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Abstract: The Middle East (ME) spans the transition between a temperate Mediterranean climate
in the Levant to hyper-arid sub-tropical deserts in the southern part of the Arabian Peninsula (AP),
with the complex alpine topography in the northeast feeding the Euphrates and Tigris rivers which
support life in the Southeastern Fertile Crescent (FC). Climate projections predict severe drying in
several parts of the ME in response to global warming, making it important to understand the controls
of hydro-climate perturbations in the region. Here we discuss 23 ME speleothem stable oxygen
isotope (δ18Occ) records from 16 sites from the SISAL_v1 database (Speleothem Isotope Synthesis and
Analysis database), which provide a record of past hydro-climatic variability. Sub-millennial changes
in ME δ18Occ values primarily indicate changes in past precipitation amounts the result of the main
synoptic pattern in the region, specifically Mediterranean cyclones. This pattern is superimposed on
change in vapor source δ18O composition. The coherency (or lack thereof) between regional records
is reviewed from Pleistocene to present, covering the Last Glacial Maximum (~22 ka), prominent
events during deglaciation, and the transition into the Holocene. The available δ18Occ time-series are
investigated by binning and normalizing at 25-year and 200-year time windows over the Holocene.
Important climatic oscillations in the Holocene are discussed, such as the 8.2 ka, 4.2 ka and 0.7 ka
(the Little Ice Age) Before Present events. Common trends in the normalized anomalies are tested
against different climate archives. Finally, recommendations for future speleothem-based research in
the region are given along with comments on the utility and completeness of the SISAL database.

Keywords: SISAL database; speleothem; cave; isotopes; Middle East; palaeoclimate

1. Introduction

The climate conditions across the Middle East (ME) are markedly heterogeneous for its relatively
small geographical extension, encompassing the Eastern coasts of the Mediterranean (hereafter,
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the Levant) and the Fertile Crescent (FC) (often considered in tandem,) as well as parts of the Arabian
Peninsula (AP) and North-East Africa [1,2]. The region spans the transition between a temperate
Mediterranean climate in the Levant to hyper-arid sub-tropical deserts in the south, with complex
alpine topography in the northeast feeding the Euphrates and Tigris rivers which support life in the
Southeastern FC (Figure 1). Climate projections predict severe drying in major parts of the ME in
response to global climate change, with a considerable impact for societies [3–5]. Climate reconstructions
and archaeological information, suggest that changes in the regional hydroclimate was a primary driver
in human expansion out of Africa [6], the Neolithic revolution, and the development of the first complex
societies [7]. The ME has plentiful archeological records of human settlement throughout much of
the Quaternary, and well into the Holocene [8–14]. Initially, the predominantly semi to hyper-arid
climate of the region served as a bottle-neck for early hominin dispersion out of Africa, allowing
migrations onto the Levant and the AP pathways only during wetter periods that were identified
using speleothem growth (wet)/non-growth (dry) patterns in desert and water-limited settings [15–18].
These events are also recognized using other methods and different climate archives [10,19,20]. Since
the Last Glacial Maximum from c. 25 to 20 ka BP (Before Present, calibrated in the SISAL database
to the year 1950 of the Common Era, hereafter CE) and the following transition into the Holocene
interglacial, there has been considerable evidence that variations in climate served as a driver in
Homo Sapiens’ cultural evolution. The most notable is the “Neolithic Revolution”, where it has been
suggested that post-glacial hunter-gatherers were able to cultivate a number of food plants due to the
trend towards warmer and possibly wetter climate [21], whereas succeeding abrupt cooling events
may have forced proto-agrarian societies to turn to the cultivation of wild cereals and fruit [21–23].
Wheat was cultivated in the FC around 9500 years BP, suggesting that the ME was the first region to
cultivate plants and support sedentary human communities [24,25]. The ME localities, specifically the
FC, were also the earliest locations where sophisticated civilizations, city-states and complex empire
systems appeared during the mid- to late-Holocene [26,27]. It has been argued that the expansion and
subsequent collapse of these civilizations was partly driven by rapid climate change events [14,28–32]
superimposed on more gradual millennial climatic shifts. Furthermore, recent studies have suggested
an association between a contemporary increase in the frequency and intensity of droughts in recent
decades, to geopolitical unrest in the region, e.g., the Syrian Civil War [29,33,34]. These correlations
highlight the importance of understanding both past and future climate perturbations in the ME.
This can be achieved by use of large spatio-temporal networks/datasets of terrestrial hydro-climate
archives. Regional-scale coherency would greatly improve our understanding of past variations in the
spatio-temporal precipitation pattern of the ME, thereby resolving some of the contradictions between
different records in the region [1,35].

The first version of the Speleothem Isotope Synthesis and Analysis database (SISAL_v1) [36,37],
contains 376 isotope entity records derived from speleothems (secondary cave deposits) worldwide.
Speleothems are commonly used as archives of past terrestrial climatic variability. This is because
speleothems can be accurately dated and preserve multiple climate-sensitive proxies, which can
be sampled at high spatial and temporal resolution. In temperate regions speleothem time-series
are often continuous even under dry conditions [38,39]. By contrast, in semi-arid environments
where the effective infiltration (i.e., precipitation minus evaporation or evapotranspiration) is negative
throughout most of the year, the site specific hydrology and reservoir properties are emphasized
in the palaeo-record and decadal, annual and often seasonal hiatuses (or seasonal biases) can be
found [31,40,41]. Similarly, arid to hyper-arid environments particularly highlight growth/non-growth
events. This gives speleothem records a distinct advantage over alternative palaeoclimate proxies
(e.g., lake cores, tree-rings, corals), specifically for inter-comparison of the different climate settings
found in the ME.
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Figure 1. Location of the Middle East (ME) speleothem records that are included in SISAL_v1 (purple
circles) and other identified records, not yet included in the database (green triangles). The base map
shows the distribution of carbonate and evaporite rocks in the ME, as provided by the World Karst
Aquifer Mapping project (WOKAM), adapted with permission from [42]. Cave sites with entities not
included in the SISAL database are numbered (Table 1): (1) Karaca (2) Ovacik (3) Akçakale (4) Katleh
Khor (5) Qal’e Kord (6) Gejkar (7) Gol-e Zard (8) Mitzpe Shlagim (9) Peqiin (10) Zalmon (11) Ashalim (12)
Even Sid (13) Hol-Zakh (14) Izzim (15) Ma’ale Ha-Mishar (16) Ma’ale Dargot (17) Makhtesh ha-Qatan
(18) Shizfon mini-caves (19) Tzavoa (20) Wadi Lotz (21) Wadi Sannur (22) Mukalla (23) Dimarshim (24)
Casecas (25) Hoq.

