
quantum reports

Article

Quantum Circuit Learning with Error Backpropagation
Algorithm and Experimental Implementation

Masaya Watabe 1, Kodai Shiba 1,2, Chih-Chieh Chen 2, Masaru Sogabe 2, Katsuyoshi Sakamoto 1,3 and
Tomah Sogabe 1,2,3,*

����������
�������

Citation: Watabe, M.; Shiba, K.;

Chen, C.-C.; Sogabe, M.; Sakamoto,

K.; Sogabe, T. Quantum Circuit

Learning with Error Backpropagation

Algorithm and Experimental

Implementation. Quantum Rep. 2021,

3, 333–349. https://doi.org/

10.3390/quantum3020021

Received: 23 April 2021

Accepted: 24 May 2021

Published: 28 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Engineering Department, The University of Electro-Communications, Tokyo 182-8585, Japan;
w2033124@edu.cc.uec.ac.jp (M.W.); s1933062@edu.cc.uec.ac.jp (K.S.); katsuyoshi.sakamoto@uec.ac.jp (K.S.)

2 Grid, Inc., Tokyo 107-0061, Japan; chen.chih.chieh@gridsolar.jp (C.-C.C.); sogabe@gridsolar.jp (M.S.)
3 i-Powered Energy Research Center (i-PERC), The University of Electro-Communications,

Tokyo 182-8585, Japan
* Correspondence: sogabe@uec.ac.jp

Abstract: Quantum computing has the potential to outperform classical computers and is expected
to play an active role in various fields. In quantum machine learning, a quantum computer has
been found useful for enhanced feature representation and high-dimensional state or function
approximation. Quantum–classical hybrid algorithms have been proposed in recent years for this
purpose under the noisy intermediate-scale quantum computer (NISQ) environment. Under this
scheme, the role played by the classical computer is the parameter tuning, parameter optimization,
and parameter update for the quantum circuit. In this paper, we propose a gradient descent-based
backpropagation algorithm that can efficiently calculate the gradient in parameter optimization
and update the parameter for quantum circuit learning, which outperforms the current parameter
search algorithms in terms of computing speed while presenting the same or even higher test
accuracy. Meanwhile, the proposed theoretical scheme was successfully implemented on the 20-qubit
quantum computer of IBM Q, ibmq_johannesburg. The experimental results reveal that the gate
error, especially the CNOT gate error, strongly affects the derived gradient accuracy. The regression
accuracy performed on the IBM Q becomes lower with the increase in the number of measurement
shot times due to the accumulated gate noise error.

Keywords: quantum computing; machine learning; backpropagation; IBM Q

1. Introduction

The noisy intermediate-scale quantum computer (NISQ) is a quantum computer that
possesses considerable quantum errors [1]. Under the NISQ circumstance, it is necessary
to develop noise-resilient quantum computation methods that provide error resilience.
There are two solutions to this problem. One is to perform quantum computing while
correcting quantum errors in the presence of errors. Another approach is to develop
a hybrid quantum–classical algorithm that completes the quantum part of computing
before the quantum error becoming fatal and shifts the rest of the task to the classical
computer. The latter approach has prompted the development of many algorithms, such
as quantum approximation optimization algorithm (QAOA) [2], variational quantum
eigensolver (VQE) [3], and many others [4–6]. The quantum–classical algorithms aim to
seek the ‘quantum advantage’ rather than ‘quantum supremacy’ [7]. Quantum supremacy
states that a quantum computer must prove that it can achieve a level, either in terms of
speed or solution finding, that can never be achieved by any classical computer. It has been
considered that the quantum supremacy may appear in several decades and that instances
of ‘quantum supremacy’ reported so far are either overstating or lack fair comparison [8,9].
From this point of view, the quantum advantage is a more realistic goal, and it aims to find
the concrete and beneficial applications of the NISQ devices. Within the scope of quantum

Quantum Rep. 2021, 3, 333–349. https://doi.org/10.3390/quantum3020021 https://www.mdpi.com/journal/quantumrep

https://www.mdpi.com/journal/quantumrep
https://www.mdpi.com
https://www.mdpi.com/article/10.3390/quantum3020021?type=check_update&version=1
https://doi.org/10.3390/quantum3020021
https://doi.org/10.3390/quantum3020021
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/quantum3020021
https://www.mdpi.com/journal/quantumrep

Quantum Rep. 2021, 3 334

advantage, the application of quantum computers can be expanded far beyond computing
speed racing to the usage in various fields, such as representing wavefunctions in quantum
chemistry [10–14] or working as a quantum kernel to represent enhanced high-dimensional
features in the field of machine learning [15–18].

In QAOA, VQE, or other hybrid NISQ algorithms, the task of optimizing the model
parameter is challenging. In all these algorithms, the parameter search and updating
are performed in the classical computer. In a complete classical approach, the optimal
parameter search is usually categorized as a mathematical optimization problem, where
various methods, including both gradient-based and non-gradient-based, have been widely
utilized. For quantum circuit learning, so far most parameter searching algorithms are
based on non-gradient methods such as Nelder–Mead method [19] and quantum-inspired
metaheuristics [20,21]. However, recently, gradient-based ones such as SPSA [22] and a
finite difference method have been reported [23].

In this article, we propose an error backpropagation algorithm on quantum circuit
learning to calculate the gradient required in parameter optimization efficiently. The
purpose of this work is to develop a gradient-based circuit learning algorithm with superior
learning speed to the ones reported so far. The error backpropagation method is known as
an efficient method for calculating gradients in the field of deep neural network machine
learning for updating parameters using the gradient descent method [24]. Further speed
improvement can be easily realized through using the GPGPU technique, which is again
well established and under significant development in the field of deep learning [25].

The idea behind our proposal is described as follows: As depicted in Figure 1, if the
input quantum state is |ψin〉 and a specific quantum gate U(θ) is applied, then the output
state |ψout〉 can be expressed as the dot product of the quantum gate with the input state

|ψout〉 = U(θ)|ψin〉, (1)

where θ stands for the parameters for the gate U(θ). On the other hand, the calculation
process of a fully connected neural network without activation function can be written as
Y = W·X, where X is the input vector, W is the weight matrix of the network, and Y is the
output. The quantum gate U(θ) is remarkably similar to the network weight matrix W.
This shows that backpropagation algorithms that are used for deep neural networks can be
modified to some extent to be applied to the simulation process of quantum circuit learning.

Quantum Rep. 2021, 3 FOR PEER REVIEW 3

backpropagation heavily used in the field of deep machine learning, can be shared by the
quantum circuit as well.

Figure 1. Example of three-gate quantum circuit and its corresponding fully connected quantum
network, showing similarity to a four-layer neural network with equal numbers of nodes in the
input layer, middle layer, and output layer. Note that the amplitude value is not normalized for
better eye-guiding illustration.

In general, the backpropagation method uses the chain rule of the partial differenti-
ation to propagate the gradient back from the network output and calculate the gradient
of the weights. Owing to the chain rule, the backpropagation can be done only at the in-
put/output relationship at the computation cost of a node [24]. In the simulation of quan-
tum computing by error backpropagation, the quantum state |߰ۧ and the quantum gates
are represented by complex values. Here we will show the derivation details regarding
the quantum backpropagation in complex-valued vector space. When the input of n qubits
is |߰௜௡ۧ and the quantum circuit parameter network ܹ(ߠ) is applied, the output |߰௢௨௧ۧ
can be expressed as

௜௡ۧ߰|(ߠ)ܹ = ෍ ܿఏ௝|݆ۧଶ೙ିଵ
௝ୀ଴ = |߰௢௨௧ۧ, (2)

where ܿఏ௝ is the probability amplitude of state |݆ۧ and หܿఏ௝หଶ = ఏ௝݌ is the observation prob-
ability of state |݆ۧ. If loss function ܮ can be expressed by using observation probability
determined by quantum measurement, the gradient of the learning parameter can be de-
scribed as ߲ߠ߲ܮ = ఏ௝݌߲ܮ߲ ∙ ߠఏ௝߲݌߲ , (3)

since ݌ఏ௝ = หܿఏ௝หଶ = ܿఏ௝ܿఏఫഥ , (4)

Figure 1. Example of three-gate quantum circuit and its corresponding fully connected quantum
network, showing similarity to a four-layer neural network with equal numbers of nodes in the input
layer, middle layer, and output layer. Note that the amplitude value is not normalized for better
eye-guiding illustration.

Quantum Rep. 2021, 3 335

The method we propose makes it possible to reduce the time significantly for gradient
calculation when the number of qubits is increased or the depth of the circuit (the number
of gates) is increased. Meanwhile, by taking advantage of GPGPU, it is expected that
using gradient-based backpropagation in the NISQ hybrid algorithms will further facilitate
parameter search when many qubits and deeper circuits are deployed.

2. Quantum Backpropagation Algorithm

As shown in Figure 1, a quantum circuit can be effectively represented by a fully
connected quantum network with significant similarity to the conventional neural network
except for two facts: (1) there is no activation function applied upon each node, so the
node is not considered as a neuron (or assuming an identical activation function); (2) the
numbers of nodes are equal among the input layer, middle layer, and output layer, since
the dimensionality of each layer is the same, which is quite different from the conventional
neural network where the dimensionality in the middle layers can be freely tailored. Notice
that the state shown as input in the quantum circuit is only one of the 2n(n is the number
of qubits) with the amplitude of ‘1’ (not normalized) (see Figure 1 for details). The network
similarity implies that the learning algorithm, such as the backpropagation heavily used in
the field of deep machine learning, can be shared by the quantum circuit as well.

