Size

The correction factor is an asymptotic result. The sample size needed to estimate the
information matrices involved in its computation well is likely to be larger than the sample
size needed for the asymptotic behavior of the uncorrected LRT. In multilevel models, the
sample size that drives the asymptotics is the number of independent units on the highest
level. If that number is low, the corrected LRT test is likely not as accurate.

3. Mplus Estimation of Two-Level Models via the EM/EMA Algorithm

The default Mplus estimation for two-level models is based on the EM-algorithm—
see Dempster, Laird and Rubin [5]. There are different versions of the EM algorithm.
Depending on what latent variables are treated via the EM algorithm and what latent
variables are integrated explicitly, a different algorithm can be obtained. The algorithm
implemented in Mplus uses the Yb,j variables to be treated by the EM algorithm, while
all other latent variables are explicitly integrated. Because of that, the ML estimation
implemented in Mplus is implicitly constrained to positive definite Σb matrices. This
restriction, of course, is of little practical importance. Negative or zero residual variances
are rarely considered to have any practical meaning even if they provide a better log-
likelihood value and a better model fit. Furthermore, variances that are very close to
zero are rarely of any practical importance. Random effects that can be substituted by
non-random effects are usually eliminated from the model so that a more parsimonious
model is obtained. There are different ways to eliminate a random effect from the model.
Random regression coefficients can simply be replaced by non-random regressions. Other
random effects can be eliminated from the model by fixing their variances to 0. Note,
however, that because Σb must be positive definite, in some cases, Mplus would not allow
fixing such residual variances to zero. Instead, Mplus fixes the residual variances to a small
positive value controlled by the variance option. The default for that value is 10−4, which
provides a sufficiently acceptable approximation to the model with zero variances.

In practical situations with a limited sample size and relatively complex models,
the Σb matrix is often a singular matrix. The EM algorithm will essentially converge
to a boundary solution, and generally, it will converge very slowly to these solutions.
The default algorithm in Mplus is the EMA algorithm (accelerated EM). In this algorithm,
EM iterations are mixed in with iterations from other optimization algorithms (Quasi-
Newton (QN) and Fisher-scoring (FS)) to improve the speed of the convergence. If a
variance parameter converges to 0, the EM algorithm will typically converge to that value
very slowly, while QN and FS will often yield a boost in the convergence process. These
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alternative algorithms, however, will often yield values that are too close numerically to
singular matrices. If that happens, Mplus will abandon the EMA algorithm and will instead
use the EM algorithm exclusively. The EM algorithm while converging slowly is able to
get sufficiently close to the boundary without ever giving an inadmissible solution or a ΣB
matrix that is numerically equivalent to a singular matrix, which causes a division by zero
in the log-likelihood expression.

When this change from the EMA algorithm to the EM algorithm occurs, there is
also a change in the convergence criterion. Due to the proximity of a singular ΣB, some
derivatives may never become zero, partly due to numerical imprecision caused by the near
zero division and partly because the optimization is at the border of the admissible space.
The zero derivative convergence criteria (controlled in Mplus by the mconvergence option)
is removed, and the optimization is at that point guided solely by the logcriterion option in
Mplus. This option monitors the changes in the log-likelihood value that occurs with each
EM iteration. When the change in the log-likelihood becomes negligible, the optimization
process is deemed to have converged. By changing the logcriterion option, the convergence
criterion can be made more strict if this is desired. The change in the log-likelihood value
after each EM iteration is guaranteed to always be positive and tend to be more or less
monotonically decreasing in the vicinity of the maximum-likelihood estimates. When the
changes drop below a certain level, we can be sure that the distance between the current
log-likelihood value and the maximum log-likelihood value will be small. Note also that
theoretically, the EM algorithm is guaranteed to converge to the maximum-likelihood
after an infinite number of iterations. Lowering the logcriterion option to near zero will
essentially guarantee that the EM-algorithm takes the numerical equivalent of an infinite
number of iterations and thus reach the maximum-likelihood estimates. This optimization
construction, which is unique to Mplus, has been tested extensively, including in the
Jak et al. [1] article, and the ML parameter estimates obtained with this algorithm are
sufficiently accurate.

