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Abstract: Sparse estimation through regularization is gaining popularity in psychological research.
Such techniques penalize the complexity of the model and could perform variable/path selection
in an automatic way, and thus are particularly useful in models that have small parameter-to-
sample-size ratios. This paper gives a detailed tutorial of the R package regsem, which implements
regularization for structural equation models. Example R code is also provided to highlight the key
arguments of implementing regularized structural equation models in this package. The tutorial ends
by discussing remedies of some known drawbacks of a popular type of regularization, computational
methods supported by the package that can improve the selection result, and some other practical
issues such as dealing with missing data and categorical variables.
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1. Introduction

With the ability to assess relationships between latent constructs and observed vari-
ables, structural equation modeling (SEM) has become an increasingly popular choice for
psychological researchers due to its flexibility as a general modeling framework. Given that
it is often easier to collect more variables than participants, researchers increasingly aim to
estimate large models with limited numbers of participants. However, this practice would
deteriorate the trustworthiness of the results given violations of recommended observations
to estimated parameters (N/q) ratios. For instance, Kline [1] recommended 20 observations
(participants) for each estimated parameter in the model. Alternatively, when the data are
perfectly well-behaved (i.e., normally distributed, no missing data or outlying cases, etc.),
Bentler and Chou [2] have suggested this ratio can go as low as five to one.

Besides obtaining more respondents, reducing the number of parameters estimated
is another option. Although specifying a model smaller than the “true” model may bias
the parameter estimates, this reduced model may work better for estimation from a bias–
variance tradeoff perspective. Regularization is one such method to accomplish this,
performing variable/path selection by penalizing the complexity (number of parameters
estimated) of the model, and thus producing a more parsimonious model. It has been
successfully applied in many areas such as regression and graphical modeling, and has
been introduced to SEM more recently (e.g., regularized SEM and penalized likelihood
SEM) [3,4].

1.1. Regularized Regression

When the assumptions required by ordinary least squares (OLS) regression are met,
OLS produces the best linear unbiased estimator (with lowest variance). However, as
the number of features grows, the OLS assumptions would typically break down and
the models could overfit the training sample, causing the out-of-sample error to increase.
Regularization methods discourage complex models by penalizing the magnitude of the
coefficients so that the coefficients will be shrunken towards zero, thereby reducing the
size and fluctuations of the coefficients as well as reducing the variance of the models.
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The two most commonly used forms of regularization in regression are the ridge [5], which
constrains the coefficients by the L2 norm, and the least absolute shrinkage and selection
operator (lasso) [6], which utilizes the L1 norm. Given the outcome vector y and predictor
matrix X =

(
xij
)
∈ Rn×p, the estimates of ridge and lasso are defined as:

β̂ridge = argmin {
N

∑
i=1

(
yi− β0 −

p

∑
j=1

xijβ j

)2

+ λ ∑p
j=i β2

j } (1)

β̂lasso = argmin {
N

∑
i=1

(
yi− β0 −

p

∑
j=1

xijβ j

)2

+ λ ∑p
j=i

∣∣β j
∣∣} (2)

with β0 being the intercept, β j being the coefficient for xj, and λ being a tuning parameter
controlling the amount of shrinkage. As λ increases, the β estimates are shrunken towards
0, and the estimates are equivalent to OLS regression when λ = 0. The optimal value of λ
is usually determined by cross-validation. The L2 penalty used in ridge regression helps to
reduce the model complexity and multi-collinearity, whereas the L1 penalty used by lasso
can further lead the parameters to zero, and thus not only helps in reducing over-fitting,
but also can perform feature selection.

There are various alternative forms of regularization that can be seen as subsets or
generalizations of these two procedures; for example, the elastic net [7], which is a linear
combination of the ridge and the lasso with an additional tuning parameter α is defined as:

β̂enet = argmin{
N
∑

i=1

(
yi− β0 −∑

p
j=1 xijβ j

)2
+ λ((1− α)∑

p
j=i β2

j + α ∑
p
j=i

∣∣β j
∣∣)} (3)

By incorporating both ridge and lasso penalties, the elastic net integrates the positives
of both, handling collinearity and performing variable selection. Particularly when predic-
tors are moderately correlated, the elastic net will often outperform the lasso for variable
selection [7].