In general, the backpropagation method uses the chain rule of the partial differentia-
tion to propagate the gradient back from the network output and calculate the gradient
of the weights. Owing to the chain rule, the backpropagation can be done only at the
input/output relationship at the computation cost of a node [24]. In the simulation of quan-
tum computing by error backpropagation, the quantum state |ψ〉 and the quantum gates
are represented by complex values. Here we will show the derivation details regarding the
quantum backpropagation in complex-valued vector space. When the input of n qubits is
|ψin〉 and the quantum circuit parameter network W(θ) is applied, the output |ψout〉 can be
expressed as

W(θ)|ψin〉 =
2n−1

∑
j=0

cj
θ |j〉 = |ψout〉, (2)

where cj
θ is the probability amplitude of state |j〉 and

∣∣∣cj
θ

∣∣∣2 = pj
θ is the observation prob-

ability of state |j〉. If loss function L can be expressed by using observation probability
determined by quantum measurement, the gradient of the learning parameter can be
described as

∂L
∂θ

=
∂L

∂pj
θ

·
∂pj

θ

∂θ
, (3)

since
pj

θ =
∣∣∣cj

θ

∣∣∣2 = cj
θcj

θ , (4)

where cj
θ is the conjugate of cj

θ , Therefore, the gradient of observation probability can be
further expanded as

∂pj
θ

∂θ
=

∂cj
θcj

θ

∂θ
= cj

θ

∂cj
θ

∂θ
+ cj

θ

∂cj
θ

∂θ
. (5)

Equation (5) can be further expanded as

cj
θ

∂cj
θ

∂θ
+ cj

θ

∂cj
θ

∂θ
= cj

θ

∂cj
θ

∂θ
+ cj

θ

∂cj
θ

∂θ
. (6)

Equation (6) contains complex values but can be nicely summed out as a real value
shown as follows:

cj
θ

∂cj
θ

∂θ
+ cj

θ

∂cj
θ

∂θ
= 2Re

[
cj

θ

∂cj
θ

∂θ

]
. (7)

Quantum Rep. 2021, 3 336

Using the formula ∂pj
θ

∂cj
θ

= cj
θ , the cj

θ can be replaced as follows:

cj
θ

∂cj
θ

∂θ
+ cj

θ

∂cj
θ

∂θ
= 2Re

[
∂pj

θ

∂cj
θ

∂cj
θ

∂θ

]
. (8)

Therefore,
∂L
∂θ

= 2Re

[
∂L

∂pj
θ

∂pj
θ

∂cj
θ

∂cj
θ

∂θ

]
. (9)

∂L
∂pj

θ

∂pj
θ

∂cj
θ

∂cj
θ

∂θ can be obtained by error backpropagation in the same way as the conventional

calculation used in a deep neural network [26]. Meanwhile, one advantage of the proposed
method is that the quantum gate matrix containing complex values is converted to real
values. The gradient of the loss function with respect to θ can be obtained from the real part
of the value of the complex vector space calculated by the conventional backpropagation.
More detailed derivation regarding backpropagation at each node using a computation
graph is given in the Supplementary Materials (S.A, S.B, and S.C) for reference.

3. Simulation Results

To verify the validity of the proposed quantum backpropagation algorithm, we con-
ducted the experiments for the supervised learning tasks, including both regression and
classification problems.

The quantum circuit consists of a unitary input gate Uin(x) that creates an input
state from classical input data x and a unitary gate W(θ) with parameters θ. We use
Uin(x) =

⊗n−1
j=0 RZ

(
θZ

j

)
RY

(
θY

j

)
as proposed in [23] for the unitary input gate, as shown

in Figure 2a. We use W(θ) = U(l)
loc(θl)Uent · · ·U(1)

loc (θ1)UentU
(0)
loc (θ0) as proposed in [27];

therefore, U(k)
loc (θk) =

⊗n−1
j=0 U

(
θj,k

)
, shown in Figure 2b. The layer U(k)

loc (θk) comprises

local single qubit rotations. We only use Y and Z rotations, so U
(

θj,k

)
= RZ

(
θZ

j,k

)
RY

(
θY

j,k

)
.

Each θ is parameterized as θk ∈ R2n, θj,k ∈ R2. Uent is the entangling gate. We use
controlled-Z gates (CZ) as Uent. The overall quantum circuit is shown in Figure 2c.

Quantum Rep. 2021, 3 FOR PEER REVIEW 5

Figure 2. (a) Preparation of input state by a unitary input gate ௜ܷ௡(࢞) exemplified by a series of
rotation gates. (b) Quantum circuit to present variational parameter state ܹ(ࣂ). l denotes the
depth of the quantum circuit. (c) Quantum entanglement circuit where ୣܷ୬୲ gate is composed of
CZ gates from qubit j to qubit (j + 1) mod n, j ∈ ሼ0, … , ݊ − 1ሽ.

3.1. Regression
In regression tasks, the circuit parameters were set to n = 3 and l = 3; that is, the num-

ber of qubits is 3 and the depth of the circuit is 4. The expected value of observable Pauli
Z for the first qubit was obtained from the output state |߰௢௨௧ۧ of the circuit. One-dimen-
sional data ݔ is input by setting circuit parameters as ߠ௓ = cosିଵ ௒ߠଶ, (10)ݔ = sinିଵ (11) .ݔ

The target function ݂(ݔ) was regressed with the output of twice the Z expected
value. We performed three regression tasks to verify the effectiveness of the proposed
approach. A conventional least square loss function is adopted in the current regression
tasks as follows: ܮ = 12 ൫2〈ܼ〉 − ൯ଶ (12)(ݔ)݂

Moreover, its first derivation becomes ߜ = 〈ܼ〉߲ܮ߲ = ൫2〈ܼ〉 − ൯. (13)(ݔ)݂

The error ߜ is the one for the backpropagation. The expectation value of 〈ܼ〉 is given
as follows: 〈ܼ〉 = 1 ∙ ଵ,ఏ|଴ۧ݌ + (−1) ∙ ଵ,ఏ|ଵۧ݌ (14)

Here we provide a more detailed explanation regarding how the expectation value
is obtained in Equation (14). There are two ways to obtain the probability in Equation (14). ݌ଵ,ఏ|௜ۧ can be measured through observation. For example, when we have a quantum circuit
of 3 qubits, there will be a probability for eight states defined as follows: ݌ఏ|଴଴଴ۧ, ,ఏ|଴଴ଵۧ݌ ,ఏ|଴ଵ଴ۧ݌ ,ఏ|଴ଵଵۧ݌ ,ఏ|ଵ଴଴ۧ݌ ,ఏ|ଵ଴ଵۧ݌ ,ఏ|ଵଵ଴ۧ݌ ఏ|ଵଵଵۧ݌

If the observation measurement is performed at the first qubit, as shown in Figure 3,
the probability of ݌ଵ,ఏ|଴ۧ and ݌ଵ,ఏ|ଵۧ represent the possibility of the first qubit being observed
as either the state of |0ۧ or |1ۧ. The second approach to obtain the probability is by

(b)

(c)

(a)

Figure 2. (a) Preparation of input state by a unitary input gate Uin(x) exemplified by a series of
rotation gates. (b) Quantum circuit to present variational parameter state W(θ). l denotes the depth
of the quantum circuit. (c) Quantum entanglement circuit where Uent gate is composed of CZ gates
from qubit j to qubit (j + 1) mod n, j ∈ {0, . . . , n− 1}.

Quantum Rep. 2021, 3 337

3.1. Regression

In regression tasks, the circuit parameters were set to n = 3 and l = 3; that is, the number
of qubits is 3 and the depth of the circuit is 4. The expected value of observable Pauli Z for
the first qubit was obtained from the output state

∣∣∣ψout〉 of the circuit. One-dimensional
data x is input by setting circuit parameters as

θZ = cos−1 x2, (10)

θY = sin−1 x. (11)

The target function f (x) was regressed with the output of twice the Z expected value.
We performed three regression tasks to verify the effectiveness of the proposed approach. A
conventional least square loss function is adopted in the current regression tasks as follows:

L =
1
2
(2〈Z〉 − f (x))2 (12)

Moreover, its first derivation becomes

δ =
∂L

∂〈Z〉 = (2〈Z〉 − f (x)). (13)

The error δ is the one for the backpropagation. The expectation value of 〈Z〉 is given
as follows:

〈Z〉 = 1·p|0〉1,θ + (−1)·p|1〉1,θ (14)

Here we provide a more detailed explanation regarding how the expectation value is
obtained in Equation (14). There are two ways to obtain the probability in Equation (14).
p|i〉1,θ can be measured through observation. For example, when we have a quantum circuit
of 3 qubits, there will be a probability for eight states defined as follows:

p|000〉
θ , p|001〉

θ , p|010〉
θ , p|011〉

θ , p|100〉
θ , p|101〉

θ , p|110〉
θ , p|111〉

θ

If the observation measurement is performed at the first qubit, as shown in Figure 3,
the probability of p|0〉1,θ and p|1〉1,θ represent the possibility of the first qubit being observed as
either the state of |0〉 or |1〉. The second approach to obtain the probability is by calculation
using the quantum simulator. By measuring the first qubit, the p|0〉1,θ and p|1〉1,θ can be obtained
and are mathematically equivalent to the following marginalization:

p|0〉1,θ = p|000〉
θ + p|010〉

θ + p|100〉
θ + p|110〉

θ , (15)

p|1〉1,θ = p|001〉
θ + p|011〉

θ + p|101〉
θ + p|111〉

θ . (16)

By completing the calculation above, the probability needed in the equation can be
worked out, and thus 〈Z〉 is obtained.

