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Abstract: Quantum neurobiology is concerned with potential quantum effects operating in the brain 
and the application of quantum information science to neuroscience problems, the latter of which is 
the main focus of the current paper. The human brain is fundamentally a multiscalar problem, with 
complex behavior spanning nine orders of magnitude-scale tiers from the atomic and cellular level 
to brain networks and the central nervous system. In this review, we discuss a new generation of 
bio-inspired quantum technologies in the emerging field of quantum neurobiology and present a 
novel physics-inspired theory of neural signaling (AdS/Brain (anti-de Sitter space)). Three tiers of 
quantum information science-directed neurobiology applications can be identified. First are those 
that interpret empirical data from neural imaging modalities (EEG, MRI, CT, PET scans), protein 
folding, and genomics with wavefunctions and quantum machine learning. Second are those that 
develop neural dynamics as a broad approach to quantum neurobiology, consisting of superposi-
tioned data modeling evaluated with quantum probability, neural field theories, filamentary signal-
ing, and quantum nanoscience. Third is neuroscience physics interpretations of foundational phys-
ics findings in the context of neurobiology. The benefit of this work is the possibility of an improved 
understanding of the resolution of neuropathologies such as Alzheimer’s disease. 
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1. Introduction 
Quantum neurobiology is a topic within the broader field of quantum biology. The 

traditional concerns of quantum biology are studying quantum effects in biological sys-
tems such as magneto-navigation, photosynthesis, and energy transfer [1]. With the ad-
vent of quantum information science, the quantum biology research agenda is now being 
expanded to include also quantum information science approaches to biological questions 
[2], arguing that quantum models are needed to address the complexity of biology [3]. 
Representative projects include investigating excitation transport in photosynthetic light-
harvesting complexes that indicate speedups analogous to those found in quantum algo-
rithms [4] and explaining vibrational and environmental-assisted energy transport with 
quantum walks [5]. The word “quantum” refers to the scale of atoms and molecules (10−9 
to 10−15), namely atoms at the nanometer scale (10−9), ions and photons at the picometer 
scale (10−12), and sub-atomic particles at the femtometer scale (10−15). 

Quantum neurobiology has a parallel definition, with the first emphasis being the 
investigation of potential quantum effects in the brain [6], also including quantum infor-
mation science methods being applied to neurobiological problems. This paper is princi-
pally concerned with the latter. Regarding potential quantum effects in the brain, on the 
one hand, there are proposals in favor of what might be termed the “quantum conscious-
ness hypothesis” [7–9]. On the other hand, many scientists are careful to distinguish that 
they do not endorse this idea, instead supporting the possibility that the mathematical 
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structure of quantum mechanics may help to explain neural behavior, but not the conjec-
ture that there is something quantum-like taking place in the brain [10–12]. 

Other research programs use quantum information science methods to model cogni-
tive processes such as perception, memory, and decision-making, without taking a view 
regarding whether quantum effects operate in the brain [13]. Research programs also tar-
get less-contentious topics of quantum-related activity in the brain through quantum 
events [14] and superdeterminism [15]. Superdeterminism interprets quantum mechanics 
as an effective statistical theory of hidden variables as opposed to one of fundamental 
indeterminism. Evolutionary reasons might explain why biological systems of sufficient 
complexity display quantum-like behavior, independent of the physical origin of quan-
tum phenomena in physics. In this vein, quantum biology might crosspollinate back to 
foundational physics with hidden variables formulations as a practical method for oper-
ating in quantum domains (e.g., hidden-variable models of Bell correlations [16] and Kol-
mogorov-related probability formulations [17]). In any case, the first-principles step 
would seem to be the enumeration of the underlying physiological processes as the build-
ing blocks that might then be examined in relation to higher-order cognitive behavior [18]. 

Quantum neurobiology extends classical neurobiology as a multidisciplinary field 
relating biology to the fundamental and clinical neurosciences, investigating the form and 
function of neurons, glia, axons, and dendrites in the nervous system, individually and in 
ensemble, in health and disease. Various approaches are used to study multiscalar behav-
ior in the areas of neural signaling transduction and transmission, neural circuits and sys-
tems neurobiology, nervous system development and aging, and the neurobiology of dis-
ease and intervention, including by examining how quantum properties enhance cellular 
function, with medical implications for neuropathology diagnosis and treatment [19].  

1.1. The Human Brain  
The brain is among the most complex systems known [20], with a behavior spanning 

nine orders of magnitude-scale tiers in ways that have yet to be fully elucidated (Table 1). 
However, in the “big data” era, the requirements associated with modeling the brain 
(which has an estimated 86 billion neurons and 242 trillion synapses [21]) are coming 
within reach. Biology became an information science with the advent of genomics, and 
neuroscience is one of the fastest-growing areas in information biology, with data acqui-
sition outpacing that of most other biomedical fields [22]. Whole-brain scanning is reveal-
ing the simultaneous activity of hundreds and thousands of neurons [23] with large-scale 
cortical recordings [24] and whole-brain activity logging in behaving organisms [25]. Mi-
croscopy advances obtain a single-molecule resolution that captures synaptic proteins at 
dendritic spines, myelination along axons, and presynaptic densities at dopaminergic 
neurons with expansion light sheet microscopy [26]. Neuropathologies may be treated at 
the synaptic scale with novel stem cell therapies and pharmacological compounds to re-
verse the effect of dysfunctional genes [27].  

Table 1. Levels of organization in the brain (redrawn from [28,29]). 

No. Level Size (Decimal) Size (m) Size (m) 
1 Nervous system 1 >1 m 100 
2 Subsystem 0.1 10 cm 10−1 
3 Neural network 0.01 1 cm 10−2 
4 Microcircuit 0.001 1 nm 10−3 
5 Neuron 0.000 1 100 μm 10−4 
6 Dendritic arbor 0.000 01 10 μm 10−5 
7 Synapse 0.000 001 1 μm 10−6 
8 Signaling pathway 0.000 000 001 1 nm 10−9 
9 Ion channel 0.000 000 000 001 1 pm 10−12 
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In high-throughput connectomics, ongoing work from the Allen Institute demon-
strates terabyte-scale processing for contemporary neuron reconstruction [30] and 
petabyte-scale next-generation dataset acquisition methods [31]. To complete the human 
connectome (and even the mouse connectome [32]), a qualitatively different form of com-
putation may be required, similar to the technology-driven inflection point in the sequenc-
ing of the human genome, enabling its completion in 2001 [33]. Human connectomes are 
not an immediate prospect, as the whole-brain fruit fly connectome was only completed 
in 2018 [34]. The imaging, data processing, and storage requirements may be 1 zettabyte 
per human connectome [35], which compares to the 59 zettabytes of data generated world-
wide in 2020 [36]. Neurobiological informatics data include not only genomics and con-
nectomics, but also synaptomics (mapping of synapses across the brain) and synapto-
somics (the synapse proteome, 1000 proteins implicated in 130 brain diseases) [37]. 