1.2. Regularized SEM

Similar to regularized regression, a penalty term is added to the traditional maximum
likelihood estimation (MLE) fit function in regularized SEM as follows:
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where θ is the set of parameters estimated, µ(θ) and Σ(θ) are the model implied mean and
covariance matrices, respectively, m and C are the observed mean and covariance matrices,
and p is the number of variables. The regularization parameter λ is a tuning parameter
that quantifies the influence of the penalty. The larger λ corresponds to a larger penalty,
and thus would result in greater shrinkage of the coefficient sizes. For regularized SEM, its
optimal value is often determined through cross-validation or based on information criteria,
such as Akaike information criterion (AIC) [8] and Bayesian information criterion (BIC) [9].
Prior research shows that the BIC generally performs well in practice for selecting λ that
results in reasonable parameter estimates for regularized factor analysis models [3,10].
P(·) is a general penalty function which reflects the sum of all selected coefficients, and can
take different forms like the lasso (L1 norm ‖ · ‖1), ridge (L2 norm ‖ · ‖2), and elastic net
((1− α)‖ · ‖1 + α‖ · ‖2) just as with regularized regression. With the penalty term added,
the new fit function would yield a different set of parameter estimates, which are biased
towards zero. When the “summing” technique is carefully chosen (e.g., L1 norm in the case
of lasso), some of the less relevant parameters are forced to zero, thus performing variable
selection, or creating a simpler model structure. From a bias–variance perspective, such
methods trade off an increase in bias with a decrease in variance, and thus could potentially
produce lower total generalization error. For an overview, see Yarkoni and Westfall [11].
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Different penalties do affect the selection result. For example, the lasso, possibly
the most popular choice of penalty, is only consistent for variable selection under certain
restricted conditions (oracle property) [12,13]. It also has problems such as tending to
select one variable from a group of highly correlated variables and ignoring the others [7],
and high false positive rates. Many other extensions are thus proposed to overcome these
limitations, among which the smoothly clipped absolute deviation (SCAD) [14] and the
minimax concave penalty (MCP) [15] are the two most well-known penalties. Compared
to the lasso, both the SCAD and MCP penalize large parameters less, while applying
similar amounts of shrinkage to the lasso for small parameters. Theoretical results in
the GLM family indicate that SCAD and MCP can both yield oracle estimators [14–16].
It has also been shown that they outperform lasso, and will select the true model with
high probability asymptotically in regularized SEM [4], and penalized likelihood EFA [17]
through simulation studies.

The application of regularized SEM falls between confirmatory modeling, where
the hypothesized model is constructed based on theory and/or previous research, and
exploratory modeling, where no a priori hypotheses about latent factor composition or
patterns of the measured variables are made. Researchers could place penalties only on
those uncertain parts of the model, while not penalizing the parts of the model that have
theoretical backing. This can take many forms, including and not limited to selecting among
multiple predictors of a latent variable [18], simplifying factor structure by removing
cross-loadings [19], and determining whether additional linear terms are necessary in
longitudinal models, among many others.

In this paper, we wish to provide a detailed tutorial on performing regularization in
SEM using the R package regsem [20].

2. Implementation

Regularized SEM is implemented in the R statistical environment using the regsem
package. The model syntax follows the R package lavaan [21], which is a general and
widely used SEM software program that can fit a wide range of models with various esti-
mation methods. The main functions of the regsem package are regsem(), multi_optim(),
and cv_regsem(). Those functions take in a model object fitted in lavaan (i.e., output of
function lavaan(), sem(), cfa(), or growth()), specify parameters to penalize, the type
of penalty [22], as well as the penalty values, then translate the model object into Reticu-
lar Action Model (RAM) [23,24] notation to derive the model implied covariance matrix
with the specified parameters penalized. The differences of the three main functions lie
in the number of penalty levels and starting values considered. The regsem() and the
multi_optim() functions take only one penalty value, with the multi_optim() function
further allowing the use of multiple random starting values for models that have difficulty
converging. On the other hand, the cv_regsem() function runs regularization across a set
of varying penalty values. Paired with the use of an information criterion, the cv_regsem()
function is able to select a final model with, comparatively, the best penalty value.