In this work we review 17 speleothem isotope records (hereafter entities) that are in SISAL_v1
for the ME, which includes sites in Lebanon, Israel, the West Bank, Oman, Yemen, and Southwest
Turkey (entities from the AP and Egypt are also reviewed by Braun et al. [43]). An additional six
sites from Eastern Europe and Northern Turkey (see Kern et al. [44]) are included here as these sites
are along the dominant Eastern Mediterranean (EM) Sea storm tracks, the major climate patterns
controlling precipitation in the region (Figures 1 and 2; Table 1). The aim of this work is to highlight
the applicability of speleothems from the ME currently logged in the SISAL_v1 database to resolve
regional-scale consistencies and inconsistencies and to test for spatial coherency between speleothems
and additional climate recorders (i.e., Arctic ice sheets and Mediterranean surface temperatures).
The available speleothem stable oxygen isotope ratio (hereafter δ18Occ) Holocene time-series are
investigated via binning and normalizing (providing median, the 25th and 75th quantiles of the data) at
25-year and 200-year time windows, as used previously in the context of the PAGES 2k databases [45].
This method is used to better understand how different Holocene climatic events are differentiated
regionally with the context of a normalized ME composite time-series from multiple records analysis
(hereafter, ME composite), i.e., Sapropel 1, the 8.2 ka and the 4.2 ka event or the Little Ice Age at 0.7 ka BP.
Finally, we highlight sites and entities that are not logged in SISAL_v1 and identify potential regions for
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the generation of new speleothem proxy time-series, suggestions regarding future speleothem-based
research using the SISAL database are given accordingly.

Table 1. List of all speleothem records which include SISAL metadata: site (or cave) name and id
number, latitude, longitude, entity (or speleothem) name and id number. Additional information
includes; location of site (country or region), site height Above Mean Sea Level (AMSL) in meters,
minimum and maximum ages given in years BP (1950), and published references. The top table are
records available in SISAL_v1 (with annotations of some entities in those sites as yet to be added
to SISAL_v1). The bottom table lists additional sites and speleothems not included in in SISAL_v1.
A minimum age of “~present” is designated where a younger than 1950 CE sample is presented without
an exact minimum age for the age model or a removal date. When ages beyond U/Th dating method
are reported, the table notes these as >U/Th.

Site_name Site _id Location Latitude
ºN

Longitude
ºE

Elevation
(m AMSL)

Entity
_name

Entity
_id

Min. Age
(yrs BP)

Max. Age
(yrs BP) Ref.

Ascunsa 72 Romania 45.00 22.60 1050 POM-2 161 −32 8169 [46]

Ceremosjna 76 Serbia 44.40 21.65 530 CC-1 165 −48 2426 [47]

Defore 170 Oman 17.17 54.08 150 S3 366 −46 731 [48]

S4 9095 10,693 [49]

Dim 79 Turkey 36.53 32.11 232 Dim-E2 168 9738 13,094
[50]Dim-E3 169 12,575 89,714

Dim-E4 170 12,020 14,555

Hoti 152 Oman 23.08 57.35 800 H5 327 6026 9607 [49,51]

H1
H2
H3
H4

H10
H11
H12

H13

H14
flowstone

78,000
~present
~present
117,000

6200
6200
164

117,000
180,000
300,000

6200
117,000

82,000
5000
5000

130,000
10,500
10,500
6277

130,000
210,000
325,000
10,500

130,000

[49,52]

Jeita 11 Lebanon 33.95 35.65 100 Jeita-1 58 1137 12,288
[53,54]Jeita-2 59 13,330 20,367

Jeita-3 60 372 847

JeG-
Stm-1 1100 11,900 [54]

Jerusalem
West 68 Israel 31.80 35.20 700 AF-12 152 −16 168,714 [55]

Kanaan 19 Lebanon 33.91 35.61 98 Kanaan_
MIS5 81 83,125 128,847 [56]

Kanaan_
MIS6 82 154,455 193,498

Kapsia 44 Greece 37.62 22.35 700 GK-09-02 120 1115 2904 [57]

Ma’ale
Efrayim 110 West

Bank 32.08 35.37 250 ME-12 218 16,548 66,948 [18]

36 samples

Mavri
Trypa 156 Greece 36.74 21.76 70 S1 347 1296 4687 [58]

Moomi 138 Yemen 12.50 54.00 400 M1-5 293 11,086 27,370 [59]

M1-2 40,000 53,000 [59]

Qunf 159 Oman 17.10 54.18 650 Q5 351 308 10,558 [49]

Skala
Marion 56 Greece 40.64 24.51 41 MAR_L 136 1481 5534 [60]

Sofular 141 Turkey 41.42 31.93 700 SO-1 305 −56 50,275 [61]
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Table 1. Cont.

Site_name Site _id Location Latitude
ºN

Longitude
ºE

Elevation
(m AMSL)

Entity
_name

Entity
_id

Min. Age
(yrs BP)

Max. Age
(yrs BP) Ref.

SO-2
SO-4

SO-6SO-10
SO-14BSO-17A

−60
1080

93,572
~present
475,910
86,190

59,510
307,030
133,200

2200
670,000
122,930

[62,63]

Soreq 160 Israel 31.45 35.03 400 Soreq
composite 354 ~present 30,031 [64]

2N 353 4440 33,804 [31]

2–6 352 743 2086 [14]

Numerous
samples ~present 250,000 [13,28,

65–72]

Sites identified but currently not in SISAL_v1 (see Figure 1)

Cave
Name

Figure 1
id Country Latitude

(N)
Longitude

(E)
Elevation

(masl)
Identified

speleothems Min. Age Max. Age Ref.

Ashalim 11 Israel 30.94 34.74 400 116,700 >U/Th [73]

Akcakale 3 Turkey 40.45 39.54 2p −55 189 [74]

Casecas 24 Yemen 12.56 54.31 STM5 12 856 [75]

Dimarshim 23 Yemen 12.55 53.68 D1 ~present 4530 [49]

Even Sid 12 Israel 30.64 34.81 800 87,700 >U/Th [73]

Gejkar 6 Iraq 35.80 49.16 Gej-1 −63 2380 [29]

Gol-e Zard 7 Iran 35.13 52.00 2530 - 3700 5100 [76]

Hol-Zakh 13 Israel 31.16 35.20 150 111,700 349,100 [73]

Hoq 25 Yemen 12.59 54.53
Hq1

STM1
STM6

−50
−53
−56

6900
5600
4500

[75]

Izzim 14 Israel 31.14 35.06 500 372,600 500,100 [73]

Karaca 1 Turkey 40.32 29.24 K1 6000 77,300 [77]

Kataleh
Khor 4 Iran 35.84 48.16 (2 samples) 214,000 500,000 [78]

Ma’ale
ha-Meyshar 15 Israel 30.49 34.93 450 110,600 >U/Th [73]

Ma’ale
Dragot 16 Israel 31.4 35.00 300 MD (6 samples) <500 426,440 [79]

Makhtesh
ha-Qatan 17 Israel 30.95 35.22 −20 140,000 >U/Th [73]

Mitzpe
Shlagim 8 Israel/Syria 33.32 35.81 2224

MS-1
MS-2
MS-3

4300
8800
8500

88,000
89,000
49,100

[80]

Mukalla
Cave 22 Yemen 14.92 48.59 1500

Y99
Y97-4
Y97-5

119,141
5630
8790

358,887
185,600
233,300

[16]

Ovacik 2 Turkey 41.46 32.02 O-1 4472 9796 [61]

Peqiin 9 Israel 32.58 35.19 650

PEK-5
PEK-6
PEK-9

PEK-10

5620
24,710
47,810
55,630

6780
223,700
283,650
288,160

[72]

Qal’e Kord 5 Iran 35.80 48.86 QK 8
QK 14

78,104
6581

99,182
127,012 [78,81]

Shizafon
mini-caves 18 Israel 30.04 35.00 400 333,400 >U/Th [73]

Tzavoa 19 Israel 31.20 35.20 550 TZ (15 samples) 14,400 204,760 [79]

Wadi Lotz 20 Israel 30.47 34.58 900 LOTS-3 - >U/Th [73]

Wadi
Sannur 21 Egypt 28.62 31.28 WSS 1 to 6 136,460 188,120 [82]

Zalmon 10 Israel 32.80 35.40 ZAL-1 to ZAL-7 and
ZAL-11 5100 165,000 [83]
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2. Climate of the Middle East

The Middle East (ME) is located within the subtropical high-pressure belt between the Northern
Hemisphere tropical (Hadley cell) and the mid-latitude atmospheric circulation, which is generally
associated with dry climates (i.e., the global desert belt). However, while most of the region is indeed
semi to hyper arid, the modern climate of the Levant is less arid and much milder than would be
expected from its location. This is mainly due to Mediterranean cyclones delivering precipitation to
the Levant, Fertile Crescent (FC), and on rare instances the Arabian Peninsula (AP), the genesis of
which is triggered by the interplay between the Mediterranean lows and the major North Atlantic
synoptic systems [84]. Furthermore, the Mediterranean Sea is characterized by an eastward gradient of
increasing salinity and sea surface temperatures (SST). This SST gradient and the cooler (compared to
the Mediterranean SSTs) surrounding land are key drivers for the Mediterranean cyclogenesis [85].