1.2. Quantum Neurobiology  
These state-of-the-art advances in neurobiology pave the way for quantum neurobi-

ology and facilitate the research aim of whole-brain neuroscience: full-volume, three-di-
mensional analysis of the entire brain at multiple spatial and temporal scales. An imme-
diate practical task is integrating data obtained simultaneously from EEG, MEG, fMRI, 
and diffusion tractography (nerve tract data) [38]. Quantum approaches are needed as 
supercomputing (only able to model one third of the human brain in a recent project [39]) 
and other classically based methods make it clear that new platforms are needed for the 
next phases of neuroscience data analysis. Simultaneously, quantum information science 
is emerging as a vastly more scalable platform with three-dimensional modeling capabil-
ities appropriate to the representation of real-life brain phenomena such as neurons, glia, 
and dendritic arbors. Quantum approaches allow new classes of neurobiological prob-
lems to be addressed more fully, such as the investigation of neural signaling with synap-
tic integration (aggregating thousands of incoming spikes from dendrites and other neu-
rons) and electrical–chemical signal transduction (incorporating neuron–glia interactions 
at the molecular scale). This work describes the three areas of activity developing in quan-
tum neurobiology (Table 2) and proposes a novel theory of neural signaling (AdS/Brain, 
based on the AdS/CFT correspondence (anti-de Sitter space/conformal field theory)). 

Table 2. Quantum neurobiology: three areas of quantum information science study. 

1. Waves, Protein Folding, Genomics 2. Neural Dynamics 3. Neuroscience Physics 
Waves Superpositioned Data AdS/Neuroscience 

▪Quantum EEG Quantum Probability ▪AdS/Brain 
▪Quantum MRI  ▪Updating (QBism) ▪AdS/Memory 

Quantum Protein Folding Neural Field Theories ▪AdS/Superconducting 
Quantum Genomics ▪Synchrony ▪AdS/Energy 

▪Sequencing Filamentary Dynamics  Neuronal Gauge Theories 
▪Gene Expression Quantum Nanoscience Network Neuroscience 

▪Secure Transmission ▪Nanoparticle Fab  Random Tensors 
Quantum SNNs ▪Molecular Codes ▪Melonic Diagrams 

2. Waves, Protein Folding, and Genomics 

2.1. Wavefunctions: EEG, fMRI, CT, PET Integration 
The first widespread class of quantum neurobiology applications is the interpretation 

of empirical data from various neural scanning modalities with wavefunctions and quan-
tum machine learning. The EEG-detectable potentials given off by the scalp have been 
analyzed since 1875 [40], but a fuller picture of neural signaling also includes waveforms 
related to astrocyte calcium signaling, neurotransmitter activity, and dendritic spikes [41]. 
Although quantum mechanical wavefunctions are naturally suggested, the intractability 
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of the Schrödinger wave equation has traditionally meant that EEG data are interpreted 
with effective nonlinear wave models [42]. Quantum algorithms are now supplanting this 
effort and being used to reconstruct medical images from MRI, CT, and PET scanners [43]. 
Near-term applications could be in the area of quantum BCIs (brain–computer interfaces), 
interpreting EEG waveform data in a brain–machine communications network [44,45]. 

2.2. Quantum EEG 
Quantum machine learning is emerging as an indispensable technique for finding 

the best wavefunction to fit the copious amounts of EEG data generated. A typical prob-
lem is classifying EEG data for Parkinson’s disease patients as potential candidates for 
Deep Brain Stimulation, analyzing 794 features from each of 21 EEG channels [46]. Quan-
tum machine learning is the application of machine learning techniques in a quantum 
environment, formulating classical data with quantum methods, and also studying quan-
tum problems with machine learning methods [47]. Quantum formulations are available 
for the three main machine learning architectures: neural networks [48], tensor networks 
[49], and kernel learning [50]. A quantum perceptron (core machine learning unit) has 
been developed for available quantum processors (the IBM Q-5 Tenerife) [51]. Quantum 
neural networks have been proposed for EEG wavefunction modeling, in a standard gate-
model quantum circuit layout using quantum convolutional neural networks (CNN) [52], 
and also in a more sequentially oriented quantum recurrent neural network (RNN) [53].  

An alternative to quantum machine learning is quantum spike-activated neural net-
works (SNNs)—a bio-inspired neuromorphic computation model with threshold-trig-
gered activation similar to the natural neural firing of the brain [54]. Exemplar quantum 
SNN projects use Josephson junctions to study emergent behavior [55] and accelerated 
matrix processing via synaptic weighting [56] and superposition modeling [57]. 

Framed as a signal processing problem, EEG data interpretation is an exercise of 
noise filtering followed by feature extraction and classification. EEG data used in BCIs, for 
example, have a low signal-to-noise ratio due to noise. A quantum approach applies fil-
tering algorithms based on advances in processing techniques (Kullback–Leibler spatial 
patterns and Bayesian learning) [44] in a quantum recurrent neural network (QRNN) for-
mat. The QRNN characterizes a nonstationary stochastic signal as time-varying wave 
packets, interpreted with the Schrödinger wave equation and a Hamiltonian (energy op-
erator). The QRNN outperforms traditional Kalman filtering methods and is tested on 
real-time EEG data and BCI competition test data. The feature extraction and classification 
portion of EEG data analysis is likewise performed with various quantum machine learn-
ing methods such as entropy-based quantum support vector machines [58], quantum-in-
spired evolutionary algorithms [59], and independent component analysis, wavelet trans-
forms, and Fourier transforms [60]. Finally, quantum methods are facilitating a new level 
of data resolution in the examination of EEG data. One project investigates single-trial 
event-related potentials (EEG segments time-locked to a cognitive events) with universal 
cortical building blocks in the time and frequency domains [61], and another models elec-
trical signals and calcium-ion interactions together in a path integral approach [62]. 