3. Empirical Example

We now give an example of implementing the regsem package to further discuss the
details. Here, we use an integrated dataset consisting of five publicly available datasets:
National Comorbidity Survey—Baseline (NCS) [25]; NCS—Replication [26]; National
Survey of American Life (NSAL) [26]; National Survey of American Life—Adolescent
Supplement [27]; and the National Latino and Asian American Study [26]. Each survey
was designed to study the prevalence and correlates of psychological disorders among indi-
viduals living in the United States. Combined, 25,159 respondents were surveyed; however,
response rates on individual items within and across datasets vary. For demonstration
purposes, we randomly selected a sample of 1000 to mimic a limited sample size situation
when regularization is desired. For this example, we selected 18 items (11 assessed within
four datasets; 7 assessed within five datasets) that assessed the presence of symptom-level
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information (i.e., felt depressed most days, has a limited appetite most days, was so restless
that others noticed) as it occurred during an individual’s most severe depressive episode.

Given that this analysis is a part of a larger study, our motivation was to combine
depression items from across multiple scales, assessed across the five datasets, to identify
an optimal factor structure to be used in additional analyses. Our eventual goal was
an adequately fitting CFA model, as we desired some degree of clarity regarding the
interpretation of each factor. However, given that we did not have an a priori model, we
started with EFA to derive the number of factors.

We store the data to object dat.sub2. The path diagram of the constructed model is
displayed in Figure 1.

Figure 1. Path diagram of SEM model with five latent factors and with all cross-loadings specified.

Before fitting the model in regsem, we need to organize our data. There are two major
points here. The first is to transfer the data type of the endogenous variables of the model
to continuous. This is because the regsem package works with the maximum likelihood
discrepancy function, which assumes that the endogenous variables are continuous and
normally distributed. With this, even though there are available options in lavaan that
accommodate categorical variables, those options are not currently supported by regsem.
For more discussion on categorical variables, see Section 4.5.

The second point is with respect to the scale of the variables. In regularized regression,
it is suggested to standardize the variables before fitting the model. This is because the
effect of the regularization is not orthogonal to the scales of the variables. For penalty
types such as ridge and lasso, larger coefficients are penalized more, which will make
the regularization biased and tend to penalize features with smaller scales. For SEM, the
covariance matrix becomes the correlation matrix after standardizing all of the variables.
This will not create a problem for maximum likelihood without the penalty, since the results
based on covariance and correlation are essentially equivalent except for the scale. However,
this invariance property of maximum likelihood no longer holds after the penalty is added;
that is, results based on covariance and correlation are not equivalent for regularized SEM.
Huang et al. [4] thus suggest fixing the scaling loadings deliberately, such that all of the
latent variables have variances of around one. Jin et al. [17] suggest working with the
correlation matrix, then transferring back to the covariance scale in their study of penalized
likelihood EFA. We recommend standardizing only the variables which have at least one
path to be penalized before fitting the regularized SEM model to eliminate the effect of
the scale on variable/path selection. A second step of fitting the restricted model after the
selection (“relaxed lasso”) [28] could then be done on the original scale. We suggest that
researchers transform the variable scale carefully based on the research question before
the analysis.
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To evaluate the factor structure, we first used parallel analysis to identify an appropri-
ate number of factors, of which five seemed the most appropriate. From this, we followed
the procedure of Scharf and Nestler [19] and specified an EFA model, with each factor
loading penalized. This initial model is not identified; however, as the penalties increase,
the degrees of freedom will become positive as additional factor loadings are set to zero.
In Table 1, we show the R code for constructing the model and organizing the example data.

Table 1. R code for constructing the model and organizing data.

R Code 1

library(lavaan)
lav.mod<-paste(
“f1=~NA*”,paste(colnames(dat.sub2),collapse=“+”),”\n”,
“f2=~NA*”,paste(colnames(dat.sub2),collapse=“+”),”\n”,
“f3=~NA*”,paste(colnames(dat.sub2),collapse=“+”),”\n”,
“f4=~NA*”,paste(colnames(dat.sub2),collapse=“+”),”\n”,
“f5=~NA*”,paste(colnames(dat.sub2),collapse=“+”),”\n”,
“f1~~1*f1; f2~~1*f2; f3~~1*f3; f4~~1*f4; f5~~1*f5”)
dat.s<-scale(dat.sub2)
lav.out<-cfa(dat.s,model=lav.mod,missing=“listwise”)

1 We standardize all variables here since each of them has at least one path to be penalized in this example.
In other models, researchers should not standardize variables with no related path to be penalized.