The EM coastal areas receive most precipitation during Northern Hemisphere winter months,
on average about 95% of rainfall occurs between October and May [86]. Mean annual precipitation
(climatological mean, last 30 years) in the Levant displays a steep gradient, from hyper-arid in the south
with less than 100 mm/y (e.g., Egypt, Southern Negev), through semi-arid with 500–600 mm/y (e.g., Soreq,
Jerusalem) to humid in the north with >1000 mm (Lebanon and Southeast Turkey) (Figure 2A,B).
Precipitation in the Levant is mainly sourced from eastward moving storm tracks generated inside
the Mediterranean region, Cyprus low systems, when cold and dry air from continental Euro-Asia
interfaces with the relatively warm Mediterranean Sea (Figure 2A compared to Figure 2B) [87,88].
A smaller fraction of cyclones enter on a southeastern trajectory from the Atlantic crossing the Southern
EM Sea (Figure 2B), but rarely reach all the way to the Levant and FC [89]. Greece and Turkey (>38◦ N)
also receive cyclones originating to the northwest over Central Europe, the Black Sea and in the Gulf of
Genoa [84,90]. The semi-arid to hyper-arid FC currently receives most of its moisture during winter
(98% of the precipitation occurs between October-May; [29]) from Mediterranean storm tracks [91];
while summer precipitation from tropical systems is virtually absent (Figure 2B).

The modern AP receives rainfall from the Mediterranean frontal systems (Dec-Mar), and rarely
from the Indian summer monsoon (Figure 2A). In the Late Pleistocene, however, groundwater evidence
suggests that the precipitation was sourced mainly from the Indian Ocean [92]. The modern climate at
the Southern AP is largely dependent on the annual migration of the Inter-tropical Convergence Zone
(ITCZ), which reaches its northern-most position in August. During this period, the Somali Jet brings
large quantities of precipitation to the southernmost parts of the AP [93]. This is particularly important
in the southwest where rainfall can occur all year round due to the orographic features of the region
and moisture advected from the Red Sea [94,95]. The dominance of the Indian Ocean source in late
Pleistocene suggests a northwards migration of the ITCZ.

The ME water-balance (Figure 2C,D) plays an important role in the development of cave records
in the region. This becomes immediately visible when comparing the Mediterranean seasonality
for summer (dry) and winter (wet), highlighting that even in regions that receive summer rainfall
(Figure 2A), there will be little to no summer recharge under modern climate conditions (Figure 2C).
The importance of the sub-regions reviewed in this work is emphasized when inspecting the patterns
of winter potential recharge throughout the ME. The Levant, specifically the EM coastal region, is
clearly on the desert-Mediterranean climate seamline with positive TP-E in the northernmost parts
and negative TP-E in the south. The Israeli and Lebanese caves are situated in such a way where even
a slight migration of the storm tracks shifts the water-balance from positive to negative and vice-versa.
This sensitivity has been used to describe the Negev humid periods, however, Negev entities are not
yet logged in the SISAL_v1 database) [73], climate controlled vegetation changes in the Levant [28]
and changes in the dominant storm tracks [83]. The FC caves may track a similar transition between
Mediterranean and monsoonal sources using Katleh Khor, Qal’e Kord and Gejkar caves, which appear
to experience a positive winter water-balance compared to Gol-e Zard Cave, located further east and
experiencing more water-limited conditions. The predominantly year-round negative water-balance in
the AP stresses the importance of local physiographic settings and individual storms.
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Figure 2. Maps showing seasonal precipitation amounts and water balance in the study region. Panel
(A) and (B) illustrate seasonal precipitation amounts from June to September (JJAS) and from December
to March (DJFM), respectively. Grey areas indicate regions where the daily precipitation amount is
smaller than 0.5 mm. These panels also show the seasonal 850 hPa wind fields in the EM, AP and FC.
Common storm trajectories are superimposed on the image and shown by the black arrows. Panels
(C) and (D) show the seasonal water-balance: Total Precipitation (TP) minus Evaporation (E), for the
periods JJAS (C) and DJFM (D), to best estimate the potential recharge (or “effective infiltration”). All
data was retrieved from the ERA-Interim reanalysis dataset (1979 to 2015 CE) [96]. Following Figure 1,
circles show the locations of speleothem records that are included in SISAL_v1, while triangles mark
identified sites not included in SISAL_v1.

Due to the high SST and low atmospheric moisture above the Mediterranean Sea, the ratio of
oxygen to deuterium isotopes in precipitation yields a unique regional water line, the Mediterranean
Meteoric Water Line (MMWL, δD = 8 × δ18O + ~22 [%�VSMOW], [97]). The majority of Levant
precipitation indicates a local vapor source, [86,97–99]. Atlantic storms traversing the Mediterranean
Sea are overprinted with the MMWL signal, obscuring the original vapor source. There is no clear
indication that alternative trajectories for the Levant, such as tropical plumes or Red Sea troughs
(see Armon et al. [100]) maintain their source vapor, even though these storms travel very short
distances over the EM [98]. Considering that the vadose aquifer mixes the rainwater of different storms,
identifying shifts in trajectories of Mediterranean storms using water stable isotopes would be nearly
impossible. However, using other tracers such as dust deposition rates its composition and Sr isotopes
in speleothem may prove valuable [101–103]). Another important consideration is the effect of the
aforementioned strong evaporative climate. In a long-term rainfall sampling campaign at the Soreq
Cave site mean rainfall δ18O-δD relationship seemed to fall on the MMWL (slope ~8, deuterium excess
of ~20–30%�) [41,86], however, when events of <20 mm (and higher than 10 ◦C surface temperature)
are examined separately their slope and deuterium excess suggested to be the result of evaporative
processes underneath the cloud. Whether the signature of the isotopically light events is transferred to
the karst reservoir is still unclear, but a 2013 re-analysis of δ18O time-series of Soreq Cave drip water
suggests evaporation effect to be minimal [41].
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In contrast, precipitation at the southern tip of the AP and the southernmost parts of the Levant is
associated with the annual migration of the ITCZ and precipitation derived from tropical cyclones
(Figure 2). These are isotopically enriched compared to the δ18O of the Atlantic/Mediterranean systems
and fall closer to the Global Meteoric Water Line (δD = 8 × δ18O + 10, [104]). If, however, changes in
atmospheric ITCZ and associated precipitation occurred simultaneously in the Levant/FC and the AP,
the variation recorded in δ18Occ time-series should be synchronized (see Section 4.1 for details).