Furthermore, note that Jak et al. [1] incorrectly implied that when the EM-after-EMA
algorithm is engaged, because the derivative criterion is no longer checked, the Mplus
algorithm can no longer be trusted as there are no convergence criteria to be satisfied. This
is incorrect because Mplus uses the logcriterion (among others) as a convergence criterion.
Convergence criteria, in general, are never perfect, including the derivatives criteria. In ex-
treme situations, Mplus default convergence criteria may not be sufficiently strict and may
need to be lowered (although that is generally quite rare). Jak et al. [1] appear to put a
lot of weight on the derivatives criteria. As we explained earlier, in boundary situations,
the derivatives criteria may not be satisfied by the maximum-likelihood estimates alto-
gether. Furthermore, the derivatives criteria can be inadequate in some situations, which is
why Mplus uses multiple convergence criteria to verify complete convergence. Consider
the following simple example. In a linear regression of a dependent variable Y regressed
on a covariate X, the derivative of the regression parameter is tightly related to the scale
of X. If the covariate is divided by a factor of 10 or 1000, so will the derivative of the
regression parameter, i.e., the derivative criterion can easily be manipulated into a false
convergence itself. When such an example is estimated with the Mplus EM algorithm,
the logcriterion will force the iterations to continue beyond the point of satisfying the
derivative criterion and will reach the maximum-likelihood, while optimization methods,
such as QN, based solely on the derivatives criterion, will fail. This example illustrates the
fact that convergence criteria, in general, are somewhat difficult to prescribe universally.
In extreme situations, convergence criteria should be investigated.

4. The Log-Likelihood Correction Factor

Jak et al. [1] clearly illustrated that in Mplus Version 8.6, the likelihood ratio correction
factor can lead to inflated type-I error rates in extreme situations and boundary solutions.
This problem has now been corrected in Mplus 8.7, and below, we describe the modified
correction factor. This description will follow the LRT correction factor computation rather
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than the model test of the fit correction factor. The LRT correction factor for a model M
with log-likelihood L and a vector of parameters θ is computed as follows

c =
Tr(SI−1)

f
, (5)

where f is the number of model parameters and

S =
n

∑
i=1

(∂Li
∂θ

)T ∂Li
∂θ

(6)

I =
n

∑
i=1

∂2Li
(∂θ)2 . (7)

The above formulas are evaluated at the maximum likelihood estimates, n is the
sample size, and Li is the log-likelihood of observation i. Asymptotically, under correct
model specification, when the maximum likelihood parameters θ̂ are in the interior of
the admissible space, the product matrix SI−1 is approximately the identity matrix, and
the correction factor is 1. The matrix I is referred to as the information matrix, and I−1

is the estimate for the variance covariance of the ML parameter estimates with the ML
estimator in Mplus. The matrix S−1 is used as the estimate of the variance covariance of the
ML parameter estimates with the MLF estimator in Mplus. The MLR variance covariance
matrix is computed as I−1S(I−1)T . When there are no model violations, all three estimators
produce asymptotically equivalent results.

Let us now consider two models M1 and M0. Model M0 is nested within model M1.
Let ci be the LRT correction factor for model Mi, fi be the number of parameters in model
Mi, and Li be the log-likelihood value at the maximum likelihood estimates for model Mi.
The robust chi-square value for testing the null model M0 against model M1 is given by

2(L1 − L0)

c
(8)

where c is the correction factor computed as follows

c =
c1 f1 − c0 f0

f1 − f0
. (9)

It has been shown that the robust chi-square provides accurate model testing under
a variety of model violations, for example, non-normal distributions for the variables in
the model—see Satorra and Bentler [6] and Yuan and Bentler [7]. The robust chi-square
is also used for likelihood ratio testing with complex survey data—see Asparouhov and
Muthén [8].