For the model fitted in lavaan, any wrapper function can be used. lavaan by default
sets estimator = “ML”. Researchers should not change this default, as the other options
are not currently supported by regsem. When there is missing data, regsem currently
supports listwise deletion and full information maximum likelihood (FIML). Since lavaan
and regsem both use listwise deletion by default, we demonstrate only the use of listwise
deletion for our example here. The FIML option and other options related to missing data
will be further discussed in the Discussion section. Here, our model fitted by lavaan is not
identified. This will not create a problem for regsem, since regsem() uses the lavaan object
only to extract the sample covariance matrix and other aspects of the data. One can also
specify do.fit=FALSE in this step. The model will become identified through path/variable
selection. For an example of using regsem to identify EFA models, see [23,24].

After running a model in lavaan, we can then add penalties to the uncertain structural
coefficients in regsem. There are multiple ways to specify this in the pars_pen argument.
By default, regsem penalizes all regression parameters (pars_pen = “regression”).
One can also specify all loadings (pars_pen = “loadings”), or both (pars_pen =
c(“regressions”, “loadings”)). Since regularized SEM is semi-confirmatory, re-
searchers may want to leave the theory-based part of the model unpenalized. Though
those unpenalized parameters are estimated along with penalized ones, they should not
be included in the pars_pen argument. If parameter labels are used in the lavaan model
specification, those labels of the parameters to be penalized can be directly passed to the
pars_pen argument. Otherwise, one can find the corresponding parameter numbers by
looking at the output of the extractMatrices() function. An example of the R code and
output is shown in Table 2.
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Table 2. R code and output for extracting the RAM matrices and determining the numbering of
parameters to be penalized.

R code

library(regsem)
A<-extractMatrices(lav.out)$A
head(A[1:18,19:23])

Output 1

f1 f2 f3 f4 f5
DEP1 1 19 37 55 73
DEP4 2 20 38 56 74
DEP7 3 21 39 57 75
DEP8 4 22 40 58 76
DEP9 5 23 41 59 77
DEP11 6 24 42 60 78

1 We only demonstrate the first 6 rows of the block of matrix A that corresponds to the parameter numbers of the
cross-loadings.

The package regsem is built upon RAM notation [23,24]. The extractMatrices()
function extracts and returns the RAM matrices of the SEM model estimated in lavaan.
The filter matrix F ($F) indicates which variables are observed (as opposed to latent), the
asymmetric matrix A ($A_est) stores the estimated direct path coefficients, and the sym-
metric matrix S ($S_est) stores the estimated variances and covariances. Those matrices
are then used to derive the implied covariance matrix of the model. The $A matrix and
$S matrix in the extractMatrices() output store the corresponding parameter number
of each estimated parameter. We can refer to those matrices and then pass the desired
parameter numbers to the pars_pen argument. For more detail on RAM notation and its
application to regsem, see Jacobucci et al. [3]. In our example, we would like to penalize
all paths with loadings smaller than 0.5 from the rotated EFA model. We deviate from the
Scharf and Nestler [19] procedure in this regard, as in our experience, allowing large factor
loadings to go unpenalized assists in achieving a converged solution as fewer constraints
are being placed on the model. The corresponding parameters penalized are summarized
in Table 3.

Table 3. Parameter to be penalized.

R code

pars.pen <- A[1:18,19:23][load.2<.5]
pars.pen

Output

[1] 1 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 23 26
[21] 27 28 29 30 31 32 33 34 37 38 39 40 41 42 43 45 46 49 50 51
[41] 52 53 54 55 56 57 58 59 60 61 62 65 66 67 68 69 70 71 72 73
[61] 75 76 77 78 79 80 81 82 83 84 85 89 90

We can then set the penalty type (e.g., type = “lasso”), the number of penalty
values we want to test (e.g., n.lambda = 20), and how much the penalty should increase
(e.g., jump = 0.05). The latter two arguments may vary for different models and data, as
the impact of the penalty depends on the scale of FMLE. We suggest including a wider range
of penalties initially, as regsem will terminate when testing higher penalty values if all
parameters have been set to zero. One can also determine the penalty range by looking at
the parameter trajectories, which is the trajectory of the value of each penalized parameter
at different penalty levels. One can further visualize the chosen “optimal” penalty level by
specifying show.minimum argument equal to the desired criteria for optimality (detailed
later). The parameter trajectories corresponding to our example are shown in Figure 2.
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At penalty 0.02, the model becomes identified, and the optimal penalty is 0.16 as shown in
this plot.