2.3. Quantum MRI (Radiology) 
Aside from EEG, MRI scans are the other main imaging modality for neural data. 

Quantum machine learning techniques could also prove central to MRI data interpreta-
tion in the classification of 120 different types of brain tumors, as classical deep learning 
networks are already used to identify the six most common tumor types (glioma, brain 
metastases, meningioma, adenoma, and neuroma) [63]. Qutrits (three-level quantum 
states) may be conducive to brain tumor analysis since many quantum states are not bi-
nary. One proposal suggests that a qutrit model might better correspond to grayscale im-
aging data, using a quantum neural network model to segment brain lesions [64]. Whereas 
qubits are a relatively simple system, expanding to higher dimension qudits (quantum 
information digits) is non-trivial as it is difficult to quantify the quantum correlations in 
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the system (using the diagonalization of correlation matrices for bipartite systems) [65]. 
Other quantum MRI tumor segmentation projects use a quantum entropy classification 
method [66] and a quantum filtering technique (for noise reduction preprocessing) to-
gether with a quantum artificial immune system-inspired SoftMax function in a deep spik-
ing neural network (SNN) architecture [67]. Quantum algorithms are also deployed to 
analyze CT scans; for example, to classify quantum data comparing COVID-19 and non-
COVID-19 patient influenza and virus pneumonia lung CT scans, analyzed with Tensor-
Flow Quantum and a D-Wave Systems quantum annealer [68]. 

2.4. Quantum Protein Folding  
Protein folding is an NP-hard computationally complex problem with advances in 

both classical and quantum methods. The challenge is to predict the three-dimensional 
structure that a protein will adopt based on the underlying sequence of amino acids. Many 
neurodegenerative diseases (such as Alzheimer’s and Parkinson’s) are thought to be 
caused by an accumulation of misfolded proteins [69]. Classically, an important project is 
AlphaFold, as Google’s DeepMind team extends its success in game playing [70] to pro-
tein folding, as shown in the CASP-14 data competition [71]. An attention-based mecha-
nism is used to obtain atomically precise configurations by paying attention to global con-
straints such as available space as opposed to exclusively local sequence interactions. 

Quantum methods are also progressing, particularly with quantum annealing ma-
chines that model protein folding as a low-energy optimization. A lattice is used to repre-
sent the spatial location of the different amino acid sequences in the protein. Although 
annealers can easily analyze the median length of a human protein (375 amino acids), 
research often focuses on neuropeptides as short protein strings that can be readily em-
ployed as intervention targets. One lattice-based quantum protein folding project studied 
30,000 protein sequences with protein Hamiltonians, finding that simple manipulations 
substantially improve folding performance [72]. A related project demonstrated the lat-
tice-based folding of a 7-amino acid neuropeptide (with the IBMQ Poughkeepsie 20-qubit 
quantum computer) [73]. Quantum walks are an alternative to lattice structures, as the 
QFold project proposes a quantum algorithm based on the torsion angles of amino acids, 
deployed with quantum walks (on the IBMQ Casablanca quantum processor) [74]. 

2.5. Quantum Genomics 
The quantum properties of DNA have been proposed for use in sequencing (for ex-

ample, interpreting electron tunneling current–voltage differences between the four nu-
cleotide bases as a strand of DNA passes through a nanopore [75]), but quantum methods 
are mainly deployed in sequence reconstruction (aligning and merging reads to reassem-
ble the original genome). Quantum algorithms have been proposed (for both gate-array 
and quantum annealing machines) to accelerate DNA sequence reconstruction [76] and 
demonstrated on quantum annealing platforms to reconstruct short sequences (seven nu-
cleotides) [77]. Quantum annealing machines are also used in basic research to assess the 
binding affinity of gene regulatory proteins to the genome [78]. In other quantum ge-
nomics demonstrations, a quantum machine learning algorithm is implemented for Alz-
heimer’s disease to identify neurons that have irregular numbers of chromosomes (copy 
number variation) with a Hamming distance-like genomic quantum classifier (tested on 
the IBMQX2 and IBMQ 16 Melbourne quantum platforms) [79]. Another project proposes 
a cell culture analysis technique to assess the clonogenic survival potential of a cell to grow 
and form a colony based on a quantum information-theoretic classifier [80]. 

Quantum networks offer possibilities for the secure transfer of genome files; for ex-
ample, in next-generation federated data sharing for large-scale research using encrypted 
blockchain-based quantum networks [81]. The benefits of blockchain technology as a se-
cure smart network automation technology, particularly for genomic data sharing, have 
been proposed [82] and have seen practical deployment for genomic data privacy in 
whole-human genome sequencing projects such as Nebula Genomics [83]. Non-fungible 
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genome tokens (NGTs) provide users with permanent ownership of their genomic data 
on a publicly readable ledger, enabling user-controlled, remunerated, transparent data-
sharing [84]. Other research uses quantum networks for secure encrypted genome trans-
mission, sending data immediately as it is sequenced, demonstrating the world’s first 
quantum cryptography transmission of whole-genome sequence data [85].  

3. Neural Dynamics 
The second area of application in quantum neurobiology is neural dynamics, which 

consists of superpositioned data modeling evaluated with quantum probability, neural 
field theories, filamentary dynamics, and quantum nanoscience. 

3.1. Superpositioned Data and Quantum Probability  
Studying complex systems often involves finding otherwise hidden correlations in 

datasets. Progress has been made with deep learning networks and also now in the mod-
eling of classical data with quantum methods [86]. Superpositioned data are data modeled 
in superposition as the quantum information representation of all possible system states 
simultaneously. A standard model for superpositioned data is neural signaling, in which 
system elements (“neurons”) exist simultaneously in two or more states until collapsed in 
a measurement (“firing event”). The basic setup is a two-state model in which elements 
exist in both inactive (quiescent) and active (firing) states until measured [87]. Another 
model is a neural field theory with a three-state neural signaling system in which the neu-
ron states are quiescent, active, and recovering [88]. Neural signaling models are used, 
both as a general heuristic to represent any kind of multistate system, and in particular to 
study biological signaling in the brain.  

Quantum information science approaches require a formulation of quantum proba-
bility (complex probability amplitudes) since the quantum properties of superposition 
and interference violate classical total probability [89]; for example, leading to conjunction 
and disjunction fallacies in commutativity [13]. Hence, quantum probability has been for-
mulated by von Neumann and others to apply quantum mechanical rules to probability 
assignment [90,91]. A standard quantum information science primitive (building block) 
used as a quantum variant of total probability is obtained through POVMs (positive op-
erator valued measures). POVMs are positive measures on a quantum subsystem of the 
effect of a measurement performed on the larger system and give an interference term for 
incompatible observables [92]. The main interpretation of quantum probability is with the 
Born rule (a solvable probabilistic formulation of quantum mechanics), but there can be 
others. Quantum Bayesianism methods, notably QBism (“cubism”) [93], is an emerging 
standard for considering quantum system updating as the quantum version of Bayesian 
updating that includes observer-based (subjective) aspects [94]. 