3. Spatial/Temporal Setting of Middle East Speleothems

We define the ME roughly from 10◦ N to 45◦ N and from 20◦ E to 65◦ E. This includes the Eastern
parts of Europe that are relevant for understanding of the ME climate, as described in Section 2.
We use records from 16 caves and 23 individual speleothems from SISAL_v1 (Table 1), of which 10
sites and 17 entities are from the ME and highlighted in Figure 1. There are additional entities that
are not in the SISAL_v1 database (Table 1), including sites in Turkey, Israel, Egypt, Yemen, Iran and
Iraq [37]. All δ18Occ values are reported in %� (per mille) and reported in the Vienna Pee Dee Belemnite
(VPDB) standard.

The geographic coverage of the sites is uneven, with the majority of sites and entities from the
EM, and a smaller proportion from the AP and FC. The geographical distribution of SISAL_v1 sites in
the ME region is centered on areas of continuous carbonate rocks (Figure 1). However, other factors
also have an influence. First, much of the region is arid to hyper arid (Figure 2), which inhibits the
formation of speleothems, or limits formation to pluvial periods only [6,105]. Second, the recent
unstable geopolitical situation in parts of the ME has allowed for limited scientific exploration.

The time intervals covered by the SISAL_v1 entities in the ME range from 0.056 ka BP (Sofular
Cave, Turkey) to 193 ka BP (Kanaan Cave, Lebanon). The temporal distribution of samples is skewed
towards the Holocene, with an almost linear increase in δ18O data in SISAL_v1 from ~40 ka BP to
the present (Figure 3B). Only six entities extend to and beyond the last interglacial (south to north):
Jerusalem West Cave AF-12, Ma’ale Efrayim ME-12, Kanaan Cave MIS5 and MIS6, Dim Cave Dim-E3
and Sofular SO-1 (Figure 3C). The remaining 17 entities are largely confined to the interval between
the Last Glacial Maximum (LGM, ~22 ka BP) and present day (Table 1). The skewed distribution may
be the result of publication bias, as most studies have focused on the link between climate and human
civilizations [14,106], coupled with the fact that younger speleothems are more naturally abundant
as older samples are either covered by the younger deposits, or destroyed by dissolution, alteration,
earthquakes etc. [107]. Large parts of the Late Pleistocene have generally been obtained specifically in
sites where long-term continuous research has been carried out over multiple overlapping entities
(e.g., Israel, Lebanon and Oman).

The median temporal resolution of all ME samples is close to decadal with a 7.7-year temporal
gap between data points (Figure 3A), the distribution of temporal gaps for all existing entities varies
between sub-annual to >500 year gaps, as indicated by the dark purple gaps in Figure 3C,D. Caution is
needed when analyzing close to millennial gaps, as they may be the result of prolonged growth hiatuses
or problematic sampling methodology. Temporal resolution for all entities is given in Figure 3C,D
(up to 1000-year gaps), showing that most entities maintain a relatively constant growth-rate, with the
exception of entities from Levant sites (i.e., Soreq, Ma’ale Efrayim, Kanaan Jeita and Dim caves). This
highlights the hydrological sensitivity of the Levant records to changes in storm tracks, rainfall amount
and evapotranspiration [29,40,48].
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Figure 3. (A) Histogram showing the distribution of temporal difference between two consecutive
data points for all ME SISAL_v1 entities, in bins of smaller than 0.5 years, between 0.5 and 1.0 years,
between 1 and 5 years, between 5 and 10 years, between 10 and 20 years, between 20 and 50 years,
between 50 and 100 years, between 100 and 200 years and over 200 years. (B) Histogram of speleothem
records during the last 120 kyr subdivided in 250-year bins, available speleothem isotope time-series
were counted if at least one δ18O value was within a bin [108]. (C) Temporal coverage and temporal
difference of studied entities covering the pre-Holocene time periods (up to 200 ka BP) and (D) entities
from the last 30 ka BP. Sapropel 1 period is bracketed by the dashed lines in (C,D) [109].

Following the analysis of spatial distribution of the SISAL_v1 entities (Figure 1), as well as the
temporal distribution and resolution (Figure 3), we will focus our discussion on the last 30 kyr of
available SISAL_v1 data, and the regional ME composite for the last 12 kyr, from the Younger Dryas
(YD) to present day. The temporal potential of climatological analysis is, in most entities, limited
to decadal perturbations. However, the additional entities reported in Table 1 should allow for
regional compilations and coherence tests to extend beyond the late-Pleistocene and Holocene to
the last interglacial and beyond. Moreover, the regional dataset analyzed here is mainly affected by
the Mediterranean storm tracks, with little information on the Indian Summer Monsoon (ISM) (see
Kaushal et al. [110]). Questions concerning the intrusion of the Siberian High and migration of the
ISM would be easier to tackle with the inclusion of the FC entities and the Negev caves (Table 1).
The inclusion of these sites could be used to construct a regional-comparison traverse between Eastern
Europe and the Balkans, EM, FC and AP. For this reason, we limit this review to the last glacial period
and Holocene, and in Section 5 we provide suggestions to achieve a complete regional coherence
analysis for the Late Pleistocene.

4. SISAL_v1 Entities: Site-Specific Trends and Regional Interpretations

While variations of speleothem δ18O values are a response to changes in climate parameters
(rainfall amount and seasonal distribution, temperature, evaporation etc.), the absolute value of
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precipitation δ18O values (δ18Op) can vary between different sites, even if they respond to similar
regional climate trends. As a result, even if near-equilibrium deposition is assumed, the absolute
value of δ18Occ from different sites may not be identical. Hence, we focus on trends and excursions
(i.e., on the variability) rather than absolute δ18Occ values of the time-series plotted in Figure 4 (LGM
to present) and Figure 5 (last 12 kyrs), these are then expended on using a normalized ME composite
described in Section 4.3 and plotted in Figure 6.

4.1. Controls on Speleothem δ18O

For the Levant, Southwest and Northwest Turkey, as well as parts of Eastern Europe, two main
processes were suggested to dictate the composition of δ18Op–the source and “amount” effect [53,111,112].

The potential vapor sources available for Middle East (ME) precipitation are the Mediterranean
and the Indian Ocean (including the Arabian and Red Seas). Another source for the entities included
from Turkey, Greece and Eastern Europe is the Black Sea (see Section 2). The modern Levant rainfall is
limited to winter cold fronts with strong wet-winter/dry-summer seasonality. These fronts quickly
inherit the isotopic signature of the Eastern Mediterranean (EM). This is commonly referred to as the
source effect, where δ18Op and (and the resulting δ18O recorded in speleothems) is strongly influenced
by the marine reservoir that contributes its vapor to rain formation. This effect is dominant over
millennial time-scales, specifically glacial-interglacial cycles, where the isotopically light (low δ18O)
polar ice-sheet meltwater deplete the overall composition of oceanic surface water and the resulting
cloud forming vapor [111]. Specifically for the EM there is also a precessional time-scale effect where
the isotopically light Nile flux (during Sapropels, African Humid Periods) results in lighter surface
water [113]. δ18Occ palaeo-data from Soreq, Pequiin and Jeita that show a visual first order millennial
control on δ18Occ, predominantly reflect the change in composition of the vapor source, i.e., the EM
Sea. Often, the glacial-interglacial transitions in speleothem records follow the depletion of sea surface
δ18O as resolved from planktonic foraminifera [53,112]. A similar, but isotopically opposite, millennial
trend is also observed in Sofular Cave, where the vapor source is the Black Sea [62,63] (for additional
discussion see Kern et al. [44]).