For cv_regsem() to examine the penalties and select the best model, a fit index needs
to be specified as well. As the penalty increases, some parameters would be set to 0,
making FML larger (worse). However, the degrees of freedom would increase as well.
Further, we can see in Table 4 a large change in the parameter estimates from lambda = 0 to
lambda = 0.02. This is caused by an unpenalized model being unidentified, as there are
more parameters than cells in the covariance matrix. By adding even a small penalty, the
dimensionality of the model is reduced, thus resulting in more stable parameter estimates.
This can further be seen in Figure 2.

Table 4. R code for lasso regularization and corresponding output.

R code 1

out.reg<-cv_regsem(lav.out, type = “lasso”, pars_pen = pars.pen,
n.lambda = 20, jump = 0.02)
out.reg
plot(out.reg, show.minimum=“BIC”)

Output 2,3

out.reg$parameters
f1 -> DEP1 f1 -> DEP4 f1 -> DEP7 f1 -> DEP8

[1,] 0.816 0.675 0.869 0.012
[2,] −0.004 0.000 0.425 −0.557
[3,] −0.005 0.000 0.416 −0.554
[4,] −0.004 0.000 0.407 −0.550
[5,] −0.004 0.000 0.403 −0.550
[6,] −0.002 0.000 0.398 −0.548
...

out.reg$fits
lambda conv rmsea BIC chisq

[1,] 0.00 0 0.12929 22002.41 6.828856e+02
[2,] 0.02 0 0.10402 21835.50 6.867450e+02
...
[9,] 0.16 0 0.09721 21787.29 8.027334e+02
...
[11,] 0.20 1 0.00000 −14315219.42 −1.433654e+07
[12,] 0.22 0 0.09851 21810.05 8.451946e+02
...

out.reg$final_pars
f1 -> DEP1 f1 -> DEP4 f1 -> DEP7 f1 -> DEP8
0.000 0.000 0.384 −0.548
f1 -> DEP9 f1 -> DEP11 f1 -> DEP14 f1 -> DEP15
−0.902 0.000 −0.009 0.000
f1 -> DEP16 f1 -> DEP17 f1 -> DEP18 f1 -> DEP19
0.000 0.000 0.000 0.000
f1 -> DEP24 f1 -> DEP26 f1 -> DEP32 f1 -> DEP33
−0.058 0.002 -0.010 0.000
f1 -> DEP35 f1 -> DEP36 ...
0.000 0.023

1 This plot gives the parameter trajectories shown in Figure 2. 2 We only display part of the output for the
model. There are other outputs that we do not display here (such as $pars_pen, $df (degrees of freedom at each
penalty level), and $metric, etc.). Please refer to the Supplementary Materials for complete results. 3 Note in
$parameters that the parameter estimates are highly variable at the displayed penalty values as the model is
still unidentified.
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Figure 2. Parameter trajectories of the example SEM model. Based on BIC, the optimal penalty level
is 0.16.

The regsem package, by default, uses the Bayesian Information Criteria (BIC) [9] to
select a final model, which takes both the likelihood and degrees of freedom into account,
and thus still could improve (decrease) as penalty increases. The final model is selected
to be the one that corresponds to the lowest BIC value of all models that converged. To
compare the selection performance of other information criteria, see Jacobucci et al. [3] and
Lüdtke et al. [29]. The output of our example model is shown in Table 5.

Table 5. R code and output for using multi_optim() function for non-convergence cases.