3.2. Neural Field Theories 
Neural field theories are a physics-based approach for modeling large-scale brain be-

havior. An empirical project involving neural dynamics and neural field theories is com-
bining data from different neural scanning modalities (EEG, fMRI, CT, and PET scans) 
into a comprehensive view of brain activity. Integrating EEG and fMRI data, for example, 
entails multiple spatiotemporal scales and dynamics regimes [38]. A key finding is that 
epileptic seizure can be modeled by chaotic dynamics, which are understood, but the nor-
mal resting state of the human brain is more complicated and is perhaps explained by 
instability-bifurcation dynamics, in which there is one system organizing parameters, 
such as an orbit that is interrupted periodically by countersignals to trigger a neural signal 
[95]. A standard modeling element is the Hopf bifurcation—a system-critical point at 
which a periodic orbit appears or disappears due to a local change in stability [96,97]. 

Neural dynamics vary by scale and display unrecognized statistical distributions at 
the most complex tiers of collective behavior [38]. Different neural dynamics models are 
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deployed respectively at the four main scales tiers of activity: single-neuron, local ensem-
ble, population group, and whole-brain. Small populations, represented by neural ensem-
ble models, often follow a normal statistical distribution, which can be described with a 
Gaussian and modeled with a regular linear Fokker–Planck equation; in contrast, if not 
normally distributed, the distribution might be non-Gaussian, but still a known distribu-
tion such as a power law that can be modeled with specialized non-linear or fractional 
Fokker–Planck equations. However, larger scale populations of neurons and whole-brain 
analysis have unrecognized statistical distributions and require more sophisticated dy-
namics methods such as Wilson–Cowan mean field equations, the Jansen–Rit model, Flo-
quet periodicity, and oscillatory analysis [38]. Large-scale neural dynamics is an active 
research area with a substantial opportunity for quantum neurobiology to make a con-
tributive impact. Statistical approaches in neural field theories continue to contribute to 
the development of new mathematics for the understanding of theoretical neuroscience 
problems [98]. 

Biological systems have additional requirements compared with other domains in 
that organisms do not exist in isolation but are rather constantly interacting with the en-
vironment and changing their behavior as a result. Hence, feedback loops and updating 
are important in quantum biological system modeling. One such quantum information 
biology approach is based on two-state superposition data modeling, system self-meas-
urement, and open system (environmental interaction) evolution dynamics [87]. A self-
observation feedback loop is included as the quantum version of the Helmholtz sensation-
perception theory (a unitary operator describes the process of interaction between the sen-
sation and perception states). Open system evolution dynamics are provided by a Lind-
bladian quantum master equation. The model applies to all biological system scales (in-
cluding protein, cell, brain, human behavior, and ecosystem) and is tested to study epige-
netic evolution and the gene regulation of glucose-lactose metabolism in E. coli bacteria 
[99] and in a neural code mapping model of human decision-making states [100].  

A final topic in neural dynamics is synchrony—a proposed bulk property of the 
brain. Synaptic signals arrive simultaneously but travel varying distances and therefore 
must have different propagation speeds [101]. Cortical recordings further reveal that 
spontaneous traveling waves are a general topological property of large-scale neural be-
havior [102]. One project studies synchrony in axon propagation speeds from data rec-
orded at multiple spatial scales [103]. A general framework is proposed to integrate mi-
croscale current sources (produced by local field potentials at membrane surfaces) in a 
macro-columnar structure. Another project applies the Kuramoto model, a standard for-
mulation for studying synchrony in nonlinear systems ranging from insect swarms to su-
perconductors [104]. A solution is produced for the three main synchronization phenom-
ena in Kuramoto networks (phase synchronization, chimera states, and traveling waves) 
with insight into complex behavior arising from connection patterns in nonlinear net-
worked systems. 

3.3. Neurofilamentary Dynamics 
Neurofilaments are neuron-specific proteins that provide structural support to the 

neuronal cytoskeleton and are implicated in neural signaling (axonal and synaptic) via 
dynamical behavior. In synaptic signaling, neurofilamentary proteins are differentially 
expressed in the presynaptic and postsynaptic compartments of glutamatergic (excita-
tory) and GABAergic (inhibitory) synapses [105]. Neurofilamentary dynamics likewise 
have a role in axonal signaling. Research finds that the axon processes information at mul-
tiple time scales [106,107] in the shape of vortex-like signals that can be captured with 
quantum optics [108]. An axon has thousands of densely packed neurofilaments beneath 
the membrane. An intricate mechanism of electromagnetic and ionic signaling is sug-
gested in that the electromagnetic resonance of neurofilaments first identifies relevant 
paths or circuits (branch selection) extremely rapidly at a microsecond speed (10−6), which 
then serves as an input to the ion channel transmission that proceeds on the order of 
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milliseconds (10−3) [106]. Specifically, four ordered structures in the cytoskeletal filaments 
were shown to exchange energy approximately 250 microseconds before a neuron fires 
[107]. The research program integrates multiple time domains into a single temporal ar-
chitecture, extending the traditional Hodgkin–Huxley model used to study neural signal-
ing, branch selection, spike time-gap regulation, and synaptic plasticity [108]. Under-
standing filamentary dynamics is important as these proteins are proposed as a blood-
based biomarker of neurodegenerative pathology, overcoming some of the challenges of 
amyloid-beta and tau proteins as the traditional diagnostic markers for Alzheimer’s dis-
ease [109]. For example, one study found blood-based neurofilamentary protein fragment 
levels to be eight times higher in neurological disease patients than controls [110]. 

3.4. Quantum Nanoscience for Neurobiology  
Quantum nanoscience is the study of nanostructured systems that incorporate and 

exploit quantum effects [111]. The fabrication of integrated circuits and nanomedicine are 
two of the primary applications of quantum nanoscience [112,113]. Both are relevant to 
quantum neurobiology—nanomedicine most directly—and nanocircuits in the effort to 
create standardized quantum neural circuits to test behavior, pathological response, and 
pharmacological intervention. Various projects are attempting to identify the structural–
functional organization of neural circuits per connectome project data, serial electron mi-
croscopy, trans-synaptic tracing, and single-cell transcriptomics [114]. In nanomedical 
fabrication, nanoparticles (precision-engineered objects with dimensions less than 100 
nm) are the focus of quantum neurobiological modeling and drug design.  