Quantum Rep. 2021, 3 FOR PEER REVIEW 6

calculation using the quantum simulator. By measuring the first qubit, the ݌ଵ,ఏ|଴ۧ and ݌ଵ,ఏ|ଵۧ
can be obtained and are mathematically equivalent to the following marginalization: ݌ଵ,ఏ|଴ۧ = ఏ|଴଴଴ۧ݌ + ఏ|଴ଵ଴ۧ݌ + ఏ|ଵ଴଴ۧ݌ + ଵ,ఏ|ଵۧ݌ఏ|ଵଵ଴ۧ, (15)݌ = ఏ|଴଴ଵۧ݌ + ఏ|଴ଵଵۧ݌ + ఏ|ଵ଴ଵۧ݌ + ఏ|ଵଵଵۧ݌

. (16)

By completing the calculation above, the probability needed in the equation can be
worked out, and thus 〈ܼ〉 is obtained.

Figure 3. Quantum circuit and measurement to obtain observation probability for regression prob-
lem.

Figure 4 shows the regression results for three typical tasks to verify the validity of the
proposed algorithm. In Figure 4a–c, three target functions representing both linear and
nonlinear regression were chosen as follows: ଵ݂(ݔ) = which represents a typical linear ,ݔ
function; ଶ݂(ݔ) = (ݔ)ଶ, which represents a single concave profile nonlinear problem, and ଷ݂ݔ = sin which represents a multi-concave–convex wavy profile for more complex ,ݔ
problems. The noise was also added into the target function for realistic purposes, and the
number of training data was chosen as 100 in circuit learning for the three target functions.
It can be seen that the quantum circuit based on error backpropagation performs very well
in the regression task. For instance, the value of ܴଶ for the regression of ݔଶ and sin are ݔ
found as high as 0.989 and 0.992, respectively. At the initial learning stage, the results
show large deviation from the target function, and at the final learning stage the regressed
curve catches the main feature of the training data and shows a very reasonably fitted
curve. In Figure 4a, the fitted curve shows deviation at the left edge of the regression pro-
file. This deviation is considered as a lack of training data at the boundary and can be
improved by either increasing the number of training data or adding a regularization term
in the loss function, which is regularly used in conventional machine learning tasks.

Figure 3. Quantum circuit and measurement to obtain observation probability for regression problem.

Figure 4 shows the regression results for three typical tasks to verify the validity of
the proposed algorithm. In Figure 4a–c, three target functions representing both linear and
nonlinear regression were chosen as follows: f1(x) = x, which represents a typical linear

Quantum Rep. 2021, 3 338

function; f2(x) = x2, which represents a single concave profile nonlinear problem, and
f3(x) = sin x, which represents a multi-concave–convex wavy profile for more complex
problems. The noise was also added into the target function for realistic purposes, and the
number of training data was chosen as 100 in circuit learning for the three target functions.
It can be seen that the quantum circuit based on error backpropagation performs very well
in the regression task. For instance, the value of R2 for the regression of x2 and sin x are
found as high as 0.989 and 0.992, respectively. At the initial learning stage, the results show
large deviation from the target function, and at the final learning stage the regressed curve
catches the main feature of the training data and shows a very reasonably fitted curve. In
Figure 4a, the fitted curve shows deviation at the left edge of the regression profile. This
deviation is considered as a lack of training data at the boundary and can be improved by
either increasing the number of training data or adding a regularization term in the loss
function, which is regularly used in conventional machine learning tasks.

Quantum Rep. 2021, 3 FOR PEER REVIEW 7

Figure 4. (a) Regression of target function ଵ݂(ݔ) = ݔ + 0.015ܰ(0, 1). (b) Regression results for tar-
get function ଶ݂(ݔ) = ଶݔ + 0.015ܰ(0, 1). (c) Regression results for target function ଷ݂(ݔ) = ݔ ݊݅ݏ +0.015ܰ(0, 1).

3.2. Classification
In the classification problem, we have modified the quantum circuit architecture to

accommodate the increased number of parameters for both qubit and circuit depth. The
initial parameter set for the classification problem was ݊ = 4 and ݈ = 6 (number of lay-
ers is 7). Here we show only the results for nonlinear classification problems. The example
of binary classification of the two-dimensional data is used in the experiment. Here the
dataset was prepared by referring to a similar dataset from scikit-learn [28]. We consider
two representative nonlinear examples: one is a dataset of make_circles, and another one
is make_moons. We consider the make_moons to possess more complicated nonlinear
features than make_circles. It should be noted that the data presented here are results from
the sample without the addition of the noise. Due to the shortage of space, classification
results for noise training data are given in the Supplementary Materials. The two-dimen-
sional input data ࢞ was prepared by setting circuit parameters as follows: ߠଶ௜௓ = cosିଵ ଶ௜௒ߠ ,ଵଶݔ = sinିଵ ଶ௜ାଵ௓ߠ ଵ orݔ = cosିଵ ଶ௜ାଵ௒ߠ ,ଶଶݔ = sinିଵ ଶݔ

 (݅ = 0, 1).
(17)

For the training purpose, a typical cross-entropy loss function was adopted to gener-
ate the error and was further backpropagated to update the learning parameter. ܮ = ݀௜ logሾݕଵሿ + (1 − ݀௜) logሾ1 − ଵሿ. (18)ݕ

The cross-entropy formula looks complicated, but its first derivative upon the prob-
ability ݕଵ reduces to the form of error backpropagation similar to the regression tasks.

(b)

(c)

(a)

Figure 4. (a) Regression of target function f1(x) = x + 0.015N(0, 1). (b) Regression results for target function
f2(x) = x2 + 0.015N(0, 1). (c) Regression results for target function f3(x) = sin x + 0.015N(0, 1).

3.2. Classification

In the classification problem, we have modified the quantum circuit architecture
to accommodate the increased number of parameters for both qubit and circuit depth.
The initial parameter set for the classification problem was n = 4 and l = 6 (number of
layers is 7). Here we show only the results for nonlinear classification problems. The
example of binary classification of the two-dimensional data is used in the experiment.
Here the dataset was prepared by referring to a similar dataset from scikit-learn [28]. We
consider two representative nonlinear examples: one is a dataset of make_circles, and
another one is make_moons. We consider the make_moons to possess more complicated
nonlinear features than make_circles. It should be noted that the data presented here are
results from the sample without the addition of the noise. Due to the shortage of space,

Quantum Rep. 2021, 3 339

classification results for noise training data are given in the Supplementary Materials. The
two-dimensional input data x was prepared by setting circuit parameters as follows:

θZ
2i = cos−1 x1

2,
θY

2i = sin−1 x1 or
θZ

2i+1 = cos−1 x2
2,

θY
2i+1 = sin−1 x2

(i = 0, 1).

(17)

For the training purpose, a typical cross-entropy loss function was adopted to generate
the error and was further backpropagated to update the learning parameter.

L = di log[y1] + (1− di) log[1− y1]. (18)

The cross-entropy formula looks complicated, but its first derivative upon the proba-
bility y1 reduces to the form of error backpropagation similar to the regression tasks.

δ =
∂L

∂〈Z1〉
= y1 − di, (19)

δ =
∂L

∂〈Z2〉
= −(y1 − di). (20)

For the output state |ψout〉, we calculated the expected values 〈Z1〉 and 〈Z2〉 of ob-
servable Z using the first and second qubits, as shown in Figure 5. Similar to the process
adopted in the regression task, the final probability for the first and second qubit can be
defined as follows by assuming a 3-qubit quantum circuit.

p|0〉1,θ = p|000〉
θ + p|010〉

θ + p|100〉
θ + p|110〉

θ , (21)

p|1〉1,θ = p|001〉
θ + p|011〉

θ + p|101〉
θ + p|111〉

θ . (22)

Therefore, the expected values of 〈Z1〉 and 〈Z2〉 by observation measurement are
given as follows:

〈Z1〉 = 1·p|0〉1,θ + (−1)·p|1〉1,θ , (23)

〈Z2〉 = 1·p|0〉2,θ + (−1)·p|1〉2,θ . (24)

Quantum Rep. 2021, 3 FOR PEER REVIEW 8

ߜ = 〈ଵܼ〉߲ܮ߲ = ଵݕ − ݀௜, (19)

ߜ = 〈ଶܼ〉߲ܮ߲ = ଵݕ)− − ݀௜). (20)

For the output state |߰௢௨௧ۧ, we calculated the expected values 〈ܼଵ〉 and 〈ܼଶ〉 of ob-
servable Z using the first and second qubits, as shown in Figure 5. Similar to the process
adopted in the regression task, the final probability for the first and second qubit can be
defined as follows by assuming a 3-qubit quantum circuit. ݌ଵ,ఏ|଴ۧ = ఏ|଴଴଴ۧ݌ + ఏ|଴ଵ଴ۧ݌ + ఏ|ଵ଴଴ۧ݌ + ଵ,ఏ|ଵۧ݌ఏ|ଵଵ଴ۧ, (21)݌ = ఏ|଴଴ଵۧ݌ + ఏ|଴ଵଵۧ݌ + ఏ|ଵ଴ଵۧ݌ + ఏ|ଵଵଵۧ. (22)݌

Therefore, the expected values of 〈ܼଵ〉 and 〈ܼଶ〉 by observation measurement are
given as follows: 〈ܼଵ〉 = 1 ∙ ଵ,ఏ|଴ۧ݌ + (−1) ∙ ଵ,ఏ|ଵۧ݌ , (23)〈ܼଶ〉 = 1 ∙ ଶ,ఏ|଴ۧ݌ + (−1) ∙ ଶ,ఏ|ଵۧ݌ . (24)

Figure 5. Quantum circuit and measurement to obtain observation probability for classification
task.

