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Simple Summary: Increased workloads and geographic separation between radiologists and tech-
nologists are just some of the factors that make old approaches to radiography quality management
processes impractical. As such, there is a need for automated solutions to provide feedback to
technologists after radiographs are acquired. The aim of this project is to develop and test an artificial
intelligence solution that automatically assigns quality metric to radiographs. The quality metric
assigned by our artificial intelligence algorithm correlates moderately well with the quality metric
assigned by radiologists.

Abstract: Providing direct feedback to technologists has become challenging for radiologists due
to geographic separation and other reasons. As such, there is a need for automated solutions to
solve quality issues in radiography. We evaluated the feasibility of using a computer vision artificial
intelligence (AI) algorithm to classify hand radiographs into quality categories in order to automate
quality assurance processes in radiology. A bounding box was placed over the hand on 300 hand
radiographs. These inputs were employed to train the computational neural network (CNN) to
automatically detect hand boundaries. The trained CNN detector was used to place bounding
boxes over the hands on an additional 100 radiographs, independently of the training or validation
sets. A computer algorithm processed each output image to calculate unused air spaces. The same
100 images were classified by two musculoskeletal radiologists into four quality categories. The
correlation between the AI-calculated unused space metric and radiologist-assigned quality scores
was determined using the Spearman correlation coefficient. The kappa statistic was used to calculate
the inter-reader agreement. The best negative correlation between the AI-assigned metric and the
radiologists’ assigned quality scores was achieved using the calculation of the unused space at the
top of the image. The Spearman correlation coefficients were −0.7 and −0.6 for the two radiologists.
The kappa correlation coefficient for interobserver agreement between the two radiologists was 0.6.
Automatic calculation of the percentage of unused space or indirect collimation at the top of hand
radiographs correlates moderately well with radiographic collimation quality.
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1. Introduction

With the recent growth of health care organizations, it is not uncommon for interpret-
ing radiologists to be geographically remote from the sites of image acquisition. Direct
supervision and/or communication with the technologists becomes challenging due to
geographic separation and increasing imaging volumes. The need to maintain quality
assurance and control, however, remains.
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In the past, it was possible to address individual quality events through direct com-
munication between the radiologists and technologists. Suboptimal collimation with
resultantly too-large or too-small fields of view, suboptimal positioning, artifacts and
misplaced or incorrect markers could all be evaluated, discussed and addressed between
radiologists and technologists who worked very closely with each other. With the advent
of picture archiving and communication systems (PACS) and teleradiology and increased
workloads, such direct communication has become more difficult.

However, technology has also brought to light new solutions that allow the automatic
processing of a large number of images. One such technology is convolutional neural
networks (CNN). Automatic detection of objects on images using this technology is now
commonplace, with several applications in various industries including the online com-
merce, motion pictures, gaming and automotive industries. Some of this technological
development is based on publicly available neural network detectors which were pre-
trained on large number of different images. Using transfer learning techniques, these
networks are re-trained for specific applications.

Radiographs are high-contrast greyscale images that are ideal for projects that explore
the utility of CNN in performing mundane computationally intensive tasks in radiology.
While the use of automatic quality assessment and deep learning has been reported previ-
ously in the context of MR imaging [1] and video endoscopy [2], we are not aware of any
reported projects that have utilized deep learning in radiography quality improvement and
assurance processes. In this pilot quality management project, we evaluated the feasibility
of a computer vision AI algorithm to classify hand radiographs into indirect collimation
quality categories and compared them to the collimation quality assessed by radiologists.

We hypothesized that a higher metric based on the automated calculation of unused
air space in hand radiographs would correlate with a lower radiographic collimation
quality score assigned by the radiologists.

2. Methods and Materials

This study was a cross-sectional, retrospective, Health Insurance Portability and
Accountability Act (HIPAA)-compliant evaluation, following the institutional review board
guidelines. The informed consent requirement was waived.

2.1. Radiograph Preparation

A bounding box was placed over the hand anatomy in 300 random hand radiographs
by a trained medical student. The 300 images with bounding boxes included frontal, oblique
and lateral views of single hand radiographs. The student was trained on 5 images by a
musculoskeletal faculty member with 11 years of experience. The student worked closely
with the faculty member and sought guidance for difficult cases throughout the project.
The boundaries of the hand included the anatomy from the metaphysis of the radius to
the fingertips and the most medial and most lateral aspects of the thumb/small fingers on
the frontal views, and similar boundaries modified to outline the anatomy on oblique and
lateral views. Radiographs that included both hands in one image were excluded from the
training set. The random 300-radiograph sample was selected from radiographs obtained
on four different sets of various manufacturers’ acquisition equipment at two outpatient
sites that predominantly imaged adults referred from primary care and orthopedic clinics.