3.4.1. Nanoparticle Neuroscience 
Nanoparticles allow therapeutics to be delivered across the blood–brain barrier (BBB) 

into the brain. A nanoparticle has a relatively large surface area and pores for housing 
therapeutic agents. Adjusting the size and molecular weight of the delivery system con-
taining the drug can be used to target where the nanoparticles accumulate in the body 
and the tissue that can be accessed. One project creates a blood–brain barrier-crossing na-
noparticle drug delivery platform to treat secondary injuries associated with traumatic 
brain injury that can lead to Alzheimer’s, Parkinson’s, and other neurodegenerative dis-
eases [115]. The therapeutic is a small interfering RNA (siRNA) molecule designed to in-
hibit the expression of the tau protein (thought to play a role in neurodegeneration). The 
solution encapsulates therapeutic agents into biocompatible nanoparticles with precisely 
engineered surface properties to enable their transport into the brain and indicates a 50% 
reduction in the expression of the tau protein as a result. In addition to nanoparticles, 
other contemporary neuropathology resolutions are being explored such as CRISPR/Cas9 
therapeutic strategies (supplying or blocking proteins) in pre-clinical Alzheimer’s disease 
models [116]. 

3.4.2. Molecular Codes 
A recent advance is precision molecular control, performed with quantum error cor-

recting methods (molecular codes), highlighting the integration of quantum information-
based systems and physical systems. Molecular codes are an extension of GKP bosonic 
codes (Gottesman, Kitaev, Preskill) [117]). Bosonic codes are a method of quantum error 
correction instantiating both the physical qubit and the logical qubits that protect it in a 
self-contained system (the continuous variable environment of a harmonic oscillator) 
[118]. GKP bosonic codes correct errors (seen as molecular displacement) by reorienting 
the position and momentum of an oscillator (oscillatory molecule) with known symmetric 
rotations. Molecular codes extend GKP bosonic codes by allowing rotations to be per-
formed on asymmetric rigid bodies in free space, in quantum systems ranging from oscil-
lators to diatomic and polyatomic molecules [119]. Error-corrected molecular control is an 
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important capability in the quantum information-theoretic modeling of neural behavior 
as neural circuits are instantiated in quantum hardware.  

3.4.3. Autonomous Robotic Nanofabrication  
Quality-controlled nanomedical fabrication might proceed with autonomous agents. 

One project demonstrates the autonomous robotic nanofabrication of supramolecular 
structures from single molecules [120]. The method consists of controlling single mole-
cules with the machine learning agent-based manipulation of scanning probe microscope 
actuators (using reinforcement learning (goal-directed updating) to remove molecules au-
tonomously with a scanning probe microscope from a supramolecular structure).  

4. Neuroscience Physics 
The third area of quantum neurobiology applications is neuroscience physics, which 

is the neuroscience interpretation of foundational physics findings. Applications dis-
cussed here include a suite of AdS/Neuroscience theories based on the AdS/CFT corre-
spondence (AdS/Brain, AdS/Memory, AdS/Superconducting, and AdS/Energy (brain 
Hamiltonian)), neuronal gauge theories (symmetry-breaking, energy-entropy balances), 
network neuroscience, and random tensors (high-dimensional systems). 

Of particular interest is neural signaling—a problem involving synaptic integration 
(aggregating thousands of incoming spikes from dendrites and other neurons) and elec-
trical–chemical signal transduction (incorporating neuron-glia interactions at the molecu-
lar scale). The standard compartmental models used in computational neuroscience are 
not equipped with the multi-variable partial differential equation (PDE) functionality 
needed to model inter-neuronal spatial interactions [121,122]. For example, diffusion–re-
action equations are one possibility for integrating the activity of dendritic spikes that 
involves astrocyte calcium signaling, protein cascades in dendritic arbors, and the proton 
and ion-based transfer of molecules [123], all of which take place on the quantum (atomic 
and subatomic) scale [124]. Proposed quantum neurobiological solutions to the modeling 
of neural signaling consider multiscalar models, phase transition, dynamical nonlinear 
systems, energy–entropy relations, and high-dimensional representation.  

4.1. AdS/Brain  
AdS/Brain is a multiscalar theory of neural signaling based on the AdS/CFT corre-

spondence, which incorporates the four scale tiers of network, neuron, synapse, and mol-
ecule [125]. The theory is the first example of a multi-tier interpretation of the AdS/CFT 
correspondence with successive levels of bulk–boundary correspondence. The suggested 
implementation of the AdS/Brain theory is a matrix quantum mechanics formulation 
(multi-dimensional matrix model [126]) with bMERA (brain) random tensor networks 
evolved with Floquet periodicity-based neural dynamics. 

The AdS/CFT correspondence (anti-de Sitter space/conformal field theory) is a theory 
positing that a physical system with a bulk volume can be described by a boundary theory 
in one less dimension [127]. Specifically, the theory (gauge/gravity holographic duality) 
states that a gravity theory (bulk volume) is equal to a gauge theory or quantum field 
theory (boundary surface) in one less dimension. The work constitutes one of the most-
cited papers in any field (over 21,000 references as of December 2021), with applications 
in all physics arXiv areas [128].  

The AdS/CFT correspondence offers two perspectives of the same system and the 
mathematics for solving in either direction. A typical bulk-to-boundary use case is the 
AdS/SYK (Sachdev-Ye-Kitaev) formulation, starting with a known classical gravity theory 
(Einstein gravity) in the bulk to solve for an unknown quantum field theory describing a 
superconducting material on the boundary. The mathematics of black holes (classical 
gravity bulk) and unconventional materials (boundary) can be linked in that the two sys-
tems have similar properties related to mass, temperature, and charge [129]. In the other 
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direction, boundary-to-bulk deployments start with a known quantum field theory on the 
boundary and attempt to define a theory of emergent structure such as an unknown quan-
tum gravity theory in the bulk [130]. Establishing bulk–boundary mappings, including a 
quantum error correction setup (protecting a logical qubit in the bulk by linking it to an 
ancilla of physical qubits in the boundary [131]), is an active research area [132]. 

The AdS/Brain theory proposes the first instance of a multi-tier correspondence (mul-
tiple graduated levels of bulk–boundary relationships) to instantiate the four scale tiers of 
brain network, neuron, synapse, and molecule (and could be expanded to other tiers). The 
model accommodates the entirety of the brain’s neural signaling processes between axon, 
presynaptic terminal, synaptic cleft, postsynaptic density, and dendritic spiking potentials 
from dendrite to soma. The bulk–boundary pair relationships are network–neuron, neu-
ron, synapse, and synapse–ion. The scales and measured signals are local field potentials 
at the brain network level (10−2 m), action potentials at the neuron level (10−4 m), dendritic 
spikes at the synapse level (10−6 m), and ion docking at the molecular level (10−10 m).  