Meanwhile, for the classification problem, a SoftMax function was applied to the output
for 〈ܼଵ〉 and 〈ܼଶ〉 to obtain continuous probabilities ݕଵ and ݕଶ between 0 and 1. Again,
this treatment is the same as the method used in neural network-based machine learning
classification. The obtained ݕଵ or ݕଶ can be used to calculate the loss function defined in
Equation (18). Here for binary classification, there exists a linear relation between ݕଵ and ݕଶ as shown in Equations (25)–(27). ݕଵ = ௘〈ೋభ〉௘〈ೋభ〉ା௘〈ೋమ〉, (25)

ଶݕ = ݁〈௓మ〉݁〈௓భ〉 + ݁〈௓మ〉, (26)ݕଶ = 1 − ଵ. (27)ݕ

For the proof of concept, a limited number of training data was used and was set as
200. Half of the data were labelled as ‘0’; the remaining half of the data were labelled as
‘1′. For comparison, we have also applied the classical support vector machine (SVM), a
toolkit attached in the scikit-learn package, to the same datasets. The results from SVM
are served as a rigorous reference for the validity verification of the proposed approach.

Figure 5. Quantum circuit and measurement to obtain observation probability for classification task.

Quantum Rep. 2021, 3 340

Meanwhile, for the classification problem, a SoftMax function was applied to the
output for 〈Z1〉 and 〈Z2〉 to obtain continuous probabilities y1 and y2 between 0 and 1.
Again, this treatment is the same as the method used in neural network-based machine
learning classification. The obtained y1 or y2 can be used to calculate the loss function
defined in Equation (18). Here for binary classification, there exists a linear relation between
y1 and y2 as shown in Equations (25)–(27).

y1 =
e〈Z1〉

e〈Z1〉 + e〈Z2〉
, (25)

y2 =
e〈Z2〉

e〈Z1〉 + e〈Z2〉
, (26)

y2 = 1− y1. (27)

For the proof of concept, a limited number of training data was used and was set as
200. Half of the data were labelled as ‘0’; the remaining half of the data were labelled as
‘1′. For comparison, we have also applied the classical support vector machine (SVM), a
toolkit attached in the scikit-learn package, to the same datasets. The results from SVM are
served as a rigorous reference for the validity verification of the proposed approach.

Figure 6 shows the test results for the two nonlinear classification tasks. In Figure 6a,e,
two-dimensional training data with values ranging between −1 and 1 were chosen as the
training dataset. Here the noise was not added for simplicity, and the training data with
added noise are presented in the Supplementary Materials (S.D). Figure 6b shows the test
results based on the learned parameter from the training dataset shown in Figure 6a. A
multicolored contour-line-like classification plane was found in Figure 6b. The multicolored
value corresponds to the continuous output of the probability from the SoftMax function. A
typical two-valued region can be easily determined by taking the median of the continuous
probability as the classification boundary, and it is shown in Figure 6b with the dashed
line colored pink. Reference SVM results simulated using scikit-learn-SVM are shown in
Figure 6c. Since SVM simulation treats the binary target discretely, the output shows the
exact two-value-based colormaps of the test results. It can be easily seen here that the results
shown in Figure 6b are highly consistent with the SVM results. In particular, the location
of the median boundary (dashed pink line) corresponds precisely to the SVM results. For
the dataset of make_moons, the situation becomes more complicated due to the increased
nonlinearity in the training data. Figure 6d–f shows the same simulation sequence as
the data of make_circles. However, the results from error backpropagation, both for the
approach proposed here and for SVM, showed misclassification. The classification mistake
usually occurs near the terminal edge area where the label ‘0’ and label ‘1’ overlapped
with each other. Taking a closer look at the test results shown in Figure 6e,f, it can be
found that the misclassification presented differently. For quantum circuit learning, the
misclassification occurs mostly at the left side of the label ‘0’ in the overlapping area. For
SVM, the misclassification is roughly equally distributed for both label ‘0’ and label ‘1’,
indicating the intrinsic difference between these two simulation algorithms.

Quantum Rep. 2021, 3 341

Quantum Rep. 2021, 3 FOR PEER REVIEW 9

Figure 6 shows the test results for the two nonlinear classification tasks. In Figure 6a,e,
two-dimensional training data with values ranging between −1 and 1 were chosen as the
training dataset. Here the noise was not added for simplicity, and the training data with
added noise are presented in the Supplementary Materials (S.D). Figure 6b shows the test
results based on the learned parameter from the training dataset shown in Figure 6a. A
multicolored contour-line-like classification plane was found in Figure 6b. The multicol-
ored value corresponds to the continuous output of the probability from the SoftMax func-
tion. A typical two-valued region can be easily determined by taking the median of the
continuous probability as the classification boundary, and it is shown in Figure 6b with
the dashed line colored pink. Reference SVM results simulated using scikit-learn-SVM are
shown in Figure 6c. Since SVM simulation treats the binary target discretely, the output
shows the exact two-value-based colormaps of the test results. It can be easily seen here
that the results shown in Figure 6b are highly consistent with the SVM results. In particu-
lar, the location of the median boundary (dashed pink line) corresponds precisely to the
SVM results. For the dataset of make_moons, the situation becomes more complicated due
to the increased nonlinearity in the training data. Figure 6d–f shows the same simulation
sequence as the data of make_circles. However, the results from error backpropagation,
both for the approach proposed here and for SVM, showed misclassification. The classifi-
cation mistake usually occurs near the terminal edge area where the label ‘0’ and label ‘1’
overlapped with each other. Taking a closer look at the test results shown in Figure 6e,f,
it can be found that the misclassification presented differently. For quantum circuit learn-
ing, the misclassification occurs mostly at the left side of the label ‘0’ in the overlapping
area. For SVM, the misclassification is roughly equally distributed for both label ‘0’ and
label ‘1’, indicating the intrinsic difference between these two simulation algorithms.

Figure 6. Quantum circuit learning results using error backpropagation for nonlinear binary clas-
sification problem with 4 qubits and 7 layers of depth. (a) Training data set for make_circles, red
for label ‘0’ and blue for label ‘1’. (b) Test results using the learned parameter using the 200 data
make_circles dataset, pink line corresponding to the median boundary of the continuous probabil-
ity. (c) scikit-learn-SVM classification results using the learned support vectors. (d) Training data
set for make_moons, red for label ‘0’ and blue for label ‘1’. (e) Test results using the learned pa-
rameter under the 200 data make_moon dataset, pink line corresponding to the median boundary
of the continuous probability. (f) scikit-learn-SVM classification results using the learned support
vectors.

(a) (b)

(d) (e)

(c)

(f)

Figure 6. Quantum circuit learning results using error backpropagation for nonlinear binary classification problem with 4
qubits and 7 layers of depth. (a) Training data set for make_circles, red for label ‘0’ and blue for label ‘1’. (b) Test results
using the learned parameter using the 200 data make_circles dataset, pink line corresponding to the median boundary of
the continuous probability. (c) scikit-learn-SVM classification results using the learned support vectors. (d) Training data
set for make_moons, red for label ‘0’ and blue for label ‘1’. (e) Test results using the learned parameter under the 200 data
make_moon dataset, pink line corresponding to the median boundary of the continuous probability. (f) scikit-learn-SVM
classification results using the learned support vectors.