The “amount” effect is considered the dominant driver of short-term δ18Op variations in the
Levant and was empirically evaluated using modern measurements in numerous locations on the
EM coastline [98,114]. Rainfall amount and isotopic compositions from the Israeli coastal plains and
mountains display strong negative empirical correlations between rainfall amount, site altitude, and
distance from the sea (all result in more negative values). The three are the underlying parameters
controlling the rainout-distillation process (Rayleigh distillation) of the cloud [86,114]. There is no
similar correlation for desert sites possibly due to desert rainfall being strongly affected by evaporation
at the base of the cloud [98]. This observation was made using data from the EM coastline sites, where
long-term rainfall sampling programs (amount and δ18Op) and modern cave water monitoring have
been established. Regarding the sites in the SISAL_v1 database, only three of the seven Levant sites
reviewed here had a long-term monitoring program (Kanaan, Soreq and Ma’ale Efraim). Three other
sites (Mitzpe Shlagim, Pequiin and Dim) have had cave water sampled sporadically, when access to
those sites was granted.

To evaluate the controlling mechanisms on decadal to seasonal δ18O variability in Levant records,
we refer to the extensive monitoring dataset from Soreq Cave collected between 1989 and 2016.
The monitoring included the logging of rainfall amount, analysis of its isotopic composition, as well
as sampling of local ground water and host rock and measurements of cave pCO2, relative humidity
and temperature of the cave air, seasonal cave drip and pool water sampling in multiple locations
and the collection of modern speleothems and calcites [40,41,86,114–117]. The modern data from
Soreq Cave reveals that on an annual time-scale, the rainfall amount is linearly correlated with more
negative annual δ18Op (weighted average), and that this trend is then transferred into the cave. High
mean annual rainfall amount results in more negative δ18Op values of the water in the vadose zone
for that year, while prolonged droughts shifts the baseline seepage water to more positive δ18Op
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values [41]. The decadal to seasonal variations were validated in a modern stalagmite sample [40] and
also observed in Soreq Cave fossil speleothem records, with seasonal to centennial resolution [14,28,31].
A similar control of the “amount” effect was also suggested in Western Mediterranean caves [118–121].

As a result of the modern strong seasonality pattern of the Levant region, the δ18O of cave water
represents mostly winter rainfall. For seasonal studies, this simplifies the evaluation of the δ18Occ
records by removing the by omitting the summer’s contribution to annual δ18Op variability (i.e., rainfall
source seasonality [122,123]) and potentially avoiding δ18O enrichment following evaporation in the
epikarst and karst reservoirs (as it is often reported as negligible in winter storms [86,98,114]).
Consequently, the resulting speleothem record is strongly biased towards negative winter δ18Op.
The implementation of the modern observation on paleorecords relies on the hypothesis which a
suggests that the physiography of the Levant enforces the wet-winters/dry-summers seasonality of the
region throughout the Pleistocene [124]. However, we note recent contrasting evidence by speleothem
palaeoclimate studies resolved in seasonal resolution and other studies utilizing isotopically enabled
climate models, which suggest the possibility of significant summer rainfall and positive summer
effective infiltration for the Levant during the interglacials and interstadials [14,31,125].

In the Northern AP, Hoti cave records are mainly confined to the interglacial, with modern rainfall
derived from similar Mediterranean cyclones (Figure 2A,B). Regional δ18Op however is much higher
than in the EM coastline caves, ranging between 0 and −2%�. The current hypothesis to explain why
the Hoti records have significantly lower δ18Occ values is that speleothem growth occurs under the
highly pluvial conditions brought by the ISM, as the most recent period of deposition in the cave,
the early to mid -Holocene is regarded as a period of increased monsoonal activity [52]. The Southern
AP sites (Defore, Moomi, Qunf), record the intensity and duration of the ISM as well as the location of
the ITCZ [49], as suggested by the modern synoptic systems and rainfall regime, and corroborated by
examination of multiple δ18Occ records. These variations have been linked to solar output [48] and
orbital forcing [75], and are synchronous global millennial scale events as recorded in the Greenland ice
cores, EM Sea planktonic records and regional terrestrial records (i.e., the Dead Sea level curve [126]).

Unlike the Levant and AP records, the FC rainfall patterns vary from annual rainfall to distinct
wet-dry seasonality, depending on the topography and proximity to the vapor sources [127]. Positive
effective infiltration is limited to the autumn and winter months. δ18Op values vary between −10%�

(winter) and −2%� (summer), with heavier events as being high as +5%� in spring and summer [81,127].
Records from Qal’e Kord Cave are similar to Soreq Cave and link to changes in monsoonal precipitation
in China. This suggests a teleconnection between Eastern Europe and Asia as a result of the meridional
migration of the Westerly Jet. The main vapor source for the Levant sites and the FC sites the same
(the Mediterranean Sea), however, the average δ18Occ values from the previous interglacial and glacial
in Qal’e Kord Cave are ~2%� lighter than coeval Soreq Cave records. This is ascribed mainly to the
Rayleigh distillation of atmospheric vapor as it moves east over the land mass [81].

4.2. The Last Glacial Maximum, Deglaciation and the Transition into the Holocene (30 kyr BP to 12 kyr)

Levant records for the glacial-interglacial transition of the Late Pleistocene (deglaciation) follow
the Mediterranean planktonic curves, indicating that these speleothem δ18O records primarily reflect
sea surface δ18O changes [55,70,111,112]. The glacial period is characterized by a mean δ18Occ that is
several permille more positive as a result of the enriched δ18O composition of the vapor source, i.e.,
the Mediterranean Sea (source effect), variations of the vapor source of ~1%�–1.5%� are observed in the
Holocene as well, but as shown by Almogi-Labin et al. [112] “ . . . source effect is not directly recorded in
δ18Osea–δ18Oland values, which would remained constant if the source effect were the only control of rainwater
δ18O. The influences of rainfall, the amount, sea–land distance and elevation changes are thus superimposed on
sea surface water δ18O change”. This shift is most pronounced in the Soreq Cave, where a sharp decrease
in δ18Occ is visible starting at the Last Glacial Maximum (LGM) from −3.0%� towards Holocene values
of −5.5%� (Figure 4). This depletion trend stabilizes at ~15 kyr BP (circa the Bølling-Allerød warm
event), followed by a pronounced response to the Younger Dryas (YD), which is the sharpest response



Quaternary 2019, 2, 16 12 of 28

observed to event in the SISAL_v1 records from the region, with an enrichment of >1.5%�, but still
1–1.5%� lower than LGM values (Figure 4).