The AdS/Brain theory addresses the renormalization requirement in multiscalar sys-
tems (the ability to view a physical system at different scales). Renormalization programs 
must tackle the infinities that arise in quantum mechanics to reflect the fact that all possi-
ble particle locations and events can actually occur. Various renormalization group (RG) 
methods have been proposed as a mathematical apparatus for smoothing systems so that 
they may be viewed at different scale tiers on the basis of different parameters (degrees of 
freedom). A key advance is the multiscale entanglement renormalization ansatz (MERA), 
a tensor network structure that implements an iterative coarse-graining scheme to renor-
malize quantum systems on the basis of entanglement or other attributes [133]. The MERA 
tensor network consists of alternating layers of disentanglers and isometries that consoli-
date a multi-tier system into a single view—a structure conducive to the AdS/Brain theory 
and applied in a bMERA (brain) implementation.  

The second requirement the AdS/Brain theory addresses is the issue that different 
neural dynamics paradigms define the system evolution at each scale tier of the neural 
signaling operation [38]. Floquet periodicity [134,135] propelled with continuous-time 
quantum walks [136] is selected as the basis for a multiscalar model of brain network, 
neuron, synapse, and ion channel dynamics, as these formalisms flexibly accommodate 
varying dynamical regimes within a system.  

4.2. AdS/Memory 
AdS/Memory is a neuroscience application of the AdS/CFT correspondence that ex-

amines the problem of information storage. The research program applies the AdS/CFT 
correspondence (in the form of black hole physics) to the computational neuroscience 
problem of memory formation [137]. Black holes and brains are efficient at storing infor-
mation, and critically excited states might be the basis. A quantum neural network with 
holographic properties (entropy scaling by area not volume) is introduced. The quantum 
optical neural network (with qudit-based bosonic modes) produces critical states (neuron 
excitatory synaptic connections based on gravity-like interaction energy) that have an ex-
ponentially enhanced capacity to store information. What is new is the investigation of 
what a system can do in a highly excited state (as opposed to exclusively finding the sys-
tem’s ground state and related energy tiers). The largest memory capacity quantum state 
might not necessarily be the ground state, but rather a highly excited critical state. There 
could be immediate implications for quantum memory and also in quantum neurobiology 
in substantiating the conceptualization of neural signaling as a criticality triggered phase 
transition. The consideration of system extremes is a method also being applied, for ex-
ample, to find new matter phases in systems that do not reach thermal equilibrium [134].  

4.3. AdS/Superconducting 
AdS/Superconducting uses the AdS/CFT correspondence to study phase transition, 

which is not well understood in various domains including neural signaling and 



Quantum Rep. 2022, 4 117 
 

superconducting materials. Explaining how materials become superconducting at high 
critical temperatures could be practically useful in producing superconducting chips that 
do not require super-cooling. One approach deploys the AdS/CFT correspondence (in the 
AdS/SYK program of using a known gravity theory to find an unknown quantum field 
theory for a superconducting material) to study superconducting systems [138]. The setup 
is a toy-model black hole, constrained to a box (like the gas-in-a-box or particle-in-a-box 
model systems). The black-hole-in-a-box (unlike real black holes) can be manipulated such 
that a condensate halo (of some material) forms around it. When an external electrical 
field is applied (like turning on a battery), the condensate becomes superconducting due 
to the Higgs mechanism. In the general case (confirmed by Large Hadron Collider exper-
iments), the Higgs mechanism “gives particles their mass” as the Higgs field is a universal 
field throughout the universe that causes particles to become “heavy” as they pass 
through a medium, giving them drag, or mass [139]. In the black hole condensate situa-
tion, the particles that become massive are photons, preventing electric and magnetic 
fields from traveling through the medium, causing the medium to become superconduct-
ing (electrons flowing freely with infinite conductivity and zero resistance). The result is 
the AdS/Superconducting model, an experimental model for studying phase transition, 
particularly in systems with ordered-disordered phases such as neural signaling.  

4.4. AdS/Energy (Brain Hamiltonian) 
The AdS/Brain theory provides a generic multiscalar model of neural behavior inter-

pretable at various bulk–boundary scale tiers with the AdS/CFT mathematics, which 
renormalize entanglement (correlations) across system levels. Although entanglement is 
the primary multiscalar quantity, energy-related formulations (expressed as a Hamilto-
nian) are also possible. A first law of thermodynamics (the first law of entanglement en-
tropy (FLEE)) has been defined to posit that a change in boundary entropy is equivalent 
to a change in bulk energy (Hamiltonian) [140]. Energy formulations are central to quan-
tum systems, but a formalism did not exist previously for solving the AdS/CFT corre-
spondence in terms of energy. The implication is that the AdS/CFT correspondence is im-
mediately connected to the wide range of energy-based Hamiltonian formulations in 
quantum-mechanical systems. One line of research that has been more robustly enabled 
is that of scrambling: complex systems (such as brains, black holes, and many-body quan-
tum systems) are posited to be fast-scramblers, dissipating information quickly such that 
a local measurement is no longer possible [141]. Various SYK Hamiltonians and scram-
bling Hamiltonians [142] could be applied in the AdS/Brain model structure to formalize 
neural signaling as a quantum information scrambling problem.  

4.5. Neuronal Gauge Theories 
Neuronal gauge theories comprise another class of neuroscience physics approaches. 

One symmetry-based project models the brain’s neural signaling operation on the basis 
of gauge invariance and global symmetry [143]. Symmetry is the property of physical sys-
tems looking the same from different points of view (whether a face, a cube, or the laws 
of nature), and symmetry breaking is phase transition. A gauge theory is a field theory in 
which the Lagrangian (state of a dynamic system) does not change (is invariant) under 
local gauge transformations (changes between possible gauges (levels or degrees of free-
dom) in a system). This neuronal gauge theory interprets the brain as a multiscalar system 
with a global symmetry, the invariant property of free energy minimization, that is broken 
and rebalanced. Neural signaling breaks the symmetry and gauge fields are applied to 
rebalance the invariant quantity (free energy). The gauge fields are part of the brain envi-
ronment and apply continuous forces to act on the brain elements to produce local per-
turbations that counteract the effect of the local force stimulus as neural signals are dis-
patched in order to bring the system back into its resting state. The gauge field rebalancing 
mechanism coordinates the multiscalar tiers of the brain on the basis of conserving the 
gauge-invariant quantity, free energy minimization in this model, but could be otherwise.  
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Another neuronal gauge theory formulation [144] finds that the macroscopic brain 
obeys the same kind of energy–entropy balances when at rest as microscopic processes 
and likewise breaks the balance when performing physically and cognitively demanding 
tasks (according to connectome project whole-brain imaging data [145]). Non-equilibrium 
processes at the macroscale are studied with a dynamic Ising model showing how viola-
tions of the energy–entropy balance emerge from asymmetries in the interactions between 
neural elements. A related gauge-theoretic model explores energy–entropy trade-offs in 
the relation between the information content of brain states and neural energy [146]. Brain 
states are modeled as the Shannon entropy content of parcels, and energy via the Boltz-
mann distribution, as the brain network seeks lower-energy stable states. The multiscalar 
energy–entropy model is applied to explain how signal propagation along the structural 
connectome of the brain may induce changes in the patterns of neural activity (again sim-
ilarly tested with empirical connectome data).  