R code

out.20 <- multi_optim(lav.out, type = “lasso”,
pars_pen = pars.pen, lambda = 0.20)
summary(out.20)

Output 1

Out.20$returnVals
convergence df fit rmsea BIC
0 92 0.7426382 0.12149 22120.89

1 There are other outputs that we do not display here.

The output of cv_regsem() contains the parameter estimates of the models fitted at
each penalty level in $parameters, their corresponding model fit information in $fits, and
the parameter estimates of the best-fitted model according to the chosen fit index metric
(here, BIC) in $final_pars. Note that this best-fitted model is only considering models
that converged (“conv” = 0 in $fits means converged, whereas “conv” = 1 means non-
convergence). In our example, the model did not converge with several penalty levels
(e.g., when lambda = 0.20). One can choose to explore each penalty value further by
testing multiple starting values using the multi_optim() function, or this can be done
automatically in cv_regsem() by setting multi.iter = TRUE. The demonstration R code
for the case lambda = 0.20 and the corresponding output is shown in Table 5. The BIC
value of the model at this penalty level is 22,120.89, which is larger than the BIC value of
21,787.29 at lambda = 0.16. Thus, the optimal model is still the one with penalty level
equal to 0.16.

In $final_pars of the cv_regsem() output, we can see that several parameters (for ex-
ample, the ones corresponding to path “f1 -> DEP1” and path “f1 -> DEP4”, etc.) now
have parameter estimates of zero. Those are the paths to be removed from the current
model. We recommend the use of the two-step “relaxed” lasso [25]; that is, to refit the
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model with those paths removed. For this example, 51 paths are removed based on the
selection result. The path diagram of the reduced model is displayed in Figure 3. Ideally,
one should evaluate this simplified model on a new set of data. Here, we demonstrate this
on another random sample of 1000 from our dataset. The fitted model has a CFI of 0.946, a
TLI of 0.920, and an RMSEA of 0.095 (90% CI (0.089, 0.101)).

Figure 3. Path diagram of the reduced SEM model with paths set to zero by lasso regularization removed.

Given that we now have a final CFA model derived from the use of lasso penalties,
each factor with only a handful of loadings, we can interpret the meaning of the resultant
factors. For example, factor one predominantly includes depression items related to change
in appetite and weight; factor two items pertain to symptoms of low energy; factor three
relates to symptoms that assess energy levels more broadly, rather than just low energy;
factor four items map on to behavioral changes associated with depression, such as appetite,
weight, sleep, and talkativeness; and factor five most represents emotional distress, such as
crying, feeling worthless, and suicidal thinking. However, it is important to note that there
are significant item cross-loadings, suggesting multiple factors have significant conceptual
overlap, as demonstrated by the fact that four of the assessed symptoms load onto four
of the five factors. Thus, we are not advocating for this to be a solution for researchers
moving forward, but rather a conceptual demonstration.

4. Extensions
4.1. Other Application Scenarios

The application of regularized SEM is not limited to the model we demonstrated in
this tutorial, but the main steps and codes are the same. In this subsection, we outline a
subset of the scenarios suitable for applying the regsem package.

4.1.1. Regression/Path Analysis Models

Regularization is a widely adopted method in regression. Since SEM can be seen as
a generalization of regression models, regsem can also be applied to regression models
as a substitute for a more commonly used R package for applying regularized regression
models, which is glmnet. Besides regression, other path analysis models could also be
specified in the SEM framework, and thus could be explored through regsem in semi-
confirmatory settings. For example, Serang et al. [30] have proposed exploratory mediation
analysis via regularization (XMed) which can be performed using the regsem package.

4.1.2. Factor Analysis Models

Scharf and Nestler [19] have applied regsem for exploratory factor analysis and found
that both rotated and regularized EFA tended to underestimate cross-loadings and inflate
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factor correlations when the factor structures are complex, while regularized EFA was
able to recover loading patterns as long as some of the items followed a simple structure.
They thus conclude that regularization is a suitable alternative to factor rotation for psy-
chometric applications. Huang [31] used regularized SEM to simplify factor structure
by removing cross-loadings for the big five personality traits for the bfi data from the
R package psych [32]. The performance of extensions of regularized SEM for removing
cross-loadings is also studied by Li and Jacobucci [33] through a simulation study.

4.1.3. Longitudinal Models

Although a number of statistical frameworks are available for analysis with longi-
tudinal data, the use of structural equation modeling has become increasingly popular.
Jacobucci and Grimm [34] introduce multiple ways for regularization to be used with the
latent change scores (LCS) model. They showed that using both frequentist and Bayesian
regularization allowed for a simplified process in choosing the best model, while also in-
creasing the flexibility of the LCS model to incorporate additional parameterizations across
both univariate and bivariate LCS models. Further, SEM is being increasingly applied to
intensive longitudinal datasets, which can often contain a large number of both undirected
and directed paths. Within this, lasso penalties have been applied to “discover” the optimal
configuration of paths within hybrid vector autoregression models [35].