The New Log-Likelihood Correction Factor in Extreme and Boundary Solutions

Suppose that a model M yields a solution on the boundary of admissible space of
the estimation algorithm. Let q be the number of parameters for which the log-likelihood
derivatives are not zero according to the set convergence criterion. In a typical SEM or
multilevel model estimation, the number q should be relatively small compared to the
total number of model parameters f . Let c be the LRT correction number for model M.
As is shown in Jak et al. [1], using c directly is likely to yield an undesirable inflated
type-I error for the test of fit where the model M is compared to an unrestricted variance-
covariance model. In practical applications, this can lead to confusion. Not only are the
maximum-likelihood estimates inadmissible or on the border of admissible space, but the
model is rejected as well. The reality might be that certain random effects are simply not
needed, while in principle, the model is correct. One general possibility here is to simply
fix the problems with model M so that the parameters estimates are admissible. This,
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however, does not necessarily resolve the problem. It is shown in Jak et al. [1] that simply
removing zero residual variances from the model only partially resolves the inflation in
the type-I error rates. This is due to the fact that the test of fit uses the correction number
not only for model M (which does not have borderline parameters) but also the correction
number for the unconstrained variance covariance model (which does have borderline
parameters). In general, when model M has an inadmissible solution, the less parsimonious
unconstrained model is likely to have an inadmissible solution as well. The unconstrained
model will be difficult to resolve via model modification. Typically, in SEM software
packages, this unconstrained model is not directly controlled in the model estimation.
Therefore, a general LRT correction factor modification is needed that resolves problems
not just with the estimated SEM model but also applies to the unconstrained variance
covariance model. Below, we describe such a modification for any model M.

Denote by M∗ the model where the problematic q parameters are held fixed to the
model M estimates. Let c∗ be the correction factor for model M∗. This correction factor sat-
isfies the asymptotic theory assumptions as no parameter is on the border. One possibility
to adjust the LRT correction number is to simply use c∗ instead of c for model M. Another
possibility is to use

c =
f − q

f
c∗ +

q
f

. (10)

The interpretation of this second approach is that the problematic parameters provide
no evidence to correct the LRT test, and thus, they contribute 1 in the numerator of
Equation (5) as they do in the denominator. This modified correction factor is a weighted
average between the correction factor c∗ and 1 where the weights correspond to the number
of problematic parameters in the model. This second approach is implemented in Mplus 8.7.

In practical applications, it is not unusual that problematic parameters occur. In most
situations, however, the number of problematic parameters will be small, and thus, the
modified correction number will not change substantially. In an experimental study that
encompasses over 10,000 SEM model estimations that the authors have accumulated over
the years, some based on real data and some based on simulated data, only about 40 exam-
ples needed modifications for their correction number. In most of these, the modification
occurred for the unconstrained model, which tends to be more vulnerable to borderline
solutions. The most common parameter to be on the border of the admissible space was the
zero residual variance on the between level as well as between-level correlation parameters
approaching the value of 1. In these 40 examples, the modifications of the LRT correction
factor were small, particularly so in real data examples, where only a small portion of the
parameters are at the border of the admissible space. Because the corrections tend to be
small in real data populations, only rarely will the correction actually impact the ultimate
decision on model fit. In the experimental study, none of the real data examples actually
reversed the decision on model fit because of the modified correction factor.

The examples that had the most significant modifications were simulated examples
that resemble the examples considered in Jak et al. [1]. These examples are characterized
by the fact that all random effects on the between level are fully correlated in the data
generation model, i.e., all the correlations are 1 in ΣB because θB = 0. In practical examples,
this is unlikely to happen. In the two-level example used in Jak et al. [3], when θB = 0,
all correlation parameters in ΣB are 1. Since the correlation parameters on the between
level are approximately half of the parameters in the unconstrained variance covariance
model, which means that approximately 50% of all model parameters are on the border
of admissible space. While the simulations in Jak et al. [1] undeniably reveal the need
for a modified correction number in such extreme situations, we do not expect that the
modified correction number will have a substantial impact on real data applications.
For real data applications, when estimating the unconstrained variance covariance matrix,
the correlations are often very high, but not more than a few of these correlations will
be estimated sufficiently close to 1 to become problematic parameters. Similarly, when
estimating a factor analysis model with free residual variances on the between level,
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the residual variances are often small and insignificant. It is unusual, however, to have
more than a few of these residual variances be estimated to 0 or negative values. To be clear,
we are not arguing here that the estimated models presented in Jak et al. [3] are uncommon.
On the contrary, these models are quite common. We are simply observing that in real data
populations, the between-level components are unlikely or rarely as perfectly correlated
as they are in the simulated data used in that article. Nevertheless, the simulation studies
conducted in Jak et al. [1] are very common and are often used for power analysis related to
real data applications (see Muthén and Muthén [9]). Thus, real data analysis may indirectly
be affected by the inflation of the type-I error related to power analysis.