3.3. Learning Efficiency Improvement

As shown in Figure 6d–f, both the backpropagation-based quantum learning algorithm
and classical SVM algorithm failed to provide excellent test accuracy in the make_moon
classification dataset. Further investigation aiming at improving the test accuracy for the
make_moons data was conducted. Here we adopted two approaches for this purpose:
(i) adjusting the depth of the quantum circuit and (ii) adjusting the scaling parameter γ.
The results are summarized as follows:

(i) Varying the depth of the quantum circuit: We consider that one of the reasons for
misclassification occurred in Figure 6e would be attributed to the limited representation
ability due to the limited depth of the quantum circuit. Therefore, we investigated the effect
of quantum circuit depth on the learning accuracy, and the results are shown in Figure 7a–c.
The depth of the quantum circuit was set to 4, 7, and 10 layers. Four layers of the circuit
showed an almost linear separation plane, indicating the insufficient representation of
the nonlinear feature in the training data. However, with the increase in the circuit layer
thickness, the classification boundary (separation plane) becomes more nonlinear, as shown
in Figure 7b, where the depth of the quantum circuit was set as six layers. Figure 7c shows
the results obtained at the 10 layers depth of the quantum circuit, and it can be clearly
found that the separation classification plane is almost identical to that at 6 layers depth
shown in Figure 7b. This observation indicates the existence of a critical depth, where the
learning efficiency is saturated, and no further improvement could be obtained for any
depth beyond the critical depth. For the current experimental condition of a 4 qubit system
with a 200 data training dataset, the critical depth is estimated to be around six layers.

(ii) Varying the scaling parameter γ: Before we present the results obtained by varying
the parameter γ, we first provide a detailed description about the tuning principle of γ
since it is extremely important when dealing with the learning process under a large-scale
quantum computing environment.

Quantum Rep. 2021, 3 342

Parameter γ appears in the SoftMax function, which is used to convert the expectation
values of 〈Z1〉 and 〈Z2〉 to continuous probabilities y1 and y2 between 0 and 1. The SoftMax
function takes the same form as shown in Equations (25) and (26) except the modification
shown below:

y1 =
e γ〈Z1〉

e γ〈Z1〉 + e γ〈Z2〉
, (28)

y2 =
e γ〈Z2〉

e γ〈Z1〉 + e γ〈Z1〉
. (29)

In other words, for all the learning results shown so far, we have assumed the param-
eter γ = 1. The effect of γ on the probability value of y is illustrated as follows, where
we have increased the value of γ from 1 to 3 and 5: Let us assume that we have obtained
two values for 〈Z1〉 and 〈Z2〉 as 0.3 and 0.1, respectively. The difference between these two
values is very small. However, we will show that the difference between the 〈Z1〉 and 〈Z2〉
can be mathematically magnified by increasing the value of the parameter γ:

{〈Z1〉, 〈Z2〉} = {0.3, 0.1}. (30)

(1) γ = 1 {
e〈Z1〉

e〈Z1〉 + e〈Z2〉
,

e〈Z2〉

e〈Z1〉 + e〈Z2〉

}
= {0.55, 0.45} (31)

(2) γ = 3 {
e3〈Z1〉

e3〈Z1〉 + e3〈Z1〉
,

e3〈Z2〉

e3〈Z1〉 + e3〈Z1〉

}
= {0.66, 0.34} (32)

(3) γ = 5 {
e5〈Z1〉

e5〈Z1〉 + e5〈Z1〉
,

e5〈Z2〉

e5〈Z1〉 + e5〈Z1〉

}
= {0.73, 0.27} (33)

As shown in Equations (31)–(33), an increase in the parameter γ significantly enhances
the difference between the converted probability y. The enlarged difference is expected
to improve the learning efficiency in the classification problem, since it makes it easier to
determine the separation plane between the binary training data.

To verify the effect from the scaling parameter γ, we performed further experiments on
the make_moon data. The results obtained by tuning scaling parameter γ are summarized
in Figure 7d–f, showing the results from three cases: γ = 1, γ = 3, and γ = 5. In
all the experiments, the number of qubits was kept at 4 qubits. It can be clearly found
that the scaling parameter γ exerts a significant effect on the learning efficiency. The
classification accuracy is dramatically improved when γ is set to 5, as shown in Figure 7f.
By checking the contour separation line shown in Figure 7f, it can be easily confirmed
that the classification accuracy has reached almost 100%, indicating the effectiveness of
scaling parameter γ in improving learning efficiency. It is also worthwhile to mention here
that the probability of each quantum state has to be normalized to ensure the summation
∑ pi = 1. This constraint strongly suppresses the probability of each state, and the final
probability difference between each state at the initial learning stage tends to become
extremely small due to the exponential increase in 2Nqubit states in the large-scale quantum
computing systems. We claim that it is extremely important to tune the scaling parameter
γ for NISQ systems involving large numbers of qubits for good learning performance.

Quantum Rep. 2021, 3 343

Quantum Rep. 2021, 3 FOR PEER REVIEW 11

ߛ (3) = 5
ቊ ݁ହۦ௓భۧ݁ହۦ௓భۧ + ݁ହۦ௓భۧ , ݁ହۦ௓మۧ݁ହۦ௓భۧ + ݁ହۦ௓భۧቋ = ሼ0.73, 0.27ሽ (33)

As shown in Equations (31)–(33), an increase in the parameter ߛ significantly en-
hances the difference between the converted probability ݕ. The enlarged difference is ex-
pected to improve the learning efficiency in the classification problem, since it makes it
easier to determine the separation plane between the binary training data.

To verify the effect from the scaling parameter ߛ, we performed further experiments
on the make_moon data. The results obtained by tuning scaling parameter ߛ are summa-
rized in Figure 7d–f, showing the results from three cases: ߛ = 1, ߛ = 3, and ߛ = 5 . In all
the experiments, the number of qubits was kept at 4 qubits. It can be clearly found that
the scaling parameter ߛ exerts a significant effect on the learning efficiency. The classifi-
cation accuracy is dramatically improved when ߛ is set to 5, as shown in Figure 7f. By
checking the contour separation line shown in Figure 7f, it can be easily confirmed that
the classification accuracy has reached almost 100%, indicating the effectiveness of scaling
parameter ߛ in improving learning efficiency. It is also worthwhile to mention here that
the probability of each quantum state has to be normalized to ensure the summation ∑ ௜݌ = 1. This constraint strongly suppresses the probability of each state, and the final
probability difference between each state at the initial learning stage tends to become ex-
tremely small due to the exponential increase in 2ே೜ೠ್೔೟ states in the large-scale quantum
computing systems. We claim that it is extremely important to tune the scaling parameter ߛ for NISQ systems involving large numbers of qubits for good learning performance.

Figure 7. Improvement of quantum learning efficiency using the 200 data make_moon dataset. (i)
Effect of quantum circuit depth on the classification accuracy. Training data set of label ‘0’ and
blue for label ‘1’ are shown in dotted black line, and pink line corresponds to the median bound-
ary of the continuous probability. (a) Four layers of the quantum circuit with 4 qubits. (b) Seven
layers of the quantum circuit with 4 qubits. (c) Ten layers of the quantum circuit with 4 qubits. (ii)
Effect of scaling parameter ߛ on the classification accuracy. (d) ߛ = 1. (e) ߛ = 3. (f) ߛ = 5 .

3.4. Computation Efficiency
Having confirmed the validity of the proposed error backpropagation on various re-

gression and classification problems, we show one great advantage of using backpropa-
gation to perform parameter optimization over other approaches. It has been rigorously
demonstrated in a deep neural network-based machine learning field that the error back-
propagation method is several orders of magnitude faster than the conventional finite dif-
ference method in gradient descent-based learning algorithms. In this work, we

Figure 7. Improvement of quantum learning efficiency using the 200 data make_moon dataset. (i) Effect of quantum circuit
depth on the classification accuracy. Training data set of label ‘0’ and blue for label ‘1’ are shown in dotted black line, and
pink line corresponds to the median boundary of the continuous probability. (a) Four layers of the quantum circuit with 4
qubits. (b) Seven layers of the quantum circuit with 4 qubits. (c) Ten layers of the quantum circuit with 4 qubits. (ii) Effect of
scaling parameter γ on the classification accuracy. (d) γ = 1. (e) γ = 3. (f) γ = 5.

3.4. Computation Efficiency

Having confirmed the validity of the proposed error backpropagation on various
regression and classification problems, we show one great advantage of using backpropa-
gation to perform parameter optimization over other approaches. It has been rigorously
demonstrated in a deep neural network-based machine learning field that the error back-
propagation method is several orders of magnitude faster than the conventional finite dif-
ference method in gradient descent-based learning algorithms. In this work, we conducted
a benchmark test to verify where there is a decisive advantage of using a backpropagation
algorithm in quantum circuit learning. Figure 8 shows the computation cost comparison
among three methods: a finite difference method proposed in [22], the popular SPSA
method that is currently used in complicated quantum circuit learning [27], and the pro-
posed method based on backpropagation. The execution time with the unit of a second per
100 iterations is selected for a fair comparison. The number of parameters corresponding
to the quantum circuit depth l and number of qubits Oqubit is given as follows:

Nparameters =
(
Srotation−gate

)
×
(

Oqubit

)
× (l + 1) (34)

The result of the comparison by varying both the depth of the quantum circuit and the
number of qubits is presented in Figure 8. We implemented the three methods on the same
make_moons dataset and recorded the computation time cost per 100 iterations. Figure 8a
shows the dependence of computation cost on the variation of depth of the quantum circuit.
In this experiment, we fixed the number of quantum bits Oqubit as 4 qubits. The depth
of the quantum circuit was varied from 5 to 20 at intervals of 5. It can be clearly seen
there is a dramatic difference in computation time cost for 100 iteration learning steps. The
finite difference method and the SPSA method showed poor computation efficiency, as
has been mentioned above and demonstrated in the deep neural network-related machine
learning field. The computation costs rise exponentially as the thickness of the circuit
increases, limiting its application in the large-scale and deep quantum circuit. In contrast,
the backpropagation method proposed here showed a dramatic advantage over all other
methods by showing an almost constant dependence on the depth of the quantum circuit.
The computation time recorded at a depth of 20 layers was 3.2 s, which is almost negligible

Quantum Rep. 2021, 3 344

when compared to the value of 458 s obtained by using the finite difference method and
the value of 696 s obtained by using the SPSA method at the same 20-layer thickness.