4.1.4. Group-Based SEM

Besides applying regularization methods for single-group analysis, methods for multi-
group SEM are also proposed [36]. The proposed method decomposes each group model
parameter into a common reference component and a group-specific increment component.
With the increment components penalized, the null group-specific effects are expected to di-
minish; thus, the heterogeneity of parameter values across the population can be explored.

More recently, Bauer et al. [37] proposed using a regularization approach to moderated
nonlinear factor analysis estimation. The proposed method penalizes the likelihood for
differential item functioning (DIF)—which rewards sparse DIF, providing an automatic
procedure that avoids the pitfalls of sequential inference tests—to simplify the assessment
of measurement invariance.

Regularization methods have also been extended to exploratory latent class with
a focus on polytomous item responses (RLCM) [38]. Five different ways of performing
RLCMs for polytomous data were compared through a simulation study: (1) regularizing
differences in item parameters among classes, (2) among categories, or (3) both, and (4)
applying fused group regularization among classes, or (5) among categories. All of the
RLCMs improved fit over unrestricted exploratory LCM, among which the model with the
fused penalty on item categories fit the best.

4.2. Problems of the Lasso Penalty and Its Remedies

In the above example, we only demonstrated the use of the lasso penalty with complete
data and continuous observed variables in the regsem package. However, although the
lasso is easily implemented and widely used in applications, it has several drawbacks,
including but not limited to its failure in dealing with collinearity, its appreciable bias in
parameter estimates, its high false positives rates, and its inconsistency in selection results.
In the first part of this section, we discuss several remedies to those problems available in
the regsem package. We will then discuss computational methods that can be combined
with regsem to potentially provide better selection results.

When there are moderate levels of correlation among penalized variables, the lasso can
demonstrate biased variable selection [7]. For such situations, one can consider using other
penalty types instead. For example, one can consider the use of the elastic net penalty (by
specifying type = “enet”), which is a combination of the ridge (L2 penalty) and the lasso
(L1 penalty), and can account for collinearity simultaneously while performing variable
selection. For the use of the elastic net, one needs to specify an additional hyperparameter
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alpha that controls the tradeoff between ridge and lasso. When alpha is set to 0 or 1, the
elastic net is equivalent to performing lasso and ridge regularization correspondingly. By
default, cv_regsem() sets alpha = 0.5.

When the scales of the variables differ dramatically, one can consider using the
adaptive lasso (alasso) [14] penalty (type = “alasso”) to overcome the biasedness in
the selection result. With the alasso, the penalty for each variable is scaled by the MLE
estimates. Thus, smaller parameters would receive larger penalties, thereby limiting the
bias in the estimation of larger parameters. However, since MLE parameter estimates are
needed, the alasso may not be appropriate when the model has a large number of variables
in relation to sample size, or other estimation difficulties have occurred.

It has also been observed that although the lasso with SEM generally produces very
low averaged false negative rates (FNRs) in small samples, the averaged false positive rates
(FPRs) are usually relatively high [20,33]; that is, a large number of noise variables (null
features) are often included. Nevertheless, these high averaged FPRs persist even with large
sample sizes. One may consider the use of the SCAD [14] penalty (type = “scad”) and the
MCP [15] penalty (type = “mcp”) to achieve sparser solutions, as discussed earlier in the
introduction. However, both of these penalty types can present challenges for achieving
convergence in large models due to the use of an additional hyper-parameter.

4.3. Computational Methods

The regsem package also supports additional computational methods that could
potentially improve the performance of the lasso.

We would like to first warn users that although the main function is called
cv_regsem(), it does not by default perform cross-validation in the process of determining
the optimal penalty level. Users can run their own cross-validation or bootstrapping pro-
gram using the cv_regsem() on multiple subsets of the data. The averaged out-of-sample
fit could then be compared to determine the optimal penalty level. However, as tested
by Li and Jacobucci [33], such methods (even if one standard error rule is applied) do not
show clear advantages over other methods.