The Mplus implementation of the new log-likelihood correction factor does not re-
quire additional commands in the Mplus input file. Mplus will automatically check for
problematic parameters and will engage the corrective procedure if such parameters are
found. No syntax changes are necessary to obtain the new corrected results.

5. Simulation Study

To illustrate the efficacy of the modified correction number, we compare the results
obtained in Mplus 8.6 and Mplus 8.7 on the simulation reported in Table 6 from Jak et al. [1].
Note, however, that when the between-level residual variance θB is positive in the gener-
ating model, the true model parameters do not represent a borderline solution. The true
parameter values are in the interior of the parameter space. In that case, the LRT correction
factor modification is not used, and the chi-square values will be identical in Mplus 8.6 and
Mplus 8.7. In those situations, as reported by Jak et al. [1] and shown in Table 6, the robust
chi-square yields an accurate type-I error. For a correct estimated model, the rejection rates
are near the nominal value of 5%. For an incorrect estimated model, the rejection rates are
100%. To be more specific, these simulation studies are given in rows 1–6 and rows 13–18
in Table 6.

Here, we focus on rows 7–12 and rows 19–24 where the generating model uses θB = 0.
In all of these rows, the estimated models should not be rejected. The models should
not be rejected even for rows 19–24 where the generating model has two factors on the
between level. That is because the generating loading parameters are identical across
indicators for both factors. This implies that the model is equivalent to a one-factor model
on the between level, and therefore, all of the estimated models are correct. We expect to
see a rejection rate near the nominal value of 5% for all these models. The results of this
simulation study are presented in Table 1 for the EMA and the QN algorithm. The QN
algorithm does not converge in all the cases when the residual variances are estimated as
free parameters. The EMA algorithm converges in all situations as it is designed to better
deal with solutions that are on the border of the admissible space. The results show that
the modified correction number implemented in Mplus 8.7 yields accurate results for the
robust chi-square test of fit with both the EMA and the QN algorithms. The Mplus input
file used to obtain the results in the first row of Table 1 is included in Appendix A.

Table 1. Rejection rates of the robust chi-square test of fit corresponding to Table 6, rows 7–12 and
19–24 in Jak et al. [1], θB = 0 for the generating model.

Generating Estimated Estimated Mplus 8.6 Mplus 8.7 Mplus 8.6 Mplus 8.7
Model Model Model θB EMA EMA QN QN

Config Uncon θB > 0 0.46 0.03 - -

Config Uncon θB = 0 0.17 0.03 0.17 0.03

Config Config θB > 0 0.36 0.05 - -

Config Config θB = 0 0.10 0.03 0.10 0.03

Config Shared θB > 0 0.45 0.06 - -

Config Shared θB = 0 0.17 0.07 0.11 0.05

Shared Uncon θB > 0 0.46 0.03 - -
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Table 1. Cont.

Generating Estimated Estimated Mplus 8.6 Mplus 8.7 Mplus 8.6 Mplus 8.7
Model Model Model θB EMA EMA QN QN

Shared Uncon θB = 0 0.17 0.03 0.17 0.03

Shared Config θB > 0 0.35 0.05 - -

Shared Config θB = 0 0.09 0.03 0.09 0.03

Shared Shared θB > 0 0.41 0.08 - -

Shared Shared θB = 0 0.19 0.05 0.10 0.03

6. Conclusions

In this article, we describe some of the challenges that can be encountered when using
the robust chi-square method in extreme situations where the model parameter estimates
are at the border of the admissible parameter space. We also describe a modification of the
robust chi-square test of fit, implemented in Mplus 8.7, which eliminates the inflation in
the type-I error described in Jak et al. [1].
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T.A.; writing—original draft preparation, T.A.; writing—review and editing, B.M. Both authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Mplus data simulation script is included in Appendix A.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Figure A1. Mplus input file corresponding to the first row in Table 1.
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