Figure 8b shows the dependence of computation cost on the variation of the number
of qubits. In this experiment, we fixed the depth of the quantum circuit as 10 layers. The
number of qubits varied from 2 to 6 at the interval of 1. Similar to the tendency found in
Figure 8a, there is a dramatic difference in computation time cost for 100 iteration learning
steps. The finite difference method and the SPSA method showed poor computation
efficiency, and the profile was similar to those shown in Figure 8a. The computation costs
rise exponentially as the Oqubit increases, limiting its application in the large-scale and
deep quantum circuit. In contrast, the backpropagation method proposed here showed a
dramatic advantage over all other methods by showing an almost constant dependency on
the Oqubit. The computation time recorded at 6 qubits was around 4.1 s, which is almost
negligible compared to the value of 393 s obtained by using the finite difference method
and the value of 752 s obtained by using SPSA method at the same number of qubits.

Quantum Rep. 2021, 3 FOR PEER REVIEW 13

(a) (b)

Figure 8. Comparison of computation cost for different approaches. (a) Computation cost dependence on the depth of the
quantum circuit. (b) Computation cost dependence on the number of qubits.

4. Experimental Implementation Using IBM Q
So far, we have presented results from simulation using the quantum simulator. Imple-

mentation architecture when using a real machine such as an NISQ device is described in
Figure 9. To use the error backpropagation method, it is necessary to prepare not only the
expected value 〈ܼ〉 but also the quantum state |߰ۧ. Therefore, as shown in the figure, a
quantum circuit having the same configuration as the real quantum circuit must be pre-
pared as a quantum simulator on a classical computer. It should be noticed that this could
not be considered as an additional load for the quantum computing scientist. Since a quan-
tum computer is not allowed to be disturbed during the working condition, unlike the
classical computer, it needs its counterpart of quantum circuit simulator to monitor and
diagnose the qubits and gate error and characterize the advantage of quantum computers
over classical computers [29–34]. Therefore, a real quantum computer always requires a
quantum simulator ready for use at any time. That means we can always access the quan-
tum simulator, as shown on the right-hand side of Figure 9, to examine and obtain de-
tailed information regarding the performance of the corresponding real quantum com-
puter. Observation probability for each state ห߰௝ൿ can be calculated by shooting ܴ times
at the real quantum computer side. The observation probability obtained from the real
quantum machine is then passed to the classical computer, and the quantum circuit in the
simulator for simulation is then used. The parameter ߠ can be updated using backprop-
agation since all the intermediate information is available at the simulator side. After the
parameter ߠ∗ is updated at the simulation side, it will be returned to the real quantum
machine for the next iteration.

Figure 8. Comparison of computation cost for different approaches. (a) Computation cost dependence on the depth of the
quantum circuit. (b) Computation cost dependence on the number of qubits.

4. Experimental Implementation Using IBM Q

So far, we have presented results from simulation using the quantum simulator.
Implementation architecture when using a real machine such as an NISQ device is described
in Figure 9. To use the error backpropagation method, it is necessary to prepare not only
the expected value 〈Z〉 but also the quantum state |ψ〉. Therefore, as shown in the figure,
a quantum circuit having the same configuration as the real quantum circuit must be
prepared as a quantum simulator on a classical computer. It should be noticed that
this could not be considered as an additional load for the quantum computing scientist.
Since a quantum computer is not allowed to be disturbed during the working condition,
unlike the classical computer, it needs its counterpart of quantum circuit simulator to
monitor and diagnose the qubits and gate error and characterize the advantage of quantum
computers over classical computers [29–34]. Therefore, a real quantum computer always
requires a quantum simulator ready for use at any time. That means we can always access
the quantum simulator, as shown on the right-hand side of Figure 9, to examine and
obtain detailed information regarding the performance of the corresponding real quantum
computer. Observation probability for each state

∣∣ψj
〉

can be calculated by shooting R
times at the real quantum computer side. The observation probability obtained from
the real quantum machine is then passed to the classical computer, and the quantum

Quantum Rep. 2021, 3 345

circuit in the simulator for simulation is then used. The parameter θ can be updated using
backpropagation since all the intermediate information is available at the simulator side.
After the parameter θ∗ is updated at the simulation side, it will be returned to the real
quantum machine for the next iteration.

Quantum Rep. 2021, 3 FOR PEER REVIEW 13

(a) (b)

Figure 8. Comparison of computation cost for different approaches. (a) Computation cost dependence on the depth of the
quantum circuit. (b) Computation cost dependence on the number of qubits.

4. Experimental Implementation Using IBM Q
So far, we have presented results from simulation using the quantum simulator. Imple-

mentation architecture when using a real machine such as an NISQ device is described in
Figure 9. To use the error backpropagation method, it is necessary to prepare not only the
expected value 〈ܼ〉 but also the quantum state |߰ۧ. Therefore, as shown in the figure, a
quantum circuit having the same configuration as the real quantum circuit must be pre-
pared as a quantum simulator on a classical computer. It should be noticed that this could
not be considered as an additional load for the quantum computing scientist. Since a quan-
tum computer is not allowed to be disturbed during the working condition, unlike the
classical computer, it needs its counterpart of quantum circuit simulator to monitor and
diagnose the qubits and gate error and characterize the advantage of quantum computers
over classical computers [29–34]. Therefore, a real quantum computer always requires a
quantum simulator ready for use at any time. That means we can always access the quan-
tum simulator, as shown on the right-hand side of Figure 9, to examine and obtain de-
tailed information regarding the performance of the corresponding real quantum com-
puter. Observation probability for each state ห߰௝ൿ can be calculated by shooting ܴ times
at the real quantum computer side. The observation probability obtained from the real
quantum machine is then passed to the classical computer, and the quantum circuit in the
simulator for simulation is then used. The parameter ߠ can be updated using backprop-
agation since all the intermediate information is available at the simulator side. After the
parameter ߠ∗ is updated at the simulation side, it will be returned to the real quantum
machine for the next iteration.

Figure 9. Implementation architecture of error backpropagation-based quantum circuit learning on the real NISQ devices.
The node color depicted in the left-side circuit denotes the noise level.

Next, we implemented the architecture shown in Figure 9 and conducted an exper-
iment to perform regression using a real machine. The number of qubits and the depth
of the circuit were set to n = 3 and l = 4 as in Section 3.1. For the circuit parameters, the
one-dimensional data x was substituted as in Equations (10) and (11). The target function
f (x) was also regressed with a value that doubled the expected value of Pauli Z as before.
The loss function and its derivative were calculated in the same way as in Equations (12)
and (13). The expected value of Pauli Z was calculated as in Equation (14). Since we were
using a real machine this time, we measured only the first qubit of the quantum circuit and
statistically obtained p|0〉1,θ and p|1〉1,θ , as shown in Figure 3. It is considered that the expected
value of Pauli Z approaches the more accurate value as the number of measurements R
becoming large. We used a 20-qubit quantum computer of IBM Q, ibmq_johannesburg, in
our experiments [35]. In the experiment, of the 20 qubits, we used 3 qubits for constructing
the algorithm and multiple auxiliary qubits.

Figure 10 shows the results of regression using the proposed method on a real machine.
In this experiment, we only performed linear regression and set the target function to
f (x) = x. Unlike the experiment in Section 3.1, we performed circuit learning using 50
training data that did not contain noise. For the results in Figure 10a–c, the numbers of
measurements Mshot of the quantum circuit were 2048 times, 4096 times, and 8192 times,
respectively. We found that both the initial and final learning results are not smooth curves
but jagged lines in all three cases. We have concluded that this was because the observed
value deviated from the correct value due to the occurrence of noise or error in the qubits
of the real machine. It may be possible to obtain more correct results by using an algorithm
that reduces noise together with the algorithm of the proposed method or by using a
machine with a lower noise rate. We can see that in all cases the regression was successful
by comparing the results of the three experiments with the regression curve before learning.
However, the R2 values for regression in Figure 10a–c were 0.933, 0.900, and 0.895, which
were lower than those in the experiment in which regression was performed using only the
simulator. This is because the error rate of the qubits is larger than the value of the gradient
of the loss function. This is verified by the probability comparison results for x = 0.5 shown
in Figure 10b, where a large deviation was found between the ones directly measured
from ibmq_johannesburg and the ones derived from the simulator. The fitted value is
calculated by 2〈Z〉, where 〈Z〉 is calculated using Equation (14). It can be easily confirmed
that the fitted value derived from ibmq_johannesburg is 2(0.339− 0.661) = −0.644, while
the value from the simulator is 2(0.192− 0.808) = −1.236, which deviates further from
the target value of −0.5. This is because, during the learning, the model has learned to
some extent to improve from the noisy environment but finally failed to reach a satisfactory
level of accuracy. The simulator containing no noise, therefore, shows a much worse

Quantum Rep. 2021, 3 346

regression value than the one of ibmq_johannesburg when using the learned parameters
from ibmq_johannesburg.