When computational resources permit, the use of stability selection [39] is recom-
mended in combination with regularization. This method aggregates the selection results
of each path at each penalty level using the selection probabilities from bootstrap samples,
thus producing consistent selection results with lower FPRs. This option is newly built
into the package, and can be implemented through the stabsel() function. The whole
procedure involves three steps: determining the range of penalty levels, which can be done
separately by using the det.range() function, or, by specifying det.range = T in the stabsel()
function; getting the selection probability for each parameter at each penalty level through
bootstrapping; and selecting the final set of parameters using a probability cutoff, which
could be user-specified or tuned over a range of probability values based on model fit using
the stabsel_thr() function. For more details of pairing stability selection with regularized
SEM, see Li and Jacobucci [33]. The selection results are also recommended to be evaluated
using the two-step relaxed lasso in a separate dataset. For the example data used in this
tutorial, the selection result from stability selection suggests removing 55 paths (as opposed
to 51 from cv_regsem()), resulting in an even sparser model with a similar fit, having a CFI
of 0.941, a TLI of 0.917, and a RMSEA of 0.097 (90% CI (0.091, 0.103)). The corresponding R
code is shown in Table 6.
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Table 6. R code stabsel() function for stability selection.

R code

stabsel.out<-stabsel(dat.sub22, model2, det.range = T,
jump = 0.02, detr.nlambda = 20, times = 30,
n.lambda = 10, n.boot = 100, pars_pen = pars.pen,
p = 0.9)
#or equivalently:
range<-det_range(dat.sub22, model2, jump = 0.02,
detr.nlambda = 20, times = 30, pars_pen = pars.pen)
stabsel.out2<-stabsel(dat.sub22, model2,det.range = F,
from = range$lb, to = range$ub, n.lambda = 10,
n.boot=100,pars_pen = pars.pen, p = 0.9)
#can further tune the probability cutoff based on model fit:
Stabsel.out3<-stabsel_thr(stabsel.out, from=0.8, to=1,
method = “aic”)

4.4. Missing Data

When data contain missing values, besides using listwise deletion by default, one can
also use FIML (by specifying missing = ”fiml”). One thing to note is that we also need to
specify meanstructure = TRUE and fixed.x = FALSE in the lavaan model before running
regularization. Also, there is good evidence to suggest building auxiliary variables into
the model effectively reduces parameter bias [40]. Auxiliary variables are variables that
are expected to be correlated with the missingness on the key variables in the model that
would have been otherwise excluded from the model. When auxiliary variables are to be
considered, one can refer to Graham [40], which provides two methods of modeling these
auxiliary variables, either as dependent variables or as correlated variables. Researchers
should model these variables directly in the lavaan model. If computational resources
permit it, one can also use the stabsel() function and set the desired imputation method
in the imp.method argument. The function then creates a complete dataset using multiple
imputation for each bootstrap sample used in stability selection.

4.5. Categorical Predictors

We mentioned earlier in this tutorial that the regsem package assumes that the endoge-
nous variables are continuous and normally distributed, since the maximum likelihood
discrepancy function is utilized in the package. Huang and Montoya [41] explored different
coding strategies and reference categories, and conclude that the selection results of lasso
models heavily depend on such choices, which raises practical problems when the lasso
is applied to real-world data. In situations when assuming the variable is continuous
is inappropriate, we may consider using the least squares (LS) discrepancy function to
construct the penalized estimation criterion. Although this is not currently supported in
the current regsem package, it can be used in the R package lslx [42]. For more details on
the penalized LS methods, see Huang [42].

5. Conclusions

This paper provides an overview of using the regsem package to perform regularized
SEM in R. A step-by-step tutorial is provided on a typical application scenario, along
with discussions on practical issues to consider when using the R package, as well as
regularization for SEM in general. Other potential utilities of regularized SEM are discussed
in the last section of the tutorial. Given that SEM encompasses a wide array of latent
variable models, and that the regsem package was created as a general tool for modeling
latent variables, other potential utilities are waiting to be explored.

Supplementary Materials: The full R code and a synthetic version of the data are available online at
https://osf.io/ry5wb/?view_only=7b606f7bc96549f89a4e556667137be3.

https://osf.io/ry5wb/?view_only=7b606f7bc96549f89a4e556667137be3
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