4.6. Network Neuroscience 
Network neuroscience is a (quantum) information network neurobiology program 

that takes a complex systems [20], network [147], physics [148], energy [146], and infor-
mation-based view of neurobiology [149]. The program unites elements of the brain net-
work-level view, energy, entropy (information), neural dynamics, structural–functional 
linkage, multiscalar systems and renormalization, microscale–macroscale interactions, an 
energy economy view of the brain, and information signaling theory (encoding and com-
pressibility), validated with empirical data from the human connectome project and other 
sources [145]. Recent findings of note are in the areas of renormalization, neural dynamics, 
neuronal gauge theories, and information-based encoding.  

Overall, the brain is seen as an information problem that can be modeled with en-
tropy and energy, with potential translation to quantum platforms. Renormalization tech-
niques might sidestep the usual difficulties of integrating a multiscalar environment by 
modeling behavior as an information compression problem in which similar constraints 
impact all tiers [149]. Likewise, network architecture and connectivity are indicated as 
system-wide parameters that influence multiscalar behavior; for example, contributing to 
an oscillatory-based understanding of local and global neural dynamics [150].  

Network neuroscience sees practical demonstration by other connectome teams us-
ing graph theory and differential geometry to study the spatiotemporal arrangements of 
neurons, synapses, axons, and dendrites. A quantum approach to connectome analysis 
calculates the eigenvectors of the human connectome with a graph Laplacian (Schrödinger 
wavefunction element) [151]. The resulting harmonic wave is used to examine neural 
fields as a basis for structure–function relationships in the human brain, implementing the 
Wilson–Cowan neural field theory with high-resolution MRI connectome graph data. 

4.7. Random Tensors 
Random tensors are a tensor network technology for the treatment of high-dimen-

sional multiscalar systems—an advance on par with MERA tensor networks (computation 
of entangled quantum systems). Tensor networks are a structure for representing and ma-
nipulating many-body quantum states as the factorization of high-order tensors (tensors 
with a large number of indices) into a set of low-order tensors whose indices are summed 
to form a network defined by a certain pattern of contractions. Random tensors generalize 
random matrices (2 × 2 matrix formulations) to three or more dimensions and have been 
tested for as many as five dimensions (rank-5 tensors) [152].  

Random tensors provide another model (in addition to matrix mechanics) for the im-
plementation of the AdS/Brain theory as a tensor field theory of neural signaling. Existing 
neural field theories could be instantiated (with three-state neurons [88]) as tensor field 
theories [153] on quantum platforms. Likewise, the four dimensions (network–neuron–
synapse–molecule) of the AdS/Brain theory could be indexed with rank-4 random tensors, 
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modeling the quiescent-to-firing signal as a matrix(2d)-to-tensor(3+d) phase transition 
(planar-to-melonic (high-dimensional) graph representation).  

These kinds of tensor field theories and melonic graphs of neural signaling have the 
dimensionality needed to instantiate synaptic integration research findings, extending the 
sophistication of traditional computational neuroscience compartmental models. Spine 
density gradients are known to be important in shaping dendritic response, and decreas-
ing spine density improves thresholded signal pooling (certain neurons pool the outputs 
of many separately thresholded dendrites) [154]. Nonlinear models have also been used 
to study the postsynaptic density and dendritic shape as elliptical spheroids, finding that 
the curvature of dendritic geometry gives rise to pseudo-harmonic functions that can be 
used to predict dendrite concentrations and their potential role in signal processing [155].  

Differential geometry implementations bring a new resolution to the study of mito-
chondrial membrane architecture, whose metabolic impairment may contribute to neuro-
degeneration [156]. Traditional ways of modeling mitochondria (ATP and heat) are insuf-
ficient as their idealized geometries distort metabolic flux. Applying differential geometry 
to empirical TEM tomography data, however, allows a more robust analytic model based 
on Gaussian curvature, surface area, volume, and membrane motifs, all of which are re-
lated to the metabolic output of the mitochondria and require a multi-dimensional ap-
proach. Such differential geometry methods might inflect into practical applications treat-
ing mitochondrial bioenergetic stress response [157]. 

5. Discussion 
The study of neuroscience is necessarily migrating to quantum information science 

platforms, as quantum computing may become the computational vernacular of the day. 
However, simply reinstantiating research programs with quantum information science 
methods is not likely to solve neuroscience problems as expediently as also incorporating 
the theoretical understanding available in foundational physics discovery. Hence, the 
emerging field of quantum information science-driven quantum neurobiology is outlined 
in the three levels of its activity in wavefunction analysis, neural dynamics, and neurosci-
ence physics. These areas include the clinically motivated investigation of wave imaging, 
protein folding, and genomics, the study of neural dynamical systems with superposi-
tioned data, quantum probability, and neural field theories, and the neuroscience physics 
interpretation of physics findings. A novel quantum theory of neural signaling is pro-
posed—the AdS/Brain theory, as the first instance of a multi-tier AdS/CFT correspondence 
model of successive levels of bulk–boundary relationships between network, neuron, syn-
apse, and molecular levels in the brain. Quantum solutions to key neural signaling chal-
lenges, the synaptic integration of thousands of incoming signals and electrical–chemical 
signal transduction, are proposed in several modalities.  

There are many potential risks and limitations to quantum neurobiology. It may be 
too early for quantum technologies since technical breakthroughs in quantum error cor-
rection are needed to progress from NISQ (noisy intermediate-scale quantum) devices to 
fully FTQC (fault-tolerant quantum computing) [158]. Modeling the complexities of the 
brain may not be a near-term application even if quantum methods proceed. The chal-
lenge of obtaining empirical data (due to both technical and privacy-related reasons) con-
strains the ability to develop accurate neurobiological models. However, despite these 
limitations, quantum neurobiology is extending the study of neuropathological disease.  