Quantum Rep. 2021, 3 FOR PEER REVIEW 15

Figure 10. Results of linear regression using a real machine. Regression of target function ݂(ݔ) ௦௛௢௧ܯ ௦௛௢௧ of the quantum circuit is 2048 times. (b)ܯ The number of measurements (a) .ݔ= = 4096.
Here the probability comparison for ݔ = 0.5 is shown. The left one is the measurement of IBM Q
computer and the right one is derived from the quantum circuit simulator. (c) ܯ௦௛௢௧ = 8192.

The error rate of the single quantum gate and the error rate of the CNOT gate of the
machine used in this experiment are about 10ିସ and 10ିଷ (see Figure 9), while the gra-
dients of the loss function are about 10ିଵ଻ or 10ିଵ଼. We cannot calculate the exact value
of gradients due to insufficient precision. Therefore, we have considered that the regres-
sion accuracy was certainly lower when using the current quantum computer than when
using only the simulator. Furthermore, the Rଶ value decreased as the number of measure-
ments of the quantum circuit increased. We thought that this was because the influence
of errors and noise increased each time the quantum circuit was measured. Therefore, the
measurement value becomes statistically correct if the number of measurements is in-
creased, but the noise of the measurement value is reduced if the number of measure-
ments is decreased.

A concern may be raised about the feasibility of the proposed approach on a quantum
circuit with hundreds or thousands of qubits. We indeed need a storage capacity of 2ே೜ೠ್೔೟
to accommodate all the states in order to perform the error backpropagation well, and it
turns out to be extremely challenging when ௤ܰ௨௕௜௧ is very large. For an ‘authentic’ quan-
tum algorithm, the algorithm may indeed be designed in a way that we do not need 2ே೜ೠ್೔೟ memory to record all the states because most of the amplitudes of the states vanish
during the quantum operation. The word ‘authentic’ implies a complete end-to-end quan-
tum algorithm. However, as mentioned in [29–34], quantum computing and algorithm
design must be guided by an understanding of what tasks we can hope to perform. This
means that an efficient scalable quantum simulator is always vital for the ‘authentic’ quan-
tum algorithm. Since the error backpropagation is performed layer by layer over matrix
operation, a more advanced GPGPU based algorithm, tensor contraction, or the path in-
tegral-based sum-over-histories method would be effectively used to tackle the 2ே೜ೠ್೔೟
operation [35–41]. Therefore, the concern raised above will be relieved or eliminated
through the improvement of the quantum computing field and GPGPU field as well as
other surrounding techniques.

5. Conclusions

Figure 10. Results of linear regression using a real machine. Regression of target function f (x) = x. (a) The number of
measurements Mshot of the quantum circuit is 2048 times. (b) Mshot = 4096. Here the probability comparison for x = 0.5 is
shown. The left one is the measurement of IBM Q computer and the right one is derived from the quantum circuit simulator.
(c) Mshot = 8192.

The error rate of the single quantum gate and the error rate of the CNOT gate of
the machine used in this experiment are about 10−4 and 10−3 (see Figure 9), while the
gradients of the loss function are about 10−17 or 10−18. We cannot calculate the exact value
of gradients due to insufficient precision. Therefore, we have considered that the regression
accuracy was certainly lower when using the current quantum computer than when using
only the simulator. Furthermore, the R2 value decreased as the number of measurements of
the quantum circuit increased. We thought that this was because the influence of errors and
noise increased each time the quantum circuit was measured. Therefore, the measurement
value becomes statistically correct if the number of measurements is increased, but the
noise of the measurement value is reduced if the number of measurements is decreased.

A concern may be raised about the feasibility of the proposed approach on a quantum
circuit with hundreds or thousands of qubits. We indeed need a storage capacity of 2Nqubit

to accommodate all the states in order to perform the error backpropagation well, and
it turns out to be extremely challenging when Nqubit is very large. For an ‘authentic’
quantum algorithm, the algorithm may indeed be designed in a way that we do not
need 2Nqubit memory to record all the states because most of the amplitudes of the states
vanish during the quantum operation. The word ‘authentic’ implies a complete end-to-
end quantum algorithm. However, as mentioned in [29–34], quantum computing and
algorithm design must be guided by an understanding of what tasks we can hope to
perform. This means that an efficient scalable quantum simulator is always vital for the
‘authentic’ quantum algorithm. Since the error backpropagation is performed layer by layer
over matrix operation, a more advanced GPGPU based algorithm, tensor contraction, or
the path integral-based sum-over-histories method would be effectively used to tackle the
2Nqubit operation [35–41]. Therefore, the concern raised above will be relieved or eliminated

Quantum Rep. 2021, 3 347

through the improvement of the quantum computing field and GPGPU field as well as
other surrounding techniques.

5. Conclusions

We proposed a backpropagation algorithm for quantum circuit learning. The pro-
posed algorithm showed success in both linear and nonlinear regression and classification
problems. Meanwhile, the computation efficiency was improved dramatically by using the
error backpropagation-based gradient circuit learning rather than the other gradient-based
methods such as finite difference method or SPSA method. The reduction in computing
time by using a quantum simulator was surprisingly by up to several orders of magni-
tude when compared to the conventional methods. Meanwhile, the proposed theoretical
scheme was successfully implemented on the 20-qubit quantum computer of IBM Q,
ibmq_johannesburg, and it was revealed that the gate error, especially the CNOT gate
error, strongly affects the derived gradient accuracy. Given that we do not need 2Nqubit

memory to record all the states because most of the amplitudes of the state vanish during
the quantum operation, further computing advantage would be expected by combining
the backpropagation with the GPGPU technique. We, therefore, claim that gradient descent
using the error backpropagation is an efficient quantum circuit learning tool not only in
the NISQ era but also for more matured quantum computers with deeper circuit depths
and thousands of quantum bits.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/quantum3020021/s1.

Author Contributions: M.W. and K.S. (Kodai Shiba) carried out simulation and experiment. C.-C.C.
carried out the theoretical simulation. K.S. (Katsuyoshi Sakamoto) and M.S. contributed to research
design. T.S. wrote the manuscript and supervised the project. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data and scripts that support the findings of this study are available
from the corresponding author upon reasonable request.

Acknowledgments: This work is supported by New Energy and Industrial Technology Development
Organization (NEDO) and Ministry of Economy, Trade and Industry (METI), Japan.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Preskill, J. Quantum Computing in the NISQ Era and Beyond. Quantum 2018, 2, 79. [CrossRef]
2. Farhi, E.; Goldstone, J.; Gutmann, S. A Quantum Approximate Optimization Algorithm. arXiv 2014, arXiv:1411.4028.
3. Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M.-H.; Zhou, X.-Q.; Love, P.J.; Aspuru-Guzik, A.; O’Brien, J.L. A Variational

Eigenvalue Solver on a Photonic Quantum Processor. Nat. Commun 2014, 5, 4213. [CrossRef] [PubMed]
4. Shiba, K.; Sakamoto, K.; Yamaguchi, K.; Malla, D.B.; Sogabe, T. Convolution Filter Embedded Quantum Gate Autoencoder. arXiv

2019, arXiv:1906.01196.
5. Chen, C.-C.; Shiau, S.-Y.; Wu, M.-F.; Wu, Y.-R. Hybrid Classical-Quantum Linear Solver Using Noisy Intermediate-Scale Quantum

Machines. arXiv 2019, arXiv:1903.10949. [CrossRef]
6. McCaskey, A.; Dumitrescu, E.; Liakh, D.; Humble, T. Hybrid Programming for Near-Term Quantum Computing Systems. arXiv

2018, arXiv:1805.09279.
7. Brooks, M. Beyond Quantum Supremacy: The Hunt for Useful Quantum Computers. Nature 2019, 574, 19–21. [CrossRef]
8. Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.S.L.; Buell, D.A.; et al.