2.2. CNN Training and Image Analysis

The labeled images were used as inputs for training a CNN detector using the transfer
learning technique to automatically detect hand anatomy boundaries on radiographs. The
publicly available Faster R-CNN network was used with a pre-trained feature extraction
network, ResNet50, in this project. We selected this model as we achieved good results
using this architecture in other similar projects at our institution.
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The images were pre-processed in the Matlab 2019b (The MathWorks, Inc, Natick, MA,
USA) environment to match the input requirements of the ResNet50 architecture. Since
the ResNet50 architecture requires the input of three channel color images, each greyscale
radiograph was converted into a three-channel matrix by triplicating the greyscale input
image. The usual dataset augmentation techniques were employed in the pipeline, which
included randomly flipping input images and corresponding bounding boxes, rescaling
input images and bounding boxes, and changing the contrast and brightness of each image
by ±20%. The input dataset was randomly split into 60% training and 40% validation
datasets. The ResNet50 CNN was re-trained using an Nvidia GeForce RTX 2060 Super GPU.
The accuracy of the CNN was calculated for each training epoch. Training was stopped
after six epochs, after which no further improvements in accuracy could be achieved.

The trained CNN detector (Figure 1) was used to automatically place a bounding
box over the hand anatomy on an additional 100 frontal, oblique and lateral hand radio-
graphs, which were not used for training or validation. A computer algorithm further
processed each output image to calculate top, bottom, right and left air density spaces on
the radiographs.

Figure 1. Example of CNN detector output image with bounding box placed over the hand. Pixelation
of the image is due to the decrease in the size of the original radiograph to a smaller image size,
which is suitable for CNN training and processing.

The same 100 images were classified by two experienced musculoskeletal radiologists
into four quality categories (Figure 2) ranging from category 1, “substantially limited”, to
category 4, “excellent”. The radiologists were given guiding metric definitions and exam-
ples as described in Figure 2. Two images were excluded as they contained radiographs of
bilateral hands.

2.3. Statistical Analysis

The kappa interrater correlation coefficient was used to calculate the correlation score
between the two radiologists. The Spearman correlation coefficient was used to calculate
the correlation of the AI-determined percentage of air density spaces at the top, bottom,
right and left edges of the hand anatomy on radiographs to the quality scores assigned
by radiologists.
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Figure 2. (a) Example of excellent quality, category 4 radiograph. Ideal field of view (FOV). FOV starts proximally from the
metaphysis of the radius and ulna and adequately covers the most distal soft tissues of fingers. It does not have large blank
spaces distally or on the sides. (b) Example of category 3 radiograph. Satisfactory FOV. FOV is slightly large and includes
forearm proximal to radius and ulnar metaphysis, covering up to 1/3 of the forearm. There is a larger blank space distally
or on the sides but measuring equal or less than the height of the long finger distal phalanx. It does not limit diagnostic
accuracy and does not require zooming. (c) Example of category 2 radiograph. Somewhat limited. Large blank space
distally or on the sides. Blank space at the top measuring larger than the height of the long finger distal phalanx and up
to two distal phalangeal heights. FOV may extend more proximal to the radius and ulnar metaphysis, covering 1/3 to
1/2 of the forearm. It does not limit diagnostic accuracy, but may require zooming for evaluation. (d) Example of poor
quality, category 1 radiograph—Substantially limited FOV. Large blank spaces distally or on the sides. The blank space at
the top measures larger than the double of height of the long finger distal phalanx. FOV may extend more proximal to the
radius and ulnar metaphysis, covering more than 1/2 of the forearm. It limits diagnostic accuracy and requires zooming
for evaluation.
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3. Results

The kappa score for the agreement between the two radiologists in assigning the
radiograph quality scores was 0.61 (0.50–0.74 95%CI).

Table 1 summarizes the Spearman correlation coefficients of top, bottom, right and
left unused radiograph space metrics to ranked categories assigned by radiologists. The
best correlations were achieved for the calculation of the top unused space.

Table 1. Spearman correlation coefficients of top, bottom, right and left unused radiograph space
metrics to ranked categories assigned by radiologists.

Top Bottom Right Left

Radiologist 1 −0.6 −0.4 −0.4 −0.4
Radiologist 2 −0.7 −0.3 −0.2 −0.4

Table 2 describes the average radiograph “top unused space percentages” correspond-
ing to the quality scores assigned by radiologists. Boxplots of percentages of unused space
calculated by the AI algorithm, organized by corresponding radiograph scores assigned by
the two radiologists, are displayed in Figure 3.

Table 2. Average radiograph “top unused space percentages” corresponding to quality scores
assigned by radiologists.