Future directions in quantum neurobiology could explore topics linking physiologi-
cal building blocks to higher-order cognitive behavior as structural-functional relation-
ships are uncovered in genomics, connectomics, and cortical recording studies. Quantum 
information science and quantum measurement theories might be deployed to under-
stand not only neurobiological behavior but also psychological information processing 
[159] and human decision-making [160], including via quantum BCI implementation.  

Quantum neurobiological approaches could seek to interrelate three domains: scien-
tific theories of time, temporal modes of cognition, and the underlying time morphology 
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of biological processes. Physics findings related to time include time entanglement (tem-
poral correlations have a different structure than spatial correlations [161]), the Floquet 
model [134], time symmetry breaking [162], time evolution [141], and quantum walks 
[136]. In the cognitive domain, Kantian neuroscience shows empirically how the sponta-
neity of cognition is demonstrated by the constitutive role of the brain in processing in-
coming sensory input [163] and correlates neurobiology and philosophy [164]. These ap-
proaches could be further linked to the temporality of biological processes (cellular lifecy-
cles, oscillatory patterns, and circadian rhythms) [165]. 

The accelerated pace of the technology-driven “big data” era has sponsored the de-
velopment of a computational informatics field as a complement to traditional academic 
disciplines in many areas of the arts and sciences (ranging from digital humanities to com-
putational astronomy). Likewise, “quantum studies” fields are emerging as an accompa-
niment, pursuing quantum approaches to the underlying questions in the discipline and 
enabling a new class of more precise problem-solving, thinking, and discovery, with a 
standard slate of quantum information science methods [166]. Quantum neurobiology is 
in the early stages of development but could potentially have an extremely transformative 
impact on the ability to elaborate the intricacies of the human brain and better protect it 
from disease and decline. A better understanding of the neurobiological role of quantum 
effects (or quantum-analog effects) may also shed new light on fundamental interpretative 
questions in quantum physics. 
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Glossary 

AdS/Brain 
Multiscalar neuroscience interpretation of the AdS/CFT corre-
spondence  

AdS/CFT correspondence 
(anti-de Sitter 
space/conformal field 
theory) 

Theory positing that a physical system with a bulk volume 
can be described by a boundary theory in one less dimension 

AlphaFold 
Protein folding predictor based on system-level attention to 
spatial constraints (from DeepMind/Google) 

Biological physics Study of living processes through the application of physical 
principles  

Bosonic codes Self-contained photonic system for quantum error correction 
(e.g. harmonic oscillator) 

Chaotic dynamics Dynamical regimes of ballistic spread followed by saturation 

Filamentary dynamics 
Role of neurofilaments (neuron-specific proteins) in axonal 
and synaptic signaling  

GKP bosonic codes 
(Gottesman, Kitaev, 
Preskill) 

Quantum error correction method by reorienting the position 
and momentum of a molecule with known symmetric 
rotations 

Hamiltonian (Quantum mechanics) operator corresponding to the total 
energy of a system  

Hamming distance Sum of positional mismatches of two bit strings 

Hopf bifurcation 
System critical point at which a periodic orbit appears or 
disappears per a local change in stability  

Information biology Study of information processing activities performed by 
biosystems 
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Information scrambling 
Rapid spread of information in a quantum system prohibiting 
local measurement  

Josephson junction 
Device consisting of two or more superconductors coupled 
by a link that conducts electrons 

Laplacian (Schrödinger equation) operator representing the flux density 
of the gradient flow of a function  

Matrix Array of numbers arranged in rows and columns used to 
study physical phenomena (probability distribution) 

Melonic diagram 
(Melon-shaped) graph expression of a high-dimensional 
system  

MERA (multiscale 
entanglement 
renormalization ansatz) 
tensor networks 

Entangled quantum systems model 

Molecular codes 
Quantum error correction by performing rotations on 
asymmetric rigid bodies in free space 

Nanoparticle 
neuroscience 

Nanoparticles (100 nm objects) that cross the blood-brain 
barrier to perform an intervention 

Neurobiology Field investigating the form and function of the nervous 
system (neurons, glia, axons, and dendrites) 

Neurofilament 
Neuron-specific protein implicated in neuronal cytoskeletal 
structure and signaling 

Neuromorphic 
computation 

Electronic computation inspired by neural systems and spike 
thresholding  

Neuropeptides Small chains of amino acids (chemicals) synthesized and 
released by neurons  

Neuroscience Study of the structure and function of the nervous system 
and brain 

Neuroscience physics Neuroscience interpretation of foundational physics findings 
Path integral Approach of summing over all possible paths in a system 

Protein folding problem Predicting a protein’s final 3D structure from the underlying 
sequence of amino acids  

Quantum biology Study of how quantum properties may play a governing role 
in biological functions 

Quantum computing 
Use of engineered quantum systems (with atoms, ions, 
photons) to perform computation 

Quantum information 
biology 

Study of biological systems with quantum information 
methods  

Quantum internet Information transmitted with quantum effects 
(entanglement), using quantum cryptography  

Quantum machine 
learning Machine learning applied in a quantum environment 

Quantum memory 
(QRAM) 

Quantum-mechanical computer memory, storing information 
with greater scalability as quantum states in superposition 
(vs classical binary states)  

Quantum nanoscience Study of nanostructured systems that incorporate and exploit 
quantum effects 

Quantum neurobiology 

Discipline within quantum biology and biological physics 
that studies potential quantum effects in the brain and 
applies quantum information science methods to 
neurobiological questions 
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Quantum physics 
Description of particles making up all matter including living 
organisms 

Quantum probability Quantum mechanical rules for assigning probabilities 

Quantum walk Quantum version of classical random walk based on coin-flip 
operator and lattice-graph propagation  

Qutrit Three-level quantum state, simultaneously in 0, 1, 2 until 
collapsed in a measurement (vs two-state qubit) 

Random tensors 
Generalization of random matrices (2 × 2 matrix 
formulations) to 3+ dimensions 

Renormalization 
The ability to view a system at multiple scales by collapsing 
degrees of freedom (parameters) 

Spike-activated neural 
networks (SNNs) 

Bio-inspired neuromorphic computation based on 
thresholded activation 

Superdeterminism 
Interpretation that quantum effects are the result of hidden 
variables (vs indeterminism) 

Superpositioned data 
Quantum information representation of all possible system 
states simultaneously 

Tensor field theories Local field theories whose fields transform as a tensor under 
a global or local symmetry group 

Tensor networks 

Structure for manipulating high-dimensional data (many-
body quantum states) as the factorization of high-order 
tensors (many indices) into low-order tensors whose indices 
are summed to form a contracted network  

Transcription factors Proteins regulating gene expression by attaching themselves 
to DNA 
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