The Jeita, Ma’ale Efrayim and Jerusalem West entities all have lower temporal resolution during
the LGM and deglaciation, which makes the identification of major climatic events difficult (Figure 4).
On centennial and longer time-scale, we observe a gradual transition in the δ18Occ values, from −2.5%�

after the LGM (~17.5 ka BP) to between ~−5 and −7%� in the Holocene in Dim, Jeita and West Jerusalem
caves (Figure 4). The expected “back to glacial” excursion of the YD, described for the Soreq composite
record (~ +1.5%�), is harder to identify in the neighboring Levant (Figure 4). The identical trends
observed across Levant records suggest that they respond to the same drivers, specifically, changing
storm tracks, encroaching coastlines and changes in EM Sea surface isotopic composition [53,54,83,98].
This can be seen in Jeita Cave, which displays a visual correlation with the EM marine foraminifera δ18O
and in the trend of the ME composite (Figure 4 vs. Figure 6D,E). However, during prominent climatic
events (LGM, H1) Jeita-2 δ18Occ time-series shows opposite trends to the marine records [128,129].
These excursions towards lighter δ18Occ are often in tandem with lower δ13Ccc and Sr/Ca values and
are suggested to reflect increased infiltration (i.e., high TP or higher TP-E). Evidence of changes in
palaeo-infiltration highlight the inconsistencies found between the climate as inferred from the marine
vs. terrestrial records, and also emphasizes that the source effect is not the only parameter influencing
variations in δ18Occ.

Sofular Cave entity SO-1, however, is the only time-series which does not agree with this glacial
to interglacial regional trend, towards more positive values in the transition to the Holocene (Figure 4).
The distinct imprint of Greenland interstadials on the MIS2 50-kyr record suggests that SO-1 captures
decadal to centennial-scale events. This means that on glacial time-scales SO-1 reflects Black Sea
surface water composition rather than Mediterranean source [61]. Additional discussion on Sofular
Cave, including the Holocene cycle documented in the speleothem δ13C time-series, can be found in
the review of Eastern European records in SISAL_v1 [44].

The majority of entities from the AP grew only during interglacial periods. The only entity
growing from the LGM to the Holocene is M1-5 from Moomi Cave (Socotra Island) spanning from
27 ka to 11 ka BP (Figure 3). The North-Easterly autumn rains sourced from the ITCZ are the
main source of infiltrating water for Moomi Cave. Most of the Moomi δ18Occ record is strongly
correlated with the Greenland ice cores, suggesting a possible Atlantic driver of these monsoonal
shifts [59]. The LGM is dated in the record as occurring circa 23–22 ka BP, which is interpreted as
an arid period with pronounced decrease in precipitation over the Island. After the LGM there
is an increase in rainfall, as deduced from a trend towards more negative δ18Occ values, that is
similar but more gradual than the trend seen in the Soreq Cave composite (Figure 4). The post-LGM
warming and wetting trend is interrupted by the warm/dry H1 event (~16.4 ka BP), followed by
the wet Bølling-Allerød event (14.5 ka BP) and then the dry YD (12.9–11.7 ka BP [130]) (Figure 4).
The entity terminates soon after the commencement of the Holocene (dated to 11.4 ka BP), when a
sharp decrease in δ18Occ, interpreted as an increase in monsoonal rainfall is observed. The Levant
records (Soreq, Jerusalem West and Ma’ale Efrayim) do not show a concomitant abrupt change of
~30 years transition from YD to the Holocene.
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4.3. Holocene Climatic Events and Spatial Heterogeneity across the Middle East

When interpreting the post-YD, early Holocene time-series, we note that although there is still an
effect of changes in source δ18O (seen in the planktonic curves of the EM Sea, Figure 6E), this is not
as significant as during deglaciation. Thus, in this work we follow the conviction which determines
that the dominant driver of δ18Op variations is likely the “amount” effect [53,112]. The Holocene is
characterized by a general trend towards increasing aridity in the ME region [46,49,51,57,61,66,70,132].
The wettest period in the EM, and the Levant in particular, occurred from ~10.8 to ~6.1 ka BP, coeval
to the formation of Mediterranean Sapropel 1 and the African Humid Period (AHP) [68,133,134].
The entities from Jeita Cave (Figure 5A) show increasing precipitation during the early Holocene (from
12 to 10 ka BP) and wet conditions between ~10 to ~7 ka BP with peak precipitation amounts at ~8.5 ka
BP. Between 7.5 and 6.5 ka BP, the δ18Occ time-series from Jeita Cave indicates progressively decreasing
precipitation amounts until 5 ka BP. Late Holocene δ18Occ values in these entities reveal a generally
dry period that is interrupted by shorter and longer wet-periods, e.g., from 4.0 to 3.0 ka BP, when
precipitation amounts were increased. The hydroclimate changes recorded by the speleothems at Jeita
Cave are in general agreement with other speleothem δ18Occ time-series from the region, such as the
speleothem records from Soreq Cave (Israel) [64] and Dim Cave (Turkey) [50] (Figure 5A). All these
records indicate that the most arid conditions in the Holocene occurred after ~3.2 ka BP [54,58].

The only other record from the Levant that spans the entire Holocene is SO-1 from Sofular Cave
(Figure 5A). This record shows increasing δ18Occ values during the early- and mid-Holocene, until
~6 ka BP. However, compared to other records from the EM, long-term δ18Occ trends in SO-1 are not
related to variations in precipitation amounts, but instead reflect changes in the mean δ18O value of
the Black Sea, which is the main moisture source for this site, rather than the EM Sea [61,62]. Therefore,
while periodic coupling of the Mediterranean and Black Sea system can be observed in the regional
records, it is difficult to directly link long-term δ18Occ changes in SO-1 to δ18Occ variations from EM
speleothems [62]. Only one speleothem record from Eastern Europe, Ascunsa Cave (Romania), shows
similar long-term trends similar to SO-1 (Figure 5A), likely reflecting also δ18O changes of the Black
Sea [46].
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Figure 5. (A) Time-series of δ18Occ of speleothem records for the last 12 kyr. speleothem records are
the same than in Figure 4, which are on the modern dominant storm trace to the ME region shown in
Figure 2. (B) Temporal variability of entities in panel A for the last 2 kyr. The seasonally-resolved entity
2–6 (Soreq Cave) is added for discussion [14]. The climatic events highlighted on the plot are based on
the interpretations from references [30,131].

For the last 2 kyr, entities from Sofular Cave, Kapsia Cave, Mavri Trypa Cave, Soreq Cave, Jeita
Cave, Qunf Cave and Defore Cave are available (Figure 6). From these records, only SO-1 (Sofular Cave)
covers the entire period at 1 to 50-year resolution. The seasonally resolved Soreq entity 2–6, which was
generated using Secondary Ion Mass Spectrometry (SIMS) [14,71], has more negative δ18Occ values
compared to the δ18Occ of the Soreq composite record and the SIMS time-series variability is much
higher. This is possibly related to the SIMS-sampling methodology, which targets multiple analyses in
a single ~50–100 µm thick annual band, which emphasizes the bias toward the negative winter values
(~ −2.15%� offset) [14]. The Soreq 2–6 δ18Occ indicates a steep drying trend from 2.0 to 1.8 ka BP that is
not observed in the other δ18Occ time-series from the EM (Figure 5B), probably due to the relatively low
temporal resolution of the other records, which are able to resolve only pronounced changes in δ18Occ.
Lechleitner et al. [135], find the opposite trend in their stacked records of Western Europe speleothem
records. The finer climate variations during the Medieval Climate Anomaly (MCA) and the Late Antique
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Little Ice Age (LALIA) [131] are only identifiable in Soreq 2–6. The Little Ice Age (LIA) is recorded by the
EM coastline entities (mainly Jeita Cave) and the record from Defore Cave (Figure 5B) with a positive
excursion, that is again opposite to the observation from the Western European stack [135].