Quality Score Unused Top Radiograph Space

4 (Excellent) 5% (SD = 3%)
3 (Satisfactory) 8% (SD = 5%)

2 (Limited) 12% (SD = 5%)
1 (Substantially limited) 19% (SD = 5%)

Figure 3. Boxplots demonstrating distribution of “top unused space percentages” as calculated by AI algorithm for different
quality scores assigned by two radiologists (a,b). Quality score of “1” refers to “substantially limited”, “2” refers to “limited”,
“3” refers to “satisfactory”, and “4” refers to “excellent” quality of radiographs.
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4. Discussion

In this project, we trained and validated an AI algorithm which can be used in the
evaluation of the quality of hand radiographs without a human input. The primary benefits
of this method are its use for quality control and assurance with automation, increased
efficiency and standardization. It has the ability to process a large number of images
and to output a standardized quality metric that indirectly describes collimation. All
unilateral hand radiographs from a given health care enterprise or random samples of
radiographs can be evaluated and reports can be generated to address areas requiring
continuous quality improvement in a system-wide fashion. Currently, we are using this
tool for ongoing QI/QA projects at our institution, since it is scalable to a wide variety
of radiographs.

One of the primary goals of quality assurance processes in radiology includes ra-
diation reduction using the concept of “as low as reasonably achievable (ALARA)” [3].
Inappropriate collimation usually results in a large field of view and can lead to unnec-
essary patient radiation exposure. For example, exposure of the upper abdomen in chest
radiography [4] results in exposure to the vital visceral organs. Exposure of the periphery
of the abdomen or pelvis in lumbar spine radiography [5] similarly leads to an unnecessary
dose to many abdominal and pelvic organs and a cumulative dose to the patient. These
effects are magnified even further by the necessity of increasing X-ray tube source power
to penetrate the overlying soft tissues [5]. The adverse effects of inappropriate collimation
with higher exposure dose calculation by various manufactures have also been previously
discussed [6]. Though extremities are relatively radioresistant and the radiation exposure in
hand radiography is minimal, this pilot study introduces the concept of using AI, which is
scalable to many other sites for the patients’ benefit and technologist training and feedback.
In addition, based on the ALARA principles, unnecessary exposure should be avoided as
there are no benefits to justify the risk, however minimal it may be.

Other important clinical benefits of improving collimation quality that are relevant
to the radiologists evaluating hand radiographs include better delineation of fine osseous
anatomy and potential time savings. To our knowledge, the effect of suboptimal collimation
(field of view) on radiological interpretation has not been formally studied. In the current
digital environment, the resolution may be markedly limited by larger fields of view. The
images are encoded into digital matrices and each pixel size is directly dependent on the
original acquired field size. There are physical limitations of displaying original images
that were acquired with too large of a field of view and it can result in pixelation artifacts
on the zoomed anatomy. The contrast of the image may also be affected as automatic
exposure controls may lead to underpenetrated, overpenetrated or unevenly penetrated
parts of the anatomy. Suboptimal collimation may require radiologists to adjust the size or
contrast of the image, which increases the amount of time needed for interpretations and
may lead to possibly missed pathology.

Among many recent changes in the practice of radiology, the transition from an ana-
log to a digital environment has been the fastest. Semi-automatic and automatic digital
post-processing of the images encompasses many benefits. However, new challenges
frequently arise that are unique to quality assurance (QA) and improvement processes. In
the past, technically unacceptable films were evident as soon as analog image processing
was complete. Radiologists practiced in close proximity to the technologists and were able
to provide immediate feedback in person. It is now possible to digitally correct suboptimal
images [7] and send those over the internet to radiologists who may be working in distant
or remote locations. With increasing volumes of examinations, problems with the original
acquisition may not be immediately obvious and direct radiologist–technologist commu-
nication and correction of quality issues is difficult or sometimes impossible to achieve.
Among the previously-cited limitations of current QA practices are the underreporting of
QA deficiencies and the lack of supporting data to direct technologist education [8].
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Our method differs from the previously described software-assisted technologist
peer review process. Previous work by Hsiao et al. [9] described standardized reporting
of quality metrics using software assistance. Manual input of data into standardized
spreadsheets was required in their work. The process used in the current study can be used
for the automatic generation of reports, without the need to manually input data.

We acknowledge some limitations in our study. There were no images that required
call-back at our institution or repeat imaging. We did not evaluate whether images were
electronically collimated prior to transmission to the reading PACS stations. We did not
evaluate whether automatic collimation or manual collimation was used by the technolo-
gists. In our opinion, these limitations do not significantly affect our primary goal, i.e., to
train and develop a tool that can be used to automatically grade collimation quality using
an indirect collimation metric.

5. Conclusions

An AI-generated metric that calculates the percentage of unused radiographic space
in hand radiographs correlates moderately well with radiographic quality assessed by
expert radiologists. The unused space at the top of the hand image demonstrated the best
correlation. Implications of this approach include the automation, standardization and
scalability of the QA process; decreased radiation doses to patients; and increased efficiency
for radiologists, possibly with enhanced diagnostic accuracy.
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