Quantum Supremacy Using a Programmable Superconducting Processor. Nature 2019, 574, 505–510. [CrossRef] [PubMed]
9. Pednault, E.; Gunnels, J.A.; Nannicini, G.; Horesh, L.; Wisnieff, R. Leveraging Secondary Storage to Simulate Deep 54-Qubit

Sycamore Circuits. arXiv 2019, arXiv:1910.09534.

https://www.mdpi.com/article/10.3390/quantum3020021/s1
https://www.mdpi.com/article/10.3390/quantum3020021/s1
http://doi.org/10.22331/q-2018-08-06-79
http://doi.org/10.1038/ncomms5213
http://www.ncbi.nlm.nih.gov/pubmed/25055053
http://doi.org/10.1038/s41598-019-52275-6
http://doi.org/10.1038/d41586-019-02936-3
http://doi.org/10.1038/s41586-019-1666-5
http://www.ncbi.nlm.nih.gov/pubmed/31645734

Quantum Rep. 2021, 3 348

10. Grimsley, H.R.; Economou, S.E.; Barnes, E.; Mayhall, N.J. An Adaptive Variational Algorithm for Exact Molecular Simulations on
a Quantum Computer. Nat. Commun. 2019, 10, 3007. [CrossRef]

11. Sugisaki, K.; Nakazawa, S.; Toyota, K.; Sato, K.; Shiomi, D.; Takui, T. Quantum Chemistry on Quantum Computers: Quantum
Simulations of the Time Evolution of Wave Functions under the S 2 Operator and Determination of the Spin Quantum Number, S.
Phys. Chem. Chem. Phys. 2019, 21, 15356–15361. [CrossRef]

12. Romero, J.; Babbush, R.; McClean, J.R.; Hempel, C.; Love, P.; Aspuru-Guzik, A. Strategies for Quantum Computing Molecular
Energies Using the Unitary Coupled Cluster Ansatz. arXiv 2018, arXiv:1701.02691. [CrossRef]

13. Cao, Y.; Romero, J.; Olson, J.P.; Degroote, M.; Johnson, P.D.; Kieferová, M.; Kivlichan, I.D.; Menke, T.; Peropadre, B.; Sawaya,
N.P.D.; et al. Quantum Chemistry in the Age of Quantum Computing. Chem. Rev. 2019, 119, 10856–10915. [CrossRef] [PubMed]

14. Parrish, R.M.; Hohenstein, E.G.; McMahon, P.L.; Martínez, T.J. Quantum Computation of Electronic Transitions Using a Variational
Quantum Eigensolver. Phys. Rev. Lett. 2019, 122, 230401. [CrossRef]

15. Schuld, M.; Killoran, N. Quantum Machine Learning in Feature Hilbert Spaces. Phys. Rev. Lett. 2019, 122, 040504. [CrossRef]
16. Li, T.; Chakrabarti, S.; Wu, X. Sublinear Quantum Algorithms for Training Linear and Kernel-Based Classifiers. arXiv 2019,

arXiv:1904.02276.
17. Blank, C.; Park, D.K.; Rhee, J.-K.K.; Petruccione, F. Quantum Classifier with Tailored Quantum Kernel. arXiv 2019,

arXiv:1909.02611. [CrossRef]
18. Srinivasan, S.; Downey, C.; Boots, B. Learning and Inference in Hilbert Space with Quantum Graphical Models. In Advances in

Neural Information Processing Systems 31; The MIT Press: Cambridge, MA, USA, 2018; pp. 10338–10347.
19. Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [CrossRef]
20. Dey, S.; Bhattacharyya, S.; Maulik, U. Efficient Quantum Inspired Meta-Heuristics for Multi-Level True Colour Image Threshold-

ing. Appl. Soft Comput. 2017, 56, 472–513. [CrossRef]
21. Islam, J.; Mamo Negash, B.; Vasant, P.; Ishtiaque Hossain, N.; Watada, J. Quantum-Based Analytical Techniques on the Tackling of

Well Placement Optimization. Appl. Sci. 2020, 10, 7000. [CrossRef]
22. Spall, J.C. Multivariate Stochastic Approximation Using a Simultaneous Perturbation Gradient Approximation. IEEE Trans.

Autom. Control 1992, 37, 332–341. [CrossRef]
23. Mitarai, K.; Negoro, M.; Kitagawa, M.; Fujii, K. Quantum Circuit Learning. Phys. Rev. A 2018, 98, 032309. [CrossRef]
24. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Representations by Back-Propagating Errors. Nature 1986, 323, 533–536.

[CrossRef]
25. Zimmer, B.; Venkatesan, R.; Shao, Y.S.; Clemons, J.; Fojtik, M.; Jiang, N.; Keller, B.; Klinefelter, A.; Pinckney, N.; Raina, P.; et al.

A 0.11 PJ/Op, 0.32-128 TOPS, Scalable Multi-Chip-Module-Based Deep Neural Network Accelerator with Ground-Reference
Signaling in 16nm. In Proceedings of the 2019 Symposium on VLSI Circuits, Kyoto, Japan, 9–14 June 2019; pp. C300–C301.

26. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436. [CrossRef]
27. Havlíček, V.; Córcoles, A.D.; Temme, K.; Harrow, A.W.; Kandala, A.; Chow, J.M.; Gambetta, J.M. Supervised Learning with

Quantum-Enhanced Feature Spaces. Nature 2019, 567, 209–212. [CrossRef]
28. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
29. Jones, T.; Brown, A.; Bush, I.; Benjamin, S.C. QuEST and High Performance Simulation of Quantum Computers. Sci. Rep. 2019, 9,

10736. [CrossRef] [PubMed]
30. Boixo, S.; Isakov, S.V.; Smelyanskiy, V.N.; Babbush, R.; Ding, N.; Jiang, Z.; Bremner, M.J.; Martinis, J.M.; Neven, H. Characterizing

Quantum Supremacy in Near-Term Devices. Nat. Phys. 2018, 14, 595–600. [CrossRef]
31. Bouland, A.; Fefferman, B.; Nirkhe, C.; Vazirani, U. Quantum Supremacy and the Complexity of Random Circuit Sampling. arXiv

2018, arXiv:1803.04402.
32. Chen, J.; Zhang, F.; Huang, C.; Newman, M.; Shi, Y. Classical Simulation of Intermediate-Size Quantum Circuits. arXiv 2018,

arXiv:1805.01450.
33. Smelyanskiy, M.; Sawaya, N.P.D.; Aspuru-Guzik, A. QHiPSTER: The Quantum High Performance Software Testing Environment.

arXiv 2016, arXiv:1601.07195.
34. Villalonga, B.; Boixo, S.; Nelson, B.; Henze, C.; Rieffel, E.; Biswas, R.; Mandrà, S. A Flexible High-Performance Simulator for

Verifying and Benchmarking Quantum Circuits Implemented on Real Hardware. Npj Quantum Inf. 2019, 5, 86. [CrossRef]
35. IBM Quantum Experience. Available online: http://www.research.ibm.com/quantum (accessed on 20 May 2021).
36. Gutiérrez, E.; Romero, S.; Trenas, M.A.; Zapata, E.L. Quantum Computer Simulation Using the CUDA Programming Model.

Comput. Phys. Commun. 2010, 181, 283–300. [CrossRef]
37. Zhang, P.; Yuan, J.; Lu, X. Quantum Computer Simulation on Multi-GPU Incorporating Data Locality. In Algorithms and

Architectures for Parallel Processing; Wang, G., Zomaya, A., Martinez, G., Li, K., Eds.; Lecture Notes in Computer Science; Springer
International Publishing: Cham, Switzerland, 2015; Volume 9528, pp. 241–256. ISBN 978-3-319-27118-7.

38. Häner, T.; Steiger, D.S. 0.5 Petabyte Simulation of a 45-Qubit Quantum Circuit. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis; ACM: Denver, CO, USA, 2017; pp. 1–10.

39. Chen, Z.-Y.; Zhou, Q.; Xue, C.; Yang, X.; Guo, G.-C.; Guo, G.-P. 64-Qubit Quantum Circuit Simulation. Sci. Bull. 2018, 63, 964–971.
[CrossRef]

http://doi.org/10.1038/s41467-019-10988-2
http://doi.org/10.1039/C9CP02546D
http://doi.org/10.1088/2058-9565/aad3e4
http://doi.org/10.1021/acs.chemrev.8b00803
http://www.ncbi.nlm.nih.gov/pubmed/31469277
http://doi.org/10.1103/PhysRevLett.122.230401
http://doi.org/10.1103/PhysRevLett.122.040504
http://doi.org/10.1038/s41534-020-0272-6
http://doi.org/10.1093/comjnl/7.4.308
http://doi.org/10.1016/j.asoc.2016.04.024
http://doi.org/10.3390/app10197000
http://doi.org/10.1109/9.119632
http://doi.org/10.1103/PhysRevA.98.032309
http://doi.org/10.1038/323533a0
http://doi.org/10.1038/nature14539
http://doi.org/10.1038/s41586-019-0980-2
http://doi.org/10.1038/s41598-019-47174-9
http://www.ncbi.nlm.nih.gov/pubmed/31341200
http://doi.org/10.1038/s41567-018-0124-x
http://doi.org/10.1038/s41534-019-0196-1
http://www.research.ibm.com/quantum
http://doi.org/10.1016/j.cpc.2009.09.021
http://doi.org/10.1016/j.scib.2018.06.007

Quantum Rep. 2021, 3 349

40. Fried, E.S.; Sawaya, N.P.D.; Cao, Y.; Kivlichan, I.D.; Romero, J.; Aspuru-Guzik, A. QTorch: The Quantum Tensor Contraction
Handler. PLoS ONE 2018, 13, e0208510. [CrossRef] [PubMed]

41. Rudiak-Gould, B. The Sum-over-Histories Formulation of Quantum Computing. arXiv 2006, arXiv:quant-ph/0607151.

http://doi.org/10.1371/journal.pone.0208510
http://www.ncbi.nlm.nih.gov/pubmed/30532242

	Introduction
	Quantum Backpropagation Algorithm
	Simulation Results
	Regression
	Classification
	Learning Efficiency Improvement
	Computation Efficiency

	Experimental Implementation Using IBM Q
	Conclusions
	References