The comparison between the AP and the Levant over the past 2000 years is limited by the overlap
of the entities that are available. The transition from the LALIA to the MCA is characterized by variable
δ18Occ values in Soreq 2–6. At the beginning of the LALIA δ18Occ values are the most negative
measured in Soreq 2–6, indicating a generally wet conditions in the Southern Levant (consistent
with the Soreq composite record). By contrast, δ18Occ values are more positive at the end of the
LALIA, indicating dryer conditions in the transition period from the LALIA to the MCA. At the MCA,
precipitation amounts increased again in the EM. This is indicated by the negative trend in δ18Occ
values in Soreq 2–6 [14,53,136]. During the MCA, δ18Occ changes in the Qunf record and in Soreq 2–6
are anti-correlated, suggesting opposite precipitation variations at the southern tip of the AP and in
the EM, to be considered further when additional high-resolution entities become available.

Analyses of regional composites have yielded useful results in the study of the Holocene [32,35]
and the past 2000 years [45,137,138], because they mitigate the effect of age uncertainties and focus
on detectable climate variability. Here we construct a composite of Holocene ME speleothem records
(Figure 6E) and compare them with reconstructions of solar and volcanic activity, respectively (Figure 6A),
the sum of glacier advances as well as cold and dry periods [32] (Figure 6B). The ME composite was
produced as follows: first, data from each of the reconstructions were averaged into bins (at 25-year and
200-year intervals); second, each binned series was normalized. The normalized anomalies are visualized
as boxes that are connected with a 3-point running average of 25-year bin means (Figure 6D). The same
process is applied to Greenland ice cores [139] (Figure 6C). EM planktonic δ18Occ profiles are also shown
in order to highlight the source vapor isotopic variability, if recorded [64,109,140] (Figure 6E).

Rapid, prominent events observed in both continental and marine palaeo-archives during glacial
periods are also evident during the Holocene, although less pronounced. This persistent rapid
variability is suggested to be in response to an internal rhythmic throbbing of the climatic system
at centennial scales [141]. In the scope of this review, three reference Holocene events are reviewed:
ca. 8200 years BP (referred to here as the 8.2 ka event), ca. 4200 years BP (4.2 ka event) and ca.
700 years BP (0.7 ka or LIA). These events are concomitant with major glacier advances in the Northern
Hemisphere [32,142] (Figure 6B).

The base of the Holocene is defined in the North Greenland Ice Core Project’s NGRIP2 ice core, at
11,650 years BP [143]. The Early Holocene goes from the base to the 8.2 ka event [144], coeval with a
final drainage of northern ice-dammed lakes causing a freshwater outburst into the North Atlantic [145]
and the formation of Sapropel 1 in the Mediterranean [109,146]. The tail-end of Sapropel 1 in the EM
(roughly 8.2 ka BP until a little after 7 ka BP) is seen in the normalized ME composite as trending
toward more positive δ18Occ values, the result of superposition of a general drying trend [109] and the
enrichment trend of sea surface water δ18O (Figure 6E). The normalized ME speleothem composite
during this period displays the highest variability (i.e., the difference 25–75% percentiles) observed
for the entire 12 kyr time-series (Figure 6D). This high variability indicates disagreement between the
time-series of the various entities, hence increased regional heterogeneity. Sapropels are recorded in
marine sediments due to a change either in the flux of organic matter to the sea floor from productivity
changes or in preservation by low oxygen levels in bottom-waters [147,148]. Factors such as monsoon
intensification, increased runoff from North Africa into the Mediterranean Sea and preconditioning due
to meltwater events/sea-level rise are potential factors leading to sapropels [109,146]. In addition, the
particular geomorphology and hydrology of the Mediterranean basin favours their deposition [147].

The 8.2 ka event marks the mid-point of Sapropel 1–a generally humid period in the ME–and
is indicated by a rapid positive anomaly in most ME entities (interpreted as cold/dry) (Figure 6C–E).
The 25-year bin line of the normalized ME composite analysis does not indicate a pronounced 8.2 ka
event, while the 200-year bin box highlight it as an interruption of this generally humid period, with
distinct heterogeneity in the records (Figure 6D). In the marine sediment δ18O record (Figure 6E),



Quaternary 2019, 2, 16 16 of 28

the 8.2 ka event is not as dominant as in other marine proxies [146], but Sapropel 1 appears as a negative
‘hump’ in the δ18O time-series, where peak negative values are in agreement with the 8.2 ka event as
well as cold reversal consistent in the North Atlantic context (Figure 6B,C) [32,149,150]. The 8.2 ka event
is recorded in multiple records as a pronounced cold temperatures lasting ca. 160 years (Greenland,
Figure 6C), together with a decreased snow-accumulation rate [151]. The 8.2 ka event is preceded
by a remarkable minimum in solar activity [152] and an increase in the magnitude and frequency
of volcanic eruptions [139] (Figure 6A). The Dead Sea level was sustained at low during the 8.2 ka
event, which would suggest anomalously low rainfall intensities [153]. Thus, the 8.2 ka event is
placed within a distinct cooling of the Aegean-Levantine regions from 8.6 to 8.0 ka BP, when African
monsoon indicators suggest a change from an increased moisture availability to a decline towards
a modern-type aridity reached at around 6 to 5.5 ka BP (Rohling et al. [142] and references therein)
with a discontinuously wet and vegetated Sahara [154–156]. In the Levant, this behaviour of the ITCZ
(African and Indian monsoon driver) could explain why the 8.2 ka event results in differentiated
records across the ME region. In the Levant, the 8.2 ka event is suggested to be coeval with Neolithic
revolution traits (e.g., the transition from the Pre-Pottery to the Pottery period) [157].

The 4.2 ka event is one of several decadal to centennial scale, regional to global, Rapid Climate
Change (RCC) events that characterize the mid to late -Holocene [30,158]. The 4.2 ka marks the
transition into the late-Holocene and is generally considered as a cold drought event, between ~4.2 and
~3.8 ka. The drought event lead to considerable environmental stress, most notably in Mediterranean
and Levant societies, with cultural changes and settlement abandonment are seen from the Near East to
Northern Mesopotamia as part of the end-phases of the Bronze age [28,159–161]. Although the 4.2 ka
is a widely studied event, identifiable in multiple records and proxies, there is still considerable debate
regarding the timing, nature and drivers of the event (or 4.2 to ~3.8 cycle) [28,158]. Thus, the SISAL
entities timing if the event is also not as straight forward and ubiquitous. Comparing the δ18Occ
time-series of Soreq Cave to that of Jeita Cave, there is a close to centennial offset between the positive
δ18Occ excursion found in the Soreq composite (~4.2 ka), and the positive shift in Jeita Cave δ18Occ
(Figure 5A). The Soreq δ18Occ excursion is superimposed on a prolonged drying trend starting circa
4.8 ka, when in contrast during the Soreq 4.2 ka itself, Jeita Cave expressed a rapid negative δ18Occ
excursion, commonly regarded as a wet condition (which Cheng et al., interpret to last until 2.9 ka [53]).
The offset between the caves could also be a naturally occurring time transgressive phenomena, similar
termination of the African Humid Period which progressed from north to south, following a gradual
reduction in monsoon rainfall [162,163]. Inconsistencies between the Jeita and Soreq records have been
suggested to be consistent with the progressive southward decrease in the regional humidity [53]. With
the offset in mind, both caves appear to produce a close to W-shape event, with cold-warm/dry-wet
episodes lasting decades to centuries, rather than a major single event (Figure 5A). This is in agreement
with observation from Skala Marion Cave [164] and highlighted in regional multi-record compilations,
such as a Dead Sea level drop lasting close to five centuries [153,158,165]. In this regard, the ME
composite suggests that circa 3.8 ka marks the culmination of the observed gradual increase in aridity
starting after the termination of Sapropel 1 (Figure 6D). The period between ~4.8 and ~4.0 ka has
minor spatial heterogeneity which can be indicative of a less regionally unique event, weaker than the
previous one circa 5.6 ka. However, as there is a gap in SISAL_v1 AP records for the duration of the
event/cycle and the available records have much lower resolution for this specific time period [28],
we would recommend additional records to be included in the ME composite before any significant
conclusions be drawn for this climate period.

The Little Ice Age (LIA) is the most recent climate anomaly of the Late Holocene and had
strong impacts on European societies [166,167]. Greenland ice cores show the coldest individual
bins of the past 2000 years during this period and a similar pattern is observed for EM marine
profiles (Figure 6C–E). Over the past 2 kyrs, the ME composite (Figure 6D) shows a high variability
(i.e., the difference 25–75% percentiles), as regional heterogeneity intensifies around what seem to be
the coldest periods in the North Atlantic since the early Holocene [32]. Unlike the previous cold events
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reviewed (8.2 ka and 4.2 ka), the LIA shows a tendency towards more moisture availability, consistent
with higher lake-levels at the Dead Sea [153]. Forcing simulations suggest that this pattern is consistent
with a global cooling trend arising from an increased frequency of volcanic activity and/or land use
change [137] (Figure 6B). Studies in the North Atlantic show year-to-year variability during the Little
Ice Age: severe droughts, floods, intense storm activity during late summer-early autumn, cold/heat
waves that showed significant spatio-temporal variation and exceptional wintertime conditions, with
sea ice expansion and reduced northward heat transport by the subpolar gyre [168–170]. In the Levant,
the onset of the Little Ice Age coincides with the end of the Crusades and reinforcement of the Mamluk
sultanate and Ottoman empire, between the 14th and early 20th centuries [161], similar to the rise and
subsequent fall of the Roman rule over the Levant during the “Roman Humid Period” [14].Quaternary 2019, 2, x 17 of 27 
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Mediterranean planktonic δ18O profiles of site LC21 [64,109] (light brown line: Globigerinoides ruber,
black line: Neogloboquadrina pachyderma) and site MD84-641 [140] covering the Holocene. The shaded
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5. Conclusions and Future of SISAL Project in the Middle East

5.1. Emphasis for Future Speleothem Research in the Middle East

The main goal for future speleothem research in the Middle East (ME) would be to increase spatial
coverage in the region (Figure 1, Table 1), specifically in the Fertile Crescent (FC), Arabian Peninsula
(AP) and Saharan belt (Egypt, Negev) sub-regions where current site density is considerably lower
than the Levant. Efforts in these environments are specifically important as the spatial distribution of
carbonate bedrock is not continuous so without regional continuity, improved entity density would
improve regional analysis coherency.

Additionally, emphasis should be placed on including additional entities to increase the temporal
coverage and generate longer time-series from the region as most of the records cover only the last
40–30 kyr (Figure 3B). This should be done in tandem with application of high temporal-resolution
analysis methodologies (conventional and novel) to increase the resolution of the available geological
paleorecords (see Figure 3C) and allow detection of changes in seasonality [14,31] and decadal scale
variations [28,48]. This will enable future studies to conduct more accurate coherence regional
investigations to reveal coherent and robust climate variations over longer time periods, including
glacial-interglacial cycles in the Pleistocene.

Achieving these goals will allow SISAL based studies could better constrain teleconnections
amongst the hydroclimate of remote regions such as Northern Africa, the Levant and the FC, which
should all be influenced by Mediterranean cyclones and ITCZ migration, as the spatial scale of the
ITCZ migration and the overall effect it might have had on rainfall amount in the Southern AP is still
debated [173] and a regional compilation incorporating crucial missing records to the SISAL database
will enable us to shed light on this topic. Furthermore, considering the location of the Levant at
the border between the tropical Hadley cell and the mid-latitude Ferrel cell, hydroclimate change in
this region is supposed to be very sensitive to shifts in the Hadley-Ferrel-cell border, which should
be ultimately imprinted in the speleothem palaeoclimate record. Hence, future speleothem-based
reconstructions and synthesis of past hydroclimate changes from North Africa, the Levant and the FC
will allow testing of theoretical concepts on how the Hadley-Ferrel-cell border shifts in response to
changes in insolation [174].

The ability to simulate the rhythm of climate variability and specific events (such as sapropels, the
8.2 ka or 4.2 ka events and the LIA) depends on the availability of high-quality databases, with high
enough temporal resolution to make relevant inferences from a human perspective. In this regard,
completion of the above-mentioned information will help in answering challenging questions and in
understanding future changes to water limited environments.

Though this work does not review the carbon isotope climate proxy (δ13C), it should be noted that
the δ18O record is often ‘noisy’ in fast growing speleothems which provide high-resolution Holocene
records, as it reflects seasonal and annual variations in δ18O, while the δ13C record is less sensitive to
such short time-scale variations and reflects variations in the soil CO2 composition, which can be used
to identify and characterize Holocene centennial and millennial climate variability [28].

5.2. The Importance of Fertile Crescent Speleothem Data

The publication of more speleothem-based proxy records from the FC is a priority in palaeoclimate
research for several reasons. First, additional FC entities would make it easier to establish the role of
the Siberian High and Indian Summer Monsoon in the regional palaeo-hydrology. Whereas there is no
influence from the ISM on precipitation in the modern-day FC, it has been theorized that in the early
Holocene (and before) the picture was more complicated–the FC received rainfall more evenly from
two sources instead of the simple single-sourced nature of precipitation today [175], SISAL records
could help researching this question.

Second, the late Holocene δ18Occ records from the FC reflect winter-spring precipitation,
the main hydrological season, while records such as lake sediments, pollen and tree-rings often
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reflect annual precipitation, summer precipitation or temperature changes. They can also suffer from
other inadequacies such as lacking the required temporal resolution, not covering the researched
period, or suffering from considerable chronological uncertainties [175]. These problems are especially
limiting when using palaeoclimate proxies in archaeological discussions, as tying climatic events to
specific human developments requires maximum chronological precision and precipitation during
the growing period (spring) will be most important for human flourishing. Seeing the FC as one
of the most important regions worldwide for human development, producing highly-resolved and
accurately-dated speleothem records is of vital concern. Here we identified five sites in the FC,
from Turkey, Iran and Iraq. The entities from these publications have already contributed to the
understanding of the prevailing continental climatic conditions over the Holocene and as far back as
500 ka BP. Increasing the number of datasets available in SISAL would provide an important tool for
answering the questions raised in this section.

5.3. SISAL Outlook for the Middle East

As Table 1 suggests, there is an excellent opportunity to include more records from the ME in the
SISAL database. This would allow the application of statistical analyses, e.g., standardization techniques
to synthesize common trends in the stable isotope time-series [137] or coherence analysis using Monte
Carlo Principal Component Analyses (MC-PCA) [35]. Such analyses will enable better constraints on
the relationships between different archives such as between the speleothem hydroclimate records
and reconstructed SSTs. It would also allow the identification of common modes of hydroclimate
variability and better insights into the climate dynamics/mechanisms and its forcing. Coherence
analyses could also be extended to incorporate Western Mediterranean as well as European stable
isotope time-series, and validate the teleconnection between hydroclimate changes that also depend
on mid-latitude cyclones [176–